Plasma Exosome-Derived microRNAs as Potential Diagnostic and Prognostic Biomarkers in Brazilian Pancreatic Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement and Samples
2.2. Exosome Isolation and miRNA Purification
2.3. Exosome Tracking Analysis
2.4. Statistical Analyses
3. Results
3.1. Epidemiological Data
3.2. Nanoparticle Tracking Analysis
3.3. MicroRNA Expression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef]
- Bengtsson, A.; Andersson, R.; Ansari, D. The Actual 5-Year Survivors of Pancreatic Ductal Adenocarcinoma Based on Real-World Data. Sci. Rep. 2020, 10, 16425. [Google Scholar] [CrossRef]
- American Cancer Society Cancer-Facts-and-Figures-2021. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html#:~:text=Estimated%20numbers%20of%20new%20cancer,factors%2C%20early%20detection%2C%20and%20treatment (accessed on 15 March 2022).
- De la Cruz, M.; Young, A.P.; Ruffin, M.T. Diagnosis and Management of Pancreatic Cancer. Am. Fam. Physician 2014, 88, 626–632. [Google Scholar]
- Wong, J.C.; Lu, D.S.K. Staging of Pancreatic Adenocarcinoma by Imaging Studies. Clin. Gastroenterol. Hepatol. 2008, 6, 1301–1308. [Google Scholar] [CrossRef]
- Klauß, M.; Schöbinger, M.; Wolf, I.; Werner, J.; Meinzer, H.P.; Kauczor, H.U.; Grenacher, L. Value of Three-Dimensional Reconstructions in Pancreatic Carcinoma Using Multidetector CT: Initial Results. World J. Gastroenterol. 2009, 15, 5827–5832. [Google Scholar] [CrossRef]
- Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic Cancer. Lancet 2011, 378, 607–620. [Google Scholar] [CrossRef]
- Goonetilleke, K.S.; Siriwardena, A.K. Systematic Review of Carbohydrate Antigen (CA 19-9) as a Biochemical Marker in the Diagnosis of Pancreatic Cancer. Eur. J. Surg. Oncol. 2007, 33, 266–270. [Google Scholar] [CrossRef]
- Dai, J.; Su, Y.; Zhong, S.; Cong, L.; Liu, B.; Yang, J.; Tao, Y.; He, Z.; Chen, C.; Jiang, Y. Exosomes: Key Players in Cancer and Potential Therapeutic Strategy. Signal Transduct. Target. Ther. 2020, 5, 145. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Lin, M.; Zhang, H.-B. Diagnostic Value of Carcinoembryonic Antigen and Carcinoma Antigen 19-9 for Colorectal Carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 9404–9409. [Google Scholar]
- Khomiak, A.; Brunner, M.; Kordes, M.; Lindblad, S.; Miksch, R.C.; Öhlund, D.; Regel, I. Cancers Recent Discoveries of Diagnostic, Prognostic and Predictive Biomarkers for Pancreatic Cancer. Cancers 2020, 12, 3234. [Google Scholar] [CrossRef]
- Tempero, M.A.; Uchida, E.; Takasaki, H.; Burnett, D.A.; Steplewski, Z.; Pour, P.M. Relationship of Carbohydrate Antigen 19-9 and Lewis Antigens in Pancreatic Cancer1. Cancer Res. 1987, 47, 5501–5503. [Google Scholar] [PubMed]
- Fabian, M.R.; Sonenberg, N. The Mechanics of MiRNA-Mediated Gene Silencing: A Look under the Hood of MiRISC. Nat. Struct. Mol. Biol. 2012, 19, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, J.; Rahbarghazi, R.; Pezeshki, M.; Mazhar, M.; Yekani, F.; Khaksar, M.; Shokrollahi, E.; Amini, H.; Hashemzadeh, S.; Sokullu, S.E.; et al. Cardioprotective Role of Extracellular Vesicles: A Highlight on Exosome Beneficial Effects in Cardiovascular Diseases. J. Cell. Physiol. 2019, 234, 21732–21745. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, J.; Aslan, C.; Ahmadi, M.; Zolbanin, N.M.; Kashanchi, F.; Jafari, R. The Versatile Role of Exosomes in Human Retroviral Infections: From Immunopathogenesis to Clinical Application. Cell Biosci. 2021, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Licini, C.; Avellini, C.; Picchiassi, E.; Mensà, E.; Fantone, S.; Ramini, D.; Tersigni, C.; Tossetta, G.; Castellucci, C.; Tarquini, F.; et al. Pre-Eclampsia Predictive Ability of Maternal MiR-125b: A Clinical and Experimental Study. Transl. Res. 2021, 228, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, J.; Sen, S. MicroRNA as Biomarkers and Diagnostics. J. Cell. Physiol. 2016, 231, 25–30. [Google Scholar] [CrossRef]
- Sun, Z.; Shi, K.; Yang, S.; Liu, J.; Zhou, Q.; Wang, G.; Song, J.; Li, Z.; Zhang, Z.; Yuan, W. Effect of Exosomal MiRNA on Cancer Biology and Clinical Applications. Mol. Cancer 2018, 17, 147. [Google Scholar] [CrossRef]
- Nishiwada, S.; Cui, Y.; Sho, M.; Jun, E.; Akahori, T.; Nakamura, K.; Sonohara, F.; Yamada, S.; Fujii, T.; Han, I.W.; et al. Transcriptomic Profiling Identifies an Exosomal MicroRNA Signature for Predicting Recurrence Following Surgery in Patients with Pancreatic Ductal Adenocarcinoma. Ann. Surg. 2021, 10, 1097. [Google Scholar] [CrossRef]
- Vicentini, C.; Calore, F.; Nigita, G.; Fadda, P.; Simbolo, M.; Sperandio, N.; Luchini, C.; Lawlor, R.T.; Maria Croce, C.; Corbo, V.; et al. Exosomal MiRNA Signatures of Pancreatic Lesions. BMC Gastroenterol. 2020, 20, 137. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-F.; Hannafon, B.N.; Zhao, Y.D.; Postier, R.G.; Ding, W.-Q. Plasma Exosome MiR-196a and MiR-1246 Are Potential Indicators of Localized Pancreatic Cancer. Oncotarget 2017, 8, 77028–77040. [Google Scholar] [CrossRef] [PubMed]
- Takahasi, K.; Iinuma, H.; Wada, K.; Minezaki, S.; Kawamura, S.; Kainuma, M.; Ikeda, Y.; Shibuya, M.; Miura, F.; Sano, K. Usefulness of Exosome-Encapsulated MicroRNA-451a as a Minimally Invasive Biomarker for Prediction of Recurrence and Prognosis in Pancreatic Ductal Adenocarcinoma. J. Hepato-Biliary-Pancreat. Sci. 2017, 25, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Abue, M.; Yokoyama, M.; Shibuya, R.; Tamai, K.; Yamaguchi, K.; Sato, I.; Tanaka, N.; Hamada, S.; Shimosegawa, T.; Sugamura, K.; et al. Circulating MiR-483-3p and MiR-21 Is Highly Expressed in Plasma of Pancreatic Cancer. Int. J. Oncol. 2015, 46, 539–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Tao, Y.; Wang, X.; Jiang, P.; Li, J.; Peng, M.; Zhang, X.; Chen, K.; Liu, H.; Zhen, P.; et al. Cellular Physiology and Biochemistry Cellular Physiology and Biochemistry Tumor-Secreted Exosomal MiR-222 Promotes Tumor Progression via Regulating P27 Expression and Re-Localization in Pancreatic Cancer. Cell. Physiol. Biochem. 2018, 51, 610–629. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, Z.; Wang, T.; Huang, Z.; Zhu, W.; Miao, Y. Plasma MiRNAs in Diagnosis and Prognosis of Pancreatic Cancer: A MiRNA Expression Analysis. Gene 2018, 673, 181–193. [Google Scholar] [CrossRef]
- Lv, L.L.; Feng, Y.; Wu, M.; Wang, B.; Li, Z.L.; Zhong, X.; Wu, W.J.; Chen, J.; Ni, H.F.; Tang, T.T.; et al. Exosomal MiRNA-19b-3p of Tubular Epithelial Cells Promotes M1 Macrophage Activation in Kidney Injury. Cell Death Differ. 2020, 27, 210–226. [Google Scholar] [CrossRef]
- Diaz-Riascos, Z.V.; Ginesta, M.M.; Fabregat, J.; Serrano, T.; Busquets, J.; Buscail, L.; Cordelier, P.; Capellá, G. Expression and Role of MicroRNAs from the MiR-200 Family in the Tumor Formation and Metastatic Propensity of Pancreatic Cancer. Mol. Ther. Nucleic Acids 2019, 17, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Hui, X.; Mao, Y.; Fan, L. Identification of Novel Genes Associated with a Poor Prognosis in Pancreatic Ductal Adenocarcinoma via a Bioinformatics Analysis. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Ruivo, C.F.; Adem, B.; Silva, M.; Melo, S.A. The Biology of Cancer Exosomes: Insights and New Perspectives. Cancer Res. 2017, 77, 6480–6488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, S.W.; Lima, L.G.; Lobb, R.J.; Norris, E.L.; Hastie, M.L.; Krumeich, S.; Möller, A. Breast Cancer-Derived Exosomes Reflect the Cell-of-Origin Phenotype. Proteomics 2019, 19, 1800180. [Google Scholar] [CrossRef] [PubMed]
- Eun, J.L.; Gusev, Y.; Jiang, J.; Nuovo, G.J.; Lerner, M.R.; Frankel, W.L.; Morgan, D.L.; Postier, R.G.; Brackett, D.J.; Schmittgen, T.D. Expression Profiling Identifies MicroRNA Signature in Pancreatic Cancer. Int. J. Cancer 2007, 120, 1046–1054. [Google Scholar]
- Papaconstantinou, I.G.; Manta, A.; Gazouli, M.; Lyberopoulou, A.; Lykoudis, P.M.; Polymeneas, G.; Voros, D. Expression of MicroRNAs in Patients With Pancreatic Cancer and Its Prognostic Significance. Natl. Libr. Med. 2013, 42, 67–71. [Google Scholar] [CrossRef]
- Bai, X.; Lu, D.; Lin, Y.; Lv, Y.; He, L. A Seven-miRNA Expression-based Prognostic Signature and Its Corresponding Potential Competing Endogenous RNA Network in Early Pancreatic Cancer. Exp. Ther. Med. 2019, 18, 1601–1608. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Tan, J.; Gong, Y.; Dai, H.; Chen, H.; Xu, X.; Yang, A.; Zhang, Y.; Bie, P. MicroRNA-216b-5p Functions as a Tumor-Suppressive RNA by Targeting TPT1 in Pancreatic Cancer Cells. J. Cancer 2017, 8, 2854–2865. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Zhang, Q.; Chen, W.; Wu, T.; Liu, S.; Li, X.; Luo, B.; Zhang, T.; Yan, G.; Lu, H.; et al. MicroRNA-301a Promotes Pancreatic Cancer Invasion and Metastasis through the JAK/STAT3 Signaling Pathway by Targeting SOCS5. Carcinogenesis 2020, 41, 502–514. [Google Scholar] [CrossRef]
- Zhu, G.; Zhou, L.; Liu, H.; Shan, Y.; Zhang, X. MicroRNA-224 Promotes Pancreatic Cancer Cell Proliferation and Migration by Targeting the TXNIP-Mediated HIF1α Pathway. Cell. Physiol. Biochem. 2018, 48, 1735–1746. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Hu, Z.; Yuan, G.; Su, H.; Zeng, Y.; Guo, Z.; Zhong, F.; Jiang, K.; He, S. MicroRNA-1179 Inhibits the Proliferation, Migration and Invasion of Human Pancreatic Cancer Cells by Targeting E2F5. Chem. Biol. Interact. 2018, 291, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Dai, C.Y.; Mei, Z.; Jiang, M.J.; Gu, D.N.; Huang, Q.; Tian, L. MicroRNA-193a Stimulates Pancreatic Cancer Cell Repopulation and Metastasis through Modulating TGF-Β2/TGF-ΒRIII Signalings. J. Exp. Clin. Cancer Res. 2018, 37, 25. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zheng, D.; Qi, H.; Gao, Q. Thioredoxin-Interacting Protein Is a Favored Target of MiR-125b, Promoting Metastasis and Progression of Pancreatic Cancer via the HIF1α Pathway. J. Biochem. Mol. Toxicol. 2021, 35, e22782. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, A.; Feng, X.; Tian, L.; Bo, W.; Wang, H.; Hu, Y. MiR-132 Promotes the Proliferation, Invasion and Migration of Human Pancreatic Carcinoma by Inhibition of the Tumor Suppressor Gene PTEN. Prog. Biophys. Mol. Biol. 2019, 148, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Schultz, N.A.; Dehlendorff, C.; Jensen, B.v.; Bjerregaard, J.K.; Nielsen, K.R.; Bojesen, S.E.; Calatayud, D.; Nielsen, S.E.; Yilmaz, M.; Holländer, N.H.; et al. MicroRNA Biomarkers in Whole Blood for Detection of Pancreatic Cancer. JAMA J. Am. Med. Assoc. 2014, 311, 392–404. [Google Scholar] [CrossRef]
- Mazza, T.; Gioffreda, D.; Fontana, A.; Biagini, T.; Carella, M.; Palumbo, O.; Maiello, E.; Bazzocchi, F.; Andriulli, A.; Tavano, F. Clinical Significance of Circulating MiR-1273g-3p and MiR-122-5p in Pancreatic Cancer. Front. Oncol. 2020, 10, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shams, R.; Saberi, S.; Zali, M.; Sadeghi, A.; Ghafouri-Fard, S.; Aghdaei, H.A. Identification of Potential MicroRNA Panels for Pancreatic Cancer Diagnosis Using Microarray Datasets and Bioinformatics Methods. Sci. Rep. 2020, 10, 7559. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh Savareh, B.; Asadzadeh Aghdaie, H.; Behmanesh, A.; Bashiri, A.; Sadeghi, A.; Zali, M.; Shams, R. A Machine Learning Approach Identified a Diagnostic Model for Pancreatic Cancer through Using Circulating MicroRNA Signatures. Pancreatology 2020, 20, 1195–1204. [Google Scholar] [CrossRef]
- Bautista-Sánchez, D.; Arriaga-Canon, C.; Pedroza-Torres, A.; de La Rosa-Velázquez, I.A.; González-Barrios, R.; Contreras-Espinosa, L.; Montiel-Manríquez, R.; Castro-Hernández, C.; Fragoso-Ontiveros, V.; Álvarez-Gómez, R.M.; et al. The Promising Role of MiR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. Mol. Ther. Nucleic Acids 2020, 20, 409–420. [Google Scholar] [CrossRef]
- Zou, X.; Wei, J.; Huang, Z.; Zhou, X.; Lu, Z.; Zhu, W.; Miao, Y. Identification of a Six-MiRNA Panel in Serum Benefiting Pancreatic Cancer Diagnosis. Cancer Med. 2019, 8, 2810–2822. [Google Scholar] [CrossRef]
- Ye, Z.Q.; Zou, C.L.; Chen, H.B.; Jiang, M.J.; Mei, Z.; Gu, D.N. MicroRNA-7 as a Potential Biomarker for Prognosis in Pancreatic Cancer. Dis. Markers 2020, 2020, 2782101. [Google Scholar] [CrossRef]
- Ma, J.; Sun, S.; Song, C.; Li, N.; Li, N.; Xu, L.; Yang, T.; Lan, Y.; Li, M. Screening Potential MicroRNAs Associated with Pancreatic Cancer: Data Mining Based on RNA Sequencing and Microarrays. Exp. Ther. Med. 2020, 20, 2705–2715. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, W.B.; Zhou, J.; Wei, Y.; Wang, H.M.; Liu, X.; Chen, X.C.; Wang, W.; Ye, L.; Yao, L.C.; et al. Circulating Exosomal MicroRNAs as Novel Potential Detection Biomarkers in Pancreatic Cancer. Oncol. Lett. 2020, 20, 1432–1440. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.; Ding, G.; Wu, M.; Zhou, S.; Jia, S.; Cao, L. Elevated Expression of Exosomal MicroRNA–21 as a Potential Biomarker for the Early Diagnosis of Pancreatic Cancer Using a Tethered Cationic Lipoplex Nanoparticle Biochip. Oncol. Lett. 2020, 19, 2062–2070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wu, J.; Ye, N.; Li, F.; Zhan, H.; Chen, S.; Xu, J. Plasma-Derived Exosome MiR-19b Acts as a Diagnostic Marker for Pancreatic Cancer. Front. Oncol. 2021, 11, 739111. [Google Scholar] [CrossRef]
- Huang, C.; Tang, S.; Shen, D.; Li, X.; Liang, L.; Ding, Y.; Xu, B. Circulating plasma exosomal miRNA profiles serve as potential metastasis-related biomarkers for hepatocellular carcinoma. Oncol. Lett. 2021, 21, 168. [Google Scholar] [CrossRef]
- Herreros-Villanueva, M.; Duran-Sanchon, S.; Martín, A.C.; Pérez-Palacios, R.; Vila-Navarro, E.; Marcuello, M.; Diaz-Centeno, M.; Cubiella, J.; Diez, M.S.; Bujanda, L.; et al. Plama MicroRNA Signature Validation for Early Detection of Colorectal Cancer. Clin. Transl. Gastroenterol. 2019, 10, e00003. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, W.; Li, H.; Wen, W.; Cheng, W.; Wang, F.; Wu, Y.; Qi, L.; Fan, Y.; Chen, Y.; et al. Diagnostic value of a plasma microRNA signature in gastric cancer: A microRNA expression analysis. Sci. Rep. 2015, 5, 11251. [Google Scholar] [CrossRef]
Ancestry | Sex | Age | Tobacco | Alcohol | Diabetes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
European | African | Male | Female | Mean ± SD | Yes | No | Yes | No | Yes | No | |
Pancreatic cancer | 66% | 34% | 40% | 60% | 60.72 ± 13.3 | 45% | 55% | 26% | 74% | 34% | 66% |
Healthy controls | 71% | 29% | 27% | 73% | 63.74 ± 10.2 | 35% | 65% | 28% | 72% | 10% | 90% |
Pancreatic Cancer Type | (%) | |
---|---|---|
Adenocarcinoma | 75.4% | |
IPMN | 7.7% | |
Frantz Tumor | 4.6% | |
Other | 12.3% | |
Tumor location | (%) | |
Head | 67.37% | |
Body | 12.63% | |
Tail | 6.32% | |
Other | 13.68% | |
Dissected lymphonodes | 53.68% | |
Positive lymphonodes | 47.06% | |
Treatment | (%) | |
Folfirinox | 29.23% | |
Gemcitabine | 3.08% | |
Modified FLOX | 10.77% | |
Gemzar | 3.08% | |
Other | 1.54% | |
Follow | 21.54% | |
Surgery | 7.69% | |
Surgery + chemoterapy | 23.08% | |
No (%) | Yes (%) | |
Progression | 66.32% | 33.68% |
Smoking | 55.79% | 44.21% |
Ethanol | 72.63% | 27.37% |
Diabetes | 68.42% | 31.58% |
MiR-27b-3p | MiR-125b-3p | MiR-122-5p | MiR-21-5p | MiR-221-3p | MiR-19b | MiR-205-5p | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC | Ctl | PC | Ctl | PC | Ctl | PC | Ctl | PC | Ctl | PC | Ctl | PC | Ctl | |
N | 52 | 77 | 48 | 69 | 57 | 74 | 65 | 78 | 61 | 78 | 61 | 77 | 44 | 61 |
Mean | 2.669 | 2.161 | 4.459 | 1.361 | 6.402 | 1.629 | 2.009 | 2.261 | 1.996 | 1.52 | 1.433 | 1.347 | 13.8 | 5.346 |
StdDev | 3.859 | 2.015 | 5.149 | 1.315 | 15.67 | 3.421 | 2.363 | 2.454 | 6.054 | 1.448 | 1.438 | 0.9844 | 16.65 | 13.87 |
p-value | 0.3311 | <0.0001 | 0.0121 | 0.5352 | 0.5033 | 0.6757 | 0.0091 |
miR-125b-3p | miR-122-5p | miR-205 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pancreatic Cancer Type | Pancreatic Cancer Type | Pancreatic Cancer Type | Ancestry | Tumor Progression | Survival Status | ||||||||||
Control | Adeno | Other | Control | Adeno | Other | Control | Adeno | Other | African | European | No | Yes | Alive | Dead | |
Samples | 73 | 38 | 12 | 78 | 47 | 18 | 65 | 39 | 14 | 17 | 36 | 36 | 17 | 35 | 18 |
Mean | 1.41 | 5.32 | 2.50 | 1.55 | 7.78 | 2.13 | 5.09 | 21.04 | 9.96 | 12.32 | 20.85 | 11.31 | 32.53 | 10.95 | 32.05 |
Standard Error of Mean | 0.18 | 0.95 | 0.90 | 0.38 | 2.51 | 0.71 | 1.67 | 5.95 | 2.80 | 2.62 | 6.45 | 1.66 | 13.08 | 1.72 | 12.31 |
Lower 95% CI | 1.06 | 3.40 | 0.52 | 0.79 | 2.74 | 0.63 | 1.75 | 8.99 | 3.90 | 6.77 | 7.75 | 7.94 | 4.80 | 7.46 | 6.08 |
Upper 95% CI | 1.77 | 7.24 | 4.47 | 2.30 | 12.82 | 3.62 | 8.43 | 33.09 | 16.01 | 17.86 | 33.95 | 14.68 | 60.25 | 14.43 | 58.02 |
p-value | 0.0001 | 0.9616 | 0.0451 | 0.9998 | 0.0301 | 0.9895 | 0.8992 | 0.0404 | 0.8378 | 0.0024 | 0.9412 | 0.0038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin, A.M.; Mattar, S.B.; Amatuzzi, R.F.; Chammas, R.; Uno, M.; Zanette, D.L.; Aoki, M.N. Plasma Exosome-Derived microRNAs as Potential Diagnostic and Prognostic Biomarkers in Brazilian Pancreatic Cancer Patients. Biomolecules 2022, 12, 769. https://doi.org/10.3390/biom12060769
Marin AM, Mattar SB, Amatuzzi RF, Chammas R, Uno M, Zanette DL, Aoki MN. Plasma Exosome-Derived microRNAs as Potential Diagnostic and Prognostic Biomarkers in Brazilian Pancreatic Cancer Patients. Biomolecules. 2022; 12(6):769. https://doi.org/10.3390/biom12060769
Chicago/Turabian StyleMarin, Anelis Maria, Sibelle Botogosque Mattar, Rafaela Ferreira Amatuzzi, Roger Chammas, Miyuki Uno, Dalila Luciola Zanette, and Mateus Nóbrega Aoki. 2022. "Plasma Exosome-Derived microRNAs as Potential Diagnostic and Prognostic Biomarkers in Brazilian Pancreatic Cancer Patients" Biomolecules 12, no. 6: 769. https://doi.org/10.3390/biom12060769
APA StyleMarin, A. M., Mattar, S. B., Amatuzzi, R. F., Chammas, R., Uno, M., Zanette, D. L., & Aoki, M. N. (2022). Plasma Exosome-Derived microRNAs as Potential Diagnostic and Prognostic Biomarkers in Brazilian Pancreatic Cancer Patients. Biomolecules, 12(6), 769. https://doi.org/10.3390/biom12060769