Alkaloids of Dicranostigma franchetianum (Papaveraceae) and Berberine Derivatives as a New Class of Antimycobacterial Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Material
2.3. Extraction and Isolation of Alkaloids
2.4. Preparation of Berberine Derivatives
2.5. Antimycobacterial Screening
2.6. Cytotoxicity Assay
3. Results and Discussion
3.1. Isolation of Isoquinoline Alkaloids from Dicranostigma Franchetianum and Their Antimycobacterial Activity
3.2. Berberine Derivatives (16a–16k) and Their Antimycobacterial Activity
3.3. Lipophilicity versus Activity
3.4. Cytotoxicity of Berberine Derivatives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dang, Y.; Gong, H.F.; Liu, J.X.; Yu, S.J. Alkaloid from Dicranostigma leptopodum (Maxim) Fedde. Chin. Chem. Lett. 2009, 20, 1218–1220. [Google Scholar] [CrossRef]
- Liu, D.H.; Zhang, T.C.; Liu, J.X.; Di, D.L.; Dang, Y. Chemical Constituents of Alkaloids from Dicranostigma leptopodum. Chin. Tradit. Herb Drugs 2011, 42, 1505–1509. [Google Scholar]
- Qiang, Z. Insights into Chemical Constituents of Alkaloids from Wild Medicinal Plant Dicranostigma leptodum (Maxim.) Fedde. J. Phys. Conf. Ser. 2019, 1176, 042056. [Google Scholar] [CrossRef]
- Zhang, W.-H.; Lv, M.-H.; Jun, H.; Wang, Q.-P.; Wang, Q. Dicranostigma leptopodum (Maxim.) Fedde induced apoptosis in SMMC-7721 human hepatoma cells and inhibited tumor growth in mice. Nat. Sci. 2010, 2, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Zhong, M.; Ma, Y.-X.; Liu, J.-X.; Di, D.-L. A new quaternary protoberberine alkaloid isolated from Dicranostigma leptopodum (Maxim.) Fedde. Nat. Prod. Res. 2014, 28, 507–510. [Google Scholar] [CrossRef]
- Chen, Y.; Li, R.; Gao, R.; Yan, Q.; Zhong, M.; Liu, J.; Zhao, Q.; Di, D. Total content determination for the effective fraction of the alkaloids in Dicranostigma leptopodum (Maxim.) Fedde by HPLC and ultraviolet-visible spectrophotometry. Anal. Methods 2016, 8, 2645–2652. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Yan, Q.; Zhong, M.; Liu, J.; Di, D.; Liu, J. Simultaneous determination of the content of isoquinoline alkaloids in Dicranostigma leptopodum (Maxim.) Fedde and the effective fractionation of the alkaloids by high-performance liquid chromatography with diode array detection. J. Sep. Sci. 2015, 38, 9–17. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Liu, J.; Di, D. Three-phase solvent systems for the comprehensive separation of a wide variety of compounds from Dicranostigma leptopodum by high-speed counter-current chromatography: Liquid Chromatography. J. Sep. Sci. 2015, 38, 2038–2045. [Google Scholar] [CrossRef]
- Sun, R.; Jiang, H.; Zhang, W.; Yang, K.; Wang, C.; Fan, L.; He, Q.; Feng, J.; Du, S.; Deng, Z.; et al. Cytotoxicity of Aporphine, Protoberberine, and Protopine Alkaloids from Dicranostigma leptopodum (Maxim.) Fedde. Evid.-Based Complement. Altern. 2014, 2014, 580483. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Han, Y.; Du, Y.P.; Wang, T.P.; Wang, Q. The effect of Dicranostigma leptopodum (Maxim.) Fedde (DLF) extraction on suppressing oxidative hemolysis of erythrocytes and its mechanism. J. Lanzhou Univ. Med. Sci. 2006, 32, 40–45. [Google Scholar]
- Tingpu, W.; Yixia, G.; Qiang, Z.; Yijun, Y.; Weichao, M.; Li, X.; Chenghui, L. Antibacterial activity and mechanism of alkaloids from Dicranostigma leptopodum (Maxim.) Fedde on Klebsiella pneumoniae. J. Tianshui Norm. Univ. 2018, 38, 24–28. [Google Scholar]
- Chelombit’ko, V.A. Dicranostigma franchetianum (Prain) Fedde: A plant promising as a source of the alkaloid isocorydine. Pharm. Chem. J. 1979, 13, 844–845. [Google Scholar] [CrossRef]
- Táborská, E.; Věžník, F.; Slavíková, L.; Slavík, J. Quaternary alkaloids of three species of Dicranostigma HOOK. f. et THOMS. Collect. Czech. Chem. Commun. 1978, 43, 1108–1112. [Google Scholar] [CrossRef]
- Slavíková, L.; Slavik, J. Alkaloide der mohngewächse (Papaveraceae) IX. Dicranostigma franchetianum (Prain) Fedde. Collect. Czech. Chem. Commun. 1959, 24, 559–563. [Google Scholar] [CrossRef]
- Manske, R.H.F. The alkaloids of Papaveraceous plants: XXXII. Stylophorum diphyllum (Michx.) Nutt., Dicranostigma franchetianum (Prain) Fedde and Glaucium serpieri Heldr. Can. J. Res. B 1942, 20, 53–56. [Google Scholar] [CrossRef]
- Udwadia, Z.F.; Amale, R.A.; Ajbani, K.K.; Rodrigues, C. Totally Drug-Resistant Tuberculosis in India. Clin. Infect. Dis. 2012, 54, 579–581. [Google Scholar] [CrossRef] [Green Version]
- Koul, A.; Arnoult, E.; Lounis, N.; Guillemont, J.; Andries, K. The challenge of new drug discovery for tuberculosis. Nature 2011, 469, 483–490. [Google Scholar] [CrossRef]
- Global Tuberculosis Programme. Global Tuberculosis Report 2021. Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 8 March 2022).
- Han, J.; Liu, X.; Zhang, L.; Quinn, R.J.; Feng, Y. Anti-mycobacterial natural products and mechanisms of action. Nat. Prod. Rep. 2022, 39, 77–89. [Google Scholar] [CrossRef]
- Von Nussbaum, F.; Brands, M.; Hinzen, B.; Weigand, S.; Häbich, D. Antibacterial natural products in medicinal chemistry—Exodus or revival? Angew. Chem. Int. Ed. Engl. 2006, 45, 5072–5129. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; The International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Cazzaniga, G.; Mori, M.; Chiarelli, L.R.; Gelain, A.; Meneghetti, F.; Villa, S. Natural products against key Mycobacterium tuberculosis enzymatic targets: Emerging opportunities for drug discovery. Eur. J. Med. Chem. 2021, 224, 113732. [Google Scholar] [CrossRef] [PubMed]
- Maafi, N.; Mamun, A.A.; Janďourek, O.; Maříková, J.; Breiterová, K.; Diepoltová, A.; Konečná, K.; Hošťálková, A.; Hulcová, D.; Kuneš, J.; et al. Semisynthetic Derivatives of Selected Amaryllidaceae Alkaloids as a New Class of Antimycobacterial Agents. Molecules 2021, 26, 6023. [Google Scholar] [CrossRef] [PubMed]
- Claes, P.; Cappoen, D.; Mbala, B.M.; Jacobs, J.; Mertens, B.; Mathys, V.; Verschaeve, L.; Huygen, K.; De Kimpe, N. Synthesis and antimycobacterial activity of analogues of the bioactive natural products sampangine and cleistopholine. Eur. J. Med. Chem. 2013, 67, 98–110. [Google Scholar] [CrossRef]
- Li, Y.H.; Fu, H.G.; Su, F.; Gao, L.M.; Tang, S.; Bi, C.W.; Li, Y.H.; Wang, Y.X.; Song, D.Q. Synthesis and structure-activity relationship of 8-substituted protoberberine derivatives as a novel class of antitubercular agents. Chem. Cent. J. 2013, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.X.; Xiao, C.L.; Wang, Y.X.; Li, Y.H.; Yang, Y.H.; Li, Y.B.; Bi, C.W.; Gao, L.M.; Jiang, J.D.; Song, D.Q. Synthesis, structure-activity relationship and in vitro anti-mycobacterial evaluation of 13-n-octylberberine derivatives. Eur. J. Med. Chem. 2012, 52, 151–158. [Google Scholar] [CrossRef]
- Sobolová, K.; Hrabinová, M.; Hepnarová, V.; Kučera, T.; Kobrlová, T.; Benková, M.; Janočková, J.; Doležal, R.; Prchal, L.; Benek, O.; et al. Discovery of novel berberine derivatives with balanced cholinesterase and prolyl oligopeptidase inhibition profile. Eur. J. Med. Chem. 2020, 203, 112593. [Google Scholar] [CrossRef]
- Franzblau, S.G.; Witzig, R.S.; McLaughlin, J.C.; Torres, P.; Madico, G.; Hernandez, A.; Degnan, M.T.; Cook, M.B.; Quenzer, V.K.; Ferguson, R.M.; et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998, 36, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Schön, T.; Werngren, J.; Machado, D.; Borroni, E.; Wijkander, M.; Lina, G.; Mouton, J.; Matuschek, E.; Kahlmeter, G.; Giske, C.; et al. Antimicrobial susceptibility testing of Mycobacterium tuberculosis complex isolates—The EUCAST broth microdilution reference method for MIC determination. Clin. Microbiol. Infect. 2020, 26, 1488–1492. [Google Scholar] [CrossRef]
- Romo-Pérez, A.; Miranda, L.D.; Chávez-Blanco, A.D.; Dueñas-González, A.; Camacho-Corona, M.d.R.; Acosta-Huerta, A.; García, A. Mild C(sp3)–H functionalization of dihydrosanguinarine and dihydrochelerythrine for development of highly cytotoxic derivatives. Eur. J. Med. Chem. 2017, 138, 1–12. [Google Scholar] [CrossRef]
- Miao, F.; Yang, X.-J.; Zhou, L.; Hu, H.-J.; Zheng, F.; Ding, X.-D.; Sun, D.-M.; Zhou, C.-D.; Sun, W. Structural modification of sanguinarine and chelerythrine and their antibacterial activity. Nat. Prod. Res. 2011, 25, 863–875. [Google Scholar] [CrossRef]
- Kiryakov, H.G.; Iskrenova, E.; Daskalova, E.; Kuzmanov, B.; Evstatieva, L. Alkaloids of Corydalis slivenensis. Planta Med. 1982, 44, 168–170. [Google Scholar] [CrossRef]
- Dostál, J.; Táborská, E.; Slavík, J.; Potáček, M.; de Hoffmann, E. Structure of Chelerythrine Base. J. Nat. Prod. 1995, 58, 723–729. [Google Scholar] [CrossRef]
- Seger, C.; Sturm, S.; Strasser, E.-M.; Ellmerer, E.; Stuppner, H. 1H and 13C NMR signal assignment of benzylisoquinoline alkaloids from Fumaria officinalis L. (Papaveraceae). Magn. Reson. Chem. 2004, 42, 882–886. [Google Scholar] [CrossRef]
- Takao, N.; Kamigauchi, M.; Iwasa, K.; Morita, N.; Kuriyama, K. Stereochemie von Hydrobenzo[c]phenanthridin-Alkaloiden. Chiroptische Eigenschaften und absolute Konfiguration von (+)-14-Epicorynolin, (+)-Corynolin, (+)-Chelidonin und verwandten Verbindungen. Arch. Pharm. 1984, 317, 223–237. [Google Scholar] [CrossRef]
- Ferreira, M.L.R.; de Pascoli, I.C.; Nascimento, I.R.; Zukerman-Schpector, J.; Lopes, L.M.X. Aporphine and bisaporphine alkaloids from Aristolochia lagesiana var. intermedia. Phytochemistry 2010, 71, 469–478. [Google Scholar] [CrossRef]
- Arafa, A.; Mohamed, M.; Eldahmy, S.I. The aerial parts of yellow horn poppy (Glaucium flavum Cr.) growing in Egypt: Isoquinoline alkaloids and biological activities. J. Pharm. Sci. Res. 2016, 8, 323–332. [Google Scholar]
- Gadhiya, S.; Ponnala, S.; Harding, W.W. A divergent route to 9,10-oxygenated tetrahydroprotoberberine and 8-oxoprotoberberine alkaloids: Synthesis of (±)-isocorypalmine and oxypalmatine. Tetrahedron 2015, 71, 1227–1231. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, J.C.O.; Lahm, G.; Opatz, T. Synthesis of Alkaloids by Stevens Rearrangement of Nitrile-Stabilized Ammonium Ylides: (±)-Laudanosine, (±)-Laudanidine, (±)-Armepavine, (±)-7-Methoxycryptopleurine, and (±)-Xylopinine. J. Org. Chem. 2013, 78, 4985–4992. [Google Scholar] [CrossRef]
- Schrittwieser, J.H.; Resch, V.; Wallner, S.; Lienhart, W.-D.; Sattler, J.H.; Resch, J.; Macheroux, P.; Kroutil, W. Biocatalytic Organic Synthesis of Optically Pure (S)-Scoulerine and Berbine and Benzylisoquinoline Alkaloids. J. Org. Chem. 2011, 76, 6703–6714. [Google Scholar] [CrossRef]
- Min, Y.D.; Yang, M.C.; Lee, K.H.; Kim, K.R.; Choi, S.U.; Lee, K.R. Protoberberine alkaloids and their reversal activity of P-gp expressed multidrug resistance (MDR) from the rhizome of Coptis japonica Makino. Arch. Pharm. Res. 2006, 29, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Tripathi, G.; Kishore, N.; Singh, R.K.; Singh, A.; Tiwari, V.K. Drug development against tuberculosis: Impact of alkaloids. Eur. J. Med. Chem. 2017, 137, 504–544. [Google Scholar] [CrossRef]
- Omosa, L.K.; Nchiozem-Ngnitedem, V.-A.; Mukavi, J.; Atieno Okoko, B.; Nyaboke, H.O.; Hashim, I.; Matundura, J.O.; Efferth, T.; Spiteller, M. Cytotoxic alkaloids from the root of Zanthoxylum paracanthum (Mildbr.) Kokwaro. Nat. Prod. Res. 2021, 36, 2518–2525. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Guzmán, R.; Fulks, L.C.; Radwan, M.M.; Burandt, C.L.; Ross, S.A. Chemical constituents, antimicrobial and antimalarial activities of Zanthoxylum monophyllum. Planta Med. 2011, 77, 1542–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dostál, J.; Slavík, J.; Potáček, M.; Marek, R.; Humpa, O.; Sklenář, V.; Toušek, J.; Hoffmann, E.; Rozenberg, R. Structural Studies of Chelirubine and Chelilutine Free Bases. Collect. Czech. Chem. Commun. 1998, 63, 1045–1055. [Google Scholar] [CrossRef]
- Okunade, A.L.; Hufford, C.D.; Richardson, M.D.; Peterson, J.R.; Clark, A.M. Antimicrobial properties of alkaloids from Xanthorhiza simplicissima. J. Pharm. Sci. 1994, 83, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Gentry, E.J.; Jampani, H.B.; Keshavarz-Shokri, A.; Morton, M.D.; Vander Velde, D.; Telikepalli, H.; Mitscher, L.A.; Shawar, R.; Humble, D.; Baker, W. Antitubercular Natural Products: Berberine from the Roots of Commercial Hydrastis canadensis Powder. Isolation of Inactive 8-Oxotetrahydrothalifendine, Canadine, β-Hydrastine, and Two New Quinic Acid Esters, Hycandinic Acid Esters-1 and -2. J. Nat. Prod. 1998, 61, 1187–1193. [Google Scholar] [CrossRef]
- Affuso, F.; Mercurio, V.; Fazio, V.; Fazio, S. Cardiovascular and metabolic effects of Berberine. World J. Cardiol. 2010, 2, 71–77. [Google Scholar] [CrossRef]
- Yao, L.; Wu, L.L.; Li, Q.; Hu, Q.M.; Zhang, S.Y.; Liu, K.; Jiang, J.Q. Novel berberine derivatives: Design, synthesis, antimicrobial effects, and molecular docking studies. Chin. J. Nat. Med. 2018, 16, 774–781. [Google Scholar] [CrossRef]
- Abd El-Salam, M.; Mekky, H.; El-Naggar, E.M.B.; Ghareeb, D.; El-Demellawy, M.; El-Fiky, F. Hepatoprotective properties and biotransformation of berberine and berberrubine by cell suspension cultures of Dodonaea viscosa and Ocimum basilicum. S. Afr. J. Bot. 2015, 97, 191–195. [Google Scholar] [CrossRef]
- Caliceti, C.; Franco, P.; Spinozzi, S.; Roda, A.; Cicero, A.F. Berberine: New Insights from Pharmacological Aspects to Clinical Evidences in the Management of Metabolic Disorders. Curr. Med. Chem. 2016, 23, 1460–1476. [Google Scholar] [CrossRef] [PubMed]
- Hošťálková, A.; Maříková, J.; Opletal, L.; Korábečný, J.; Hulcová, D.; Kuneš, J.; Nováková, L.; Perez, D.I.; Jun, D.; Kučera, T.; et al. Isoquinoline Alkaloids from Berberis vulgaris as Potential Lead Compounds for the Treatment of Alzheimer’s Disease. J. Nat. Prod. 2019, 82, 239–248. [Google Scholar] [CrossRef]
- Chu, M.; Zhang, M.-B.; Liu, Y.-C.; Kang, J.-R.; Chu, Z.-Y.; Yin, K.-L.; Ding, L.-Y.; Ding, R.; Xiao, R.-X.; Yin, Y.-N.; et al. Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections. Sci. Rep. 2016, 6, 24748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozturk, M.; Chia, J.E.; Hazra, R.; Saqib, M.; Maine, R.A.; Guler, R.; Suzuki, H.; Mishra, B.B.; Brombacher, F.; Parihar, S.P. Evaluation of Berberine as an Adjunct to TB Treatment. Front. Immunol. 2021, 12, 656419. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, S.J.; Lee, J.H.; Sun, W.S.; Kim, J.H. Antimicrobial activity of 9-O-acyl- and 9-O-alkylberberrubine derivatives. Planta Med. 2002, 68, 277–281. [Google Scholar] [CrossRef]
- Piccaro, G.; Poce, G.; Biava, M.; Giannoni, F.; Fattorini, L. Activity of lipophilic and hydrophilic drugs against dormant and replicating Mycobacterium tuberculosis. J. Antibiot. 2015, 68, 711–714. [Google Scholar] [CrossRef] [Green Version]
- Senousy, B.E.; Belal, S.I.; Draganov, P.V. Hepatotoxic effects of therapies for tuberculosis. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 543–556. [Google Scholar] [CrossRef]
Alkaloid/Derivative | Mtb H37Ra (µg/mL) | Mtb H37Ra (µM) a | M. aurum (µg/mL) | M. avium (µg/mL) | M. kansasii (µg/mL) | M. smegmatis (µg/mL) | HepG2 IC50 (µM) | SI b | ClogP c |
---|---|---|---|---|---|---|---|---|---|
dihydrosanguinarine (1) | ≥500 | ≥1501 | ≥500 | ≥500 | 125 | ≥500 | n.s. | n.c. | 5.23 |
dihydrochelerythrine (2) | 250 | 716 | 250 | 62.5 | 250 | ≥500 | n.s. | n.c. | 4.92 |
6-ethoxydihydrochelerythrine (3) | 31.25 | 79 | 15.625 | 31.25 | 31.25 | 31.25 | n.s. | n.c. | 5.47 |
stylopine (4) | ≥125 | ≥387 | ≥125 | ≥125 | ≥125 | ≥125 | n.s. | n.c. | 3.81 |
bis-[6-(5,6-dihydrochelerythrinyl)]ether (5) | 31.25 | 44 | 31.25 | 31.25 | 31.25 | 31.25 | n.s. | n.c. | 8.89 |
protopine (6) | ≥500 | ≥1416 | ≥500 | 250 | 120 | ≥500 | n.s. | n.c. | 3.57 |
allocryptopine (7) | ≥250 | ≥678 | ≥250 | ≥250 | 250 | ≥250 | n.s. | n.c. | 3.48 |
cryptopine (8) | ≥125 | ≥339 | ≥125 | ≥125 | ≥125 | ≥125 | n.s. | n.c. | 3.48 |
isocorydine (10) | ≥500 | ≥1432 | ≥500 | ≥500 | 125 | ≥500 | n.s. | n.c. | 2.60 |
glaucine (11) | 125 | ≥352 | 125 | 125 | 62.5 | ≥250 | n.s. | n.c. | 3.07 |
corydine (12) | ≥500 | ≥1466 | 250 | 62.5 | 250 | ≥500 | n.s. | n.c. | 2.82 |
isocoryplamine (13) | ≥250 | ≥733 | ≥250 | ≥250 | ≥250 | ≥250 | n.s. | n.c. | 2.72 |
scoulerine (15) | 250 | 764 | 125 | 250 | 15.625 | 125 | n.s. | n.c. | 2.25 |
berberine (16) | 125 | 336 | 62.5 | 31.25 | 31.25 | 62.5 | n.s. | n.c. | −0.77 |
9-O-benzylberberine chloride (16a) | 6.25 | 13.9 | 3.125 | 3.125 | 6.25 | 0.78 | 24.47 ± 4.25 | 1.76 | 0.99 |
9-O-(2-methylbenzyl)berberine chloride (16b) | 7.81 | 16.9 | 7.81 | 3.91 | 3.91 | 1.95 | 39.27 ± 3.62 | 2.32 | 1.45 |
9-O-(3-methylbenzyl)berberine chloride (16c) | 6.25 | 13.5 | 3.125 | 6.25 | 6.25 | 1.56 | 47.13 ± 7.38 | 3.49 | 1.49 |
9-O-(4-methylbenzyl)berberine chloride (16d) | 3.91 | 8.46 | 6.25 | 1.98 | 3.91 | 1.56 | 15.86 ± 3.48 | 2.54 | 1.49 |
9-O-(2-brombenzyl)berberine chloride (16e) | 1.56 | 2.96 | 0.78 | 1.56 | 3.125 | 0.39 | 11.75 ± 0.29 | 3.92 | 1.86 |
9-O-(3-brombenzyl)berberine chloride (16f) | 3.125 | 5.93 | 1.56 | 3.125 | 3.125 | 0.78 | 13.90 ± 3.25 | 2.34 | 1.86 |
9-O-(4-brombenzyl)berberine chloride (16g) | 3.91 | 7.42 | 3.91 | 1.98 | 0.98 | 0.98 | 21.44 ± 4.80 | 2.89 | 1.86 |
9-O-(3-chlorbenzyl)berberine chloride (16h) | 3.125 | 5.93 | 1.56 | 1.56 | 3.125 | 0.78 | 9.44 ± 2.13 | 1.59 | 1.71 |
9-O-(4-chlorbenzyl)berberine chloride (16i) | 3.125 | 5.93 | 3.125 | 1.56 | 6.25 | 1.56 | 16.17 ± 1.67 | 2.73 | 1.71 |
9-O-(3,4-dichlorbenzyl)berberine chloride (16k) | 1.56 | 2.78 | 1.56 | 1.56 | 6.25 | 1.56 | 12.66 ± 2.51 | 4.55 | 2.30 |
isoniazid d | 0.25 | 1.82 | 3.91 | 500 | 6.25 | 31.25 | n.s. | n.c. | −0.67 |
rifampicin d | 0.00625 | 0.0075 | 0.39 | 0.125 | 0.025 | 12.5 | n.s. | n.c. | 3.71 |
ciprofloxacin d | 0.25 | 0.75 | 0.015625 | 0.5 | 0.25 | 0.0625 | n.s. | n.c. | −0.62 |
doxorubicine | ns | ns | ns | ns | ns | ns | 30.38 ± 1.74 | n.c. | n.c. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijaya, V.; Janďourek, O.; Křoustková, J.; Hradiská-Breiterová, K.; Korábečný, J.; Sobolová, K.; Kohelová, E.; Hošťálková, A.; Konečná, K.; Šafratová, M.; et al. Alkaloids of Dicranostigma franchetianum (Papaveraceae) and Berberine Derivatives as a New Class of Antimycobacterial Agents. Biomolecules 2022, 12, 844. https://doi.org/10.3390/biom12060844
Wijaya V, Janďourek O, Křoustková J, Hradiská-Breiterová K, Korábečný J, Sobolová K, Kohelová E, Hošťálková A, Konečná K, Šafratová M, et al. Alkaloids of Dicranostigma franchetianum (Papaveraceae) and Berberine Derivatives as a New Class of Antimycobacterial Agents. Biomolecules. 2022; 12(6):844. https://doi.org/10.3390/biom12060844
Chicago/Turabian StyleWijaya, Viriyanata, Ondřej Janďourek, Jana Křoustková, Kateřina Hradiská-Breiterová, Jan Korábečný, Kateřina Sobolová, Eliška Kohelová, Anna Hošťálková, Klára Konečná, Marcela Šafratová, and et al. 2022. "Alkaloids of Dicranostigma franchetianum (Papaveraceae) and Berberine Derivatives as a New Class of Antimycobacterial Agents" Biomolecules 12, no. 6: 844. https://doi.org/10.3390/biom12060844
APA StyleWijaya, V., Janďourek, O., Křoustková, J., Hradiská-Breiterová, K., Korábečný, J., Sobolová, K., Kohelová, E., Hošťálková, A., Konečná, K., Šafratová, M., Vrabec, R., Kuneš, J., Opletal, L., Chlebek, J., & Cahlíková, L. (2022). Alkaloids of Dicranostigma franchetianum (Papaveraceae) and Berberine Derivatives as a New Class of Antimycobacterial Agents. Biomolecules, 12(6), 844. https://doi.org/10.3390/biom12060844