CPLANE Complex and Ciliopathies
Abstract
:1. Introduction
2. CPLANE Complex Structure
3. CPLANE and Ciliogenesis
4. CPLANE and Ciliopathies
Gene | Disease | Reference |
---|---|---|
INTU | Short-Rib Polydactyly Syndrome (SRPS) | [24] |
Nephronophthisis | [24] | |
Oro-facial-Digital Syndrome Type 2? (OFD2) | [40] | |
Oro-facial-Digital Syndrome Type 17 (OFD17) | [42] | |
Oro-facial-Digital Syndrome Type 6 (OFD6) | [41] | |
FUZ | Short-Rib Polydactyly Syndrome (SRPS) | [37] |
WDPCP | Bardet-Biedl Syndrome (BBS) | [23] |
Meckel-Gruber syndrome (MKS) | [33] | |
JBTS17 | Oro-facial-Digital Syndrome Type 6 (OFD6) | [25] |
Joubert Syndrome (JS) | [24] | |
Meckel-Gruber syndrome (MKS) | [43] |
5. How Does the CPLANE Complex Relate to the Signalling Pathways Required for Ciliogenesis?
5.1. Intraflagellar Transport
5.2. Planar Cell Polarity
5.3. Hedgehog Signalling Pathway
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Badano, J.L.; Mitsuma, N.; Beales, P.L.; Katsanis, N. The Ciliopathies: An Emerging Class of Human Genetic Disorders. Annu. Rev. Genom. Hum. Genet. 2006, 7, 125–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazour, G.J.; Agrin, N.; Leszyk, J.; Witman, G.B. Proteomic analysis of a eukaryotic cilium. J. Cell Biol. 2005, 170, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggenschwiler, J.T.; Anderson, K.V. Cilia and Developmental Signaling. Annu. Rev. Cell Dev. Biol. 2007, 23, 345–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, A.M.; Leaper, M.J.; Bayliss, R. The primary cilium: Guardian of organ development and homeostasis. Organogenesis 2014, 10, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Wallmeier, J.; Nielsen, K.G.; Kuehni, C.E.; Lucas, J.S.; Leigh, M.W.; Zariwala, M.A.; Omran, H. Motile ciliopathies. Nat. Rev. Dis. Primer 2020, 6, 77. [Google Scholar] [CrossRef]
- Nishimura, Y.; Yamakawa, D.; Uchida, K.; Shiromizu, T.; Watanabe, M.; Inagaki, M. Primary cilia and lipid raft dynamics. Open Biol. 2021, 11, 210130. [Google Scholar] [CrossRef]
- Scherft, J.P.; Daems, W.T. Single cilia in chondrocytes. J. Ultrastruct. Res. 1967, 19, 546–555. [Google Scholar] [CrossRef]
- Rich, D.R.; Clark, A.L. Chondrocyte primary cilia shorten in response to osmotic challenge and are sites for endocytosis. Osteoarthr. Cartil. 2012, 20, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Berbari, N.F.; O’Connor, A.K.; Haycraft, C.J.; Yoder, B.K. The Primary Cilium as a Complex Signaling Center. Curr. Biol. 2009, 19, R526–R535. [Google Scholar] [CrossRef] [Green Version]
- Izawa, I.; Goto, H.; Kasahara, K.; Inagaki, M. Current topics of functional links between primary cilia and cell cycle. Cilia 2015, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Wheway, G.; Nazlamova, L.; Hancock, J.T. Signaling through the Primary Cilium. Front. Cell Dev. Biol. 2018, 6, 8. [Google Scholar] [CrossRef]
- Nachury, M.V.; Seeley, E.S.; Jin, H. Trafficking to the Ciliary Membrane: How to Get Across the Periciliary Diffusion Barrier? Annu. Rev. Cell Dev. Biol. 2010, 26, 59–87. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, H.; Marshall, W.F. Ciliogenesis: Building the cell’s antenna. Nat. Rev. Mol. Cell Biol. 2011, 12, 222–234. [Google Scholar] [CrossRef]
- Chen, H.Y.; Kelley, R.A.; Li, T.; Swaroop, A. Primary cilia biogenesis and associated retinal ciliopathies. Semin. Cell Dev. Biol. 2021, 110, 70–88. [Google Scholar] [CrossRef]
- Reiter, J.F.; Leroux, M.R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 2017, 18, 533–547. [Google Scholar] [CrossRef]
- Butler, M.T.; Wallingford, J.B. Planar cell polarity in development and disease. Nat. Rev. Mol. Cell Biol. 2017, 18, 375–388. [Google Scholar] [CrossRef]
- Skoda, A.M.; Simovic, D.; Karin, V.; Kardum, V.; Vranic, S.; Serman, L. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn. J. Basic Med. Sci. 2018, 18, 8–20. [Google Scholar] [CrossRef]
- Varjosalo, M.; Taipale, J. Hedgehog: Functions and mechanisms. Genes Dev. 2008, 22, 2454–2472. [Google Scholar] [CrossRef] [Green Version]
- Agbu, S.O.; Liang, Y.; Liu, A.; Anderson, K.V. The small GTPase RSG1 controls a final step in primary cilia initiation. J. Cell Biol. 2018, 217, 413–427. [Google Scholar] [CrossRef]
- Gray, R.S.; Abitua, P.B.; Wlodarczyk, B.J.; Szabo-Rogers, H.L.; Blanchard, O.; Lee, I.; Weiss, G.S.; Liu, K.J.; Marcotte, E.M.; Wallingford, J.B.; et al. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat. Cell Biol. 2009, 11, 1225–1232. [Google Scholar] [CrossRef] [Green Version]
- Park, T.J.; Haigo, S.L.; Wallingford, J.B. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nat. Genet. 2006, 38, 303–311. [Google Scholar] [CrossRef]
- Adler, P.N.; Lee, H. Frizzled signaling and cell–cell interactions in planar polarity. Curr. Opin. Cell Biol. 2001, 13, 635–640. [Google Scholar] [CrossRef]
- Kim, S.K.; Shindo, A.; Park, T.J.; Oh, E.C.; Ghosh, S.; Gray, R.S.; Lewis, R.A.; Johnson, C.A.; Attie-Bittach, T.; Katsanis, N.; et al. Planar Cell Polarity Acts Through Septins to Control Collective Cell Movement and Ciliogenesis. Science 2010, 329, 1337–1340. [Google Scholar] [CrossRef] [Green Version]
- Toriyama, M.; Lee, C.; Taylor, S.P.; Duran, I.; Cohn, D.H.; Bruel, A.-L.; Tabler, J.M.; Drew, K.; Kelly, M.R.; Kim, S.; et al. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat. Genet. 2016, 48, 648–656. [Google Scholar] [CrossRef] [Green Version]
- Lopez, E.; Thauvin-Robinet, C.; Reversade, B.; Khartoufi, N.E.; Devisme, L.; Holder, M.; Ansart-Franquet, H.; Avila, M.; Lacombe, D.; Kleinfinger, P.; et al. C5orf42 is the major gene responsible for OFD syndrome type VI. Hum. Genet. 2014, 133, 367–377. [Google Scholar] [CrossRef]
- Alazami, A.M.; Alshammari, M.J.; Salih, M.A.; Alzahrani, F.; Hijazi, H.; Seidahmed, M.Z.; Abu Safieh, L.; Aldosary, M.; Khan, A.O.; Alkuraya, F.S. Molecular characterization of Joubert syndrome in Saudi Arabia. Hum. Mutat. 2012, 33, 1423–1428. [Google Scholar] [CrossRef]
- Brooks, E.R.; Wallingford, J.B. The Small GTPase Rsg1 is important for the cytoplasmic localization and axonemal dynamics of intraflagellar transport proteins. Cilia 2013, 2, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langousis, G.; Cavadini, S.; Boegholm, N.; Lorentzen, E.; Kempf, G.; Matthias, P. Structure of the ciliogenesis-associated CPLANE complex. Sci. Adv. 2022, 8, eabn0832. [Google Scholar] [CrossRef]
- Gerondopoulos, A.; Strutt, H.; Stevenson, N.L.; Sobajima, T.; Levine, T.P.; Stephens, D.J.; Strutt, D.; Barr, F.A. Planar Cell Polarity Effector Proteins Inturned and Fuzzy Form a Rab23 GEF Complex. Curr. Biol. 2019, 29, 3323–3330.e8. [Google Scholar] [CrossRef] [Green Version]
- Heydeck, W.; Zeng, H.; Liu, A. Planar cell polarity effector gene Fuzzy regulates cilia formation and Hedgehog signal transduction in mouse. Dev. Dyn. 2009, 238, 3035–3042. [Google Scholar] [CrossRef]
- Zeng, H.; Hoover, A.N.; Liu, A. PCP effector gene Inturned is an important regulator of cilia formation and embryonic development in mammals. Dev. Biol. 2010, 339, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, D.; Li, L.; Huebner, A.; Zeng, H.; Guevara, E.; Claypool, D.J.; Liu, A.; Chen, J. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia. Cell Death Differ. 2013, 20, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, C.; Chatterjee, B.; Lozito, T.P.; Zhang, Z.; Francis, R.J.; Yagi, H.; Swanhart, L.M.; Sanker, S.; Francis, D.; Yu, Q.; et al. Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton. PLoS Biol. 2013, 11, e1001720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, A.M.; Beales, P.L. Ciliopathies: An expanding disease spectrum. Pediatr. Nephrol. 2011, 26, 1039–1056. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, R.J.; Tobin, J.L.; Beales, P.L. Chapter 5 Modeling Ciliopathies. In Mouse Models of Developmental Genetic Disease. Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2008; Volume 84, pp. 249–310. ISBN 978-0-12-374454-8. [Google Scholar]
- Seo, J.H.; Zilber, Y.; Babayeva, S.; Liu, J.; Kyriakopoulos, P.; De Marco, P.; Merello, E.; Capra, V.; Gros, P.; Torban, E. Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum. Mol. Genet. 2011, 20, 4324–4333. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Taylor, S.P.; Ennis, H.A.; Forlenza, K.N.; Duran, I.; Li, B.; Sanchez, J.A.O.; Nevarez, L.; Nickerson, D.A.; Bamshad, M.; et al. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum. Mutat. 2018, 39, 152–166. [Google Scholar] [CrossRef]
- Huber, C.; Cormier-Daire, V. Ciliary disorder of the skeleton. Am. J. Med. Genet. C Semin. Med. Genet. 2012, 160C, 165–174. [Google Scholar] [CrossRef]
- Wang, I.-Y.; Chung, C.-F.; Babayeva, S.; Sogomonian, T.; Torban, E. Loss of Planar Cell Polarity Effector Fuzzy Causes Renal Hypoplasia by Disrupting Several Signaling Pathways. J. Dev. Biol. 2021, 10, 1. [Google Scholar] [CrossRef]
- Bruel, A.-L.; Franco, B.; Duffourd, Y.; Thevenon, J.; Jego, L.; Lopez, E.; Deleuze, J.-F.; Doummar, D.; Giles, R.H.; Johnson, C.A.; et al. Fifteen years of research on oral–facial–digital syndromes: From 1 to 16 causal genes. J. Med. Genet. 2017, 54, 371–380. [Google Scholar] [CrossRef]
- Bruel, A.-L.; Levy, J.; Elenga, N.; Defo, A.; Favre, A.; Lucron, H.; Capri, Y.; Perrin, L.; Passemard, S.; Vial, Y.; et al. INTU-related oral-facial-digital syndrome type VI: A confirmatory report. Clin. Genet. 2018, 93, 1205–1209. [Google Scholar] [CrossRef]
- Yakar, O.; Tatar, A. INTU-related oral-facial-digital syndrome XVII: Clinical spectrum of a rare disorder. Am. J. Med. Genet. A 2022, 188, 590–594. [Google Scholar] [CrossRef]
- Shaheen, R.; Faqeih, E.; Alshammari, M.J.; Swaid, A.; Al-Gazali, L.; Mardawi, E.; Ansari, S.; Sogaty, S.; Seidahmed, M.Z.; AlMotairi, M.I.; et al. Genomic analysis of Meckel–Gruber syndrome in Arabs reveals marked genetic heterogeneity and novel candidate genes. Eur. J. Hum. Genet. 2013, 21, 762–768. [Google Scholar] [CrossRef] [Green Version]
- Shamseldin, H.E.; Shaheen, R.; Ewida, N.; Bubshait, D.K.; Alkuraya, H.; Almardawi, E.; Howaidi, A.; Sabr, Y.; Abdalla, E.M.; Alfaifi, A.Y.; et al. The morbid genome of ciliopathies: An update. Genet. Med. 2020, 22, 1051–1060. [Google Scholar] [CrossRef]
- Khan, S.A.; Muhammad, N.; Khan, M.A.; Kamal, A.; Rehman, Z.U.; Khan, S. Genetics of human Bardet-Biedl syndrome, an updates: Genetics of human Bardet-Biedl syndrome. Clin. Genet. 2016, 90, 3–15. [Google Scholar] [CrossRef]
- M’hamdi, O.; Ouertani, I.; Chaabouni-Bouhamed, H. Update on the Genetics of Bardet-Biedl Syndrome. Mol. Syndromol. 2014, 5, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Hartill, V.; Szymanska, K.; Sharif, S.M.; Wheway, G.; Johnson, C.A. Meckel–Gruber Syndrome: An Update on Diagnosis, Clinical Management, and Research Advances. Front. Pediatr. 2017, 5, 244. [Google Scholar] [CrossRef] [Green Version]
- Romani, M.; Mancini, F.; Micalizzi, A.; Poretti, A.; Miccinilli, E.; Accorsi, P.; Avola, E.; Bertini, E.; Borgatti, R.; Romaniello, R.; et al. Oral-facial-digital syndrome type VI: Is C5orf42 really the major gene? Hum. Genet. 2015, 134, 123–126. [Google Scholar] [CrossRef] [Green Version]
- Srour, M.; Schwartzentruber, J.; Hamdan, F.F.; Ospina, L.H.; Patry, L.; Labuda, D.; Massicotte, C.; Dobrzeniecka, S.; Capo-Chichi, J.-M.; Papillon-Cavanagh, S.; et al. Mutations in C5ORF42 Cause Joubert Syndrome in the French Canadian Population. Am. J. Hum. Genet. 2012, 90, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Bayram, Y.; Aydin, H.; Gambin, T.; Akdemir, Z.C.; Atik, M.M.; Karaca, E.; Karaman, A.; Pehlivan, D.; Jhangiani, S.N.; Gibbs, R.A.; et al. Exome sequencing identifies a homozygous C5orf42 variant in a Turkish kindred with oral-facial-digital syndrome type VI. Am. J. Med. Genet. A 2015, 167, 2132–2137. [Google Scholar] [CrossRef] [Green Version]
- Bachmann-Gagescu, R.; Dempsey, J.C.; Phelps, I.G.; O’Roak, B.J.; Knutzen, D.M.; Rue, T.C.; Ishak, G.E.; Isabella, C.R.; Gorden, N.; Adkins, J.; et al. Joubert syndrome: A model for untangling recessive disorders with extreme genetic heterogeneity. J. Med. Genet. 2015, 52, 514–522. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wang, H.; Zhao, J.; Liu, Z.; Sun, D.; Yuan, A.; Luo, G.; Wei, W.; Hou, M. Four novel compound heterozygous mutations in C5orf42 gene in patients with pure and mild Joubert syndrome. Int. J. Dev. Neurosci. 2020, 80, 455–463. [Google Scholar] [CrossRef]
- Mardani, R.; Taghizadeh, E.; Taheri, F.; Raeisi, M.; Karimzadeh, M.R.; Rostami, D.; Ferns, G.A.; Ghayour-Mobarhan, M. A novel variant in C5ORF42 gene is associated with Joubert syndrome. Mol. Biol. Rep. 2020, 47, 4099–4103. [Google Scholar] [CrossRef]
- Pedersen, L.B.; Rosenbaum, J.L. Chapter Two Intraflagellar Transport (IFT). In Ciliary Function in Mammalian Development. Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2008; Volume 85, pp. 23–61. ISBN 978-0-12-374453-1. [Google Scholar]
- Iomini, C.; Babaev-Khaimov, V.; Sassaroli, M.; Piperno, G. Protein Particles in Chlamydomonas Flagella Undergo a Transport Cycle Consisting of Four Phases. J. Cell Biol. 2001, 153, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Follit, J.A.; Tuft, R.A.; Fogarty, K.E.; Pazour, G.J. The Intraflagellar Transport Protein IFT20 Is Associated with the Golgi Complex and Is Required for Cilia Assembly. Mol. Biol. Cell 2006, 17, 3781–3792. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Lin, Y.; Norman, R.X.; Ko, H.W.; Eggenschwiler, J.T. Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components. Proc. Natl. Acad. Sci. USA 2011, 108, 1456–1461. [Google Scholar] [CrossRef] [Green Version]
- Scholey, J.M.; Anderson, K.V. Intraflagellar Transport and Cilium-Based Signaling. Cell 2006, 125, 439–442. [Google Scholar] [CrossRef] [Green Version]
- Brooks, E.R.; Wallingford, J.B. Control of vertebrate intraflagellar transport by the planar cell polarity effector Fuz. J. Cell Biol. 2012, 198, 37–45. [Google Scholar] [CrossRef]
- Klein, T.J.; Mlodzik, M. Planar Cell Polarization: An Emerging Model Points in the Right Direction. Annu. Rev. Cell Dev. Biol. 2005, 21, 155–176. [Google Scholar] [CrossRef]
- Zallen, J.A. Planar Polarity and Tissue Morphogenesis. Cell 2007, 129, 1051–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strutt, D.; Warrington, S.J. Planar polarity genes in the Drosophila wing regulate the localisation of the FH3-domain protein Multiple Wing Hairs to control the site of hair production. Development 2008, 135, 3103–3111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Nathans, J. Tissue/planar cell polarity in vertebrates: New insights and new questions. Development 2007, 134, 647–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.; Chen, P. Planar cell polarity signaling in vertebrates. BioEssays 2007, 29, 120–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simons, M.; Mlodzik, M. Planar Cell Polarity Signaling: From Fly Development to Human Disease. Annu. Rev. Genet. 2008, 42, 517–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Adler, P.N. The Function of the frizzled Pathway in the Drosophila Wing Is Dependent on inturned and fuzzy. Genetics 2002, 160, 1535–1547. [Google Scholar] [CrossRef]
- Dai, D.; Zhu, H.; Wlodarczyk, B.; Zhang, L.; Li, L.; Li, A.G.; Finnell, R.H.; Roop, D.R.; Chen, J. Fuz Controls the Morphogenesis and Differentiation of Hair Follicles through the Formation of Primary Cilia. J. Investig. Dermatol. 2011, 131, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Hagiwara, H.; Ohwada, N.; Takata, K. Cell Biology of Normal and Abnormal Ciliogenesis in the Ciliated Epithelium. In International Review of Cytology; Elsevier: Amsterdam, The Netherlands, 2004; Volume 234, pp. 101–141. ISBN 978-0-12-364638-5. [Google Scholar]
- Barakat, M.T.; Humke, E.W.; Scott, M.P. Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol. Med. 2010, 16, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Hui, C.; Angers, S. Gli Proteins in Development and Disease. Annu. Rev. Cell Dev. Biol. 2011, 27, 513–537. [Google Scholar] [CrossRef] [Green Version]
- Huangfu, D.; Anderson, K.V. Cilia and Hedgehog Responsiveness in the Mouse. Proc. Natl. Acad. Sci. USA 2005, 102, 11325–11330. [Google Scholar] [CrossRef] [Green Version]
- Huangfu, D.; Liu, A.; Rakeman, A.S.; Murcia, N.S.; Niswander, L.; Anderson, K.V. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003, 426, 83–87. [Google Scholar] [CrossRef]
- Liu, A.; Wang, B.; Niswander, L.A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 2005, 132, 3103–3111. [Google Scholar] [CrossRef] [Green Version]
- Corbit, K.C.; Aanstad, P.; Singla, V.; Norman, A.R.; Stainier, D.Y.R.; Reiter, J.F. Vertebrate Smoothened functions at the primary cilium. Nature 2005, 437, 1018–1021. [Google Scholar] [CrossRef] [PubMed]
- Goetz, S.C.; Anderson, K.V. The primary cilium: A signalling centre during vertebrate development. Nat. Rev. Genet. 2010, 11, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Singla, V.; Reiter, J.F. The Primary Cilium as the Cell’s Antenna: Signaling at a Sensory Organelle. Science 2006, 313, 629–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, E.C.; Katsanis, N. Cilia in vertebrate development and disease. Development 2012, 139, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Leung, E.L.-H.; Liu, C.; Li, L.; Eguether, T.; Jun Yao, X.-J.; Jones, E.C.; Norris, D.A.; Liu, A.; Clark, R.A.; et al. INTU is essential for oncogenic Hh signaling through regulating primary cilia formation in basal cell carcinoma. Oncogene 2017, 36, 4997–5005. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.-G.; Kwok, B.H.; Kernan, M.J. Intraflagellar Transport Is Required in Drosophila to Differentiate Sensory Cilia but Not Sperm. Curr. Biol. 2003, 13, 1679–1686. [Google Scholar] [CrossRef] [Green Version]
- Langhans, M.T.; Gao, J.; Tang, Y.; Wang, B.; Alexander, P.; Tuan, R.S. Wdpcp regulates cellular proliferation and differentiation in the developing limb via hedgehog signaling. BMC Dev. Biol. 2021, 21, 10. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Salazar, J.E.; Valverde, D. CPLANE Complex and Ciliopathies. Biomolecules 2022, 12, 847. https://doi.org/10.3390/biom12060847
Martín-Salazar JE, Valverde D. CPLANE Complex and Ciliopathies. Biomolecules. 2022; 12(6):847. https://doi.org/10.3390/biom12060847
Chicago/Turabian StyleMartín-Salazar, Jesús Eduardo, and Diana Valverde. 2022. "CPLANE Complex and Ciliopathies" Biomolecules 12, no. 6: 847. https://doi.org/10.3390/biom12060847
APA StyleMartín-Salazar, J. E., & Valverde, D. (2022). CPLANE Complex and Ciliopathies. Biomolecules, 12(6), 847. https://doi.org/10.3390/biom12060847