Research Progress of DNA Methylation in Endometrial Cancer
Abstract
:1. Introduction
2. Tumor Suppressor Genes
2.1. RASSF1A (Ras Association Domain Family 1)
2.2. p16
2.3. hMLH1 (Human MutL Homolog 1)
2.4. PTEN (Phosphatase and Tensin Homolog)
2.5. APC (Adenomatous Polyposis Coli)
2.6. E-Cadherin (Epithelial Cadherin, Also Known as CDH1)
2.7. Other Tumor Suppressor Genes
3. Oncogenes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Crosbie, E.J.; Kitson, S.J.; McAlpine, J.N.; Mukhopadhyay, A.; Powell, M.E.; Singh, N. Endometrial cancer. Lancet 2022, 399, 1412–1428. [Google Scholar] [CrossRef]
- Colombo, N.; Creutzberg, C.; Amant, F.; Bosse, T.; Gonzalez-Martin, A.; Ledermann, J.; Marth, C.; Nout, R.; Querleu, D.; Mirza, M.R.; et al. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, 16–41. [Google Scholar] [CrossRef]
- Suarez, A.A.; Felix, A.S.; Cohn, D.E. Bokhman Redux: Endometrial cancer “types” in the 21st century. Gynecol. Oncol. 2017, 144, 243–249. [Google Scholar] [CrossRef]
- Koh, W.J.; Abu-Rustum, N.R.; Bean, S.; Bradley, K.; Campos, S.M.; Cho, K.R.; Chon, H.S.; Chu, C.; Cohn, D.; Crispens, M.A.; et al. Uterine Neoplasms, Version 1.2018, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2018, 16, 170–199. [Google Scholar] [CrossRef] [Green Version]
- SGO Clinical Practice Endometrial Cancer Working Group; Burke, W.M.; Orr, J.; Leitao, M.; Salom, E.; Gehrig, P.; Olawaiye, A.B.; Brewer, M.; Boruta, D.; Herzog, T.J.; et al. Endometrial cancer: A review and current management strategies: Part II. Gynecol. Oncol. 2014, 134, 393–402. [Google Scholar] [CrossRef]
- Lee, Y.C.; Lheureux, S.; Oza, A.M. Treatment strategies for endometrial cancer: Current practice and perspective. Curr. Opin. Obstet. Gynecol. 2017, 29, 47–58. [Google Scholar] [CrossRef]
- Passarello, K.; Kurian, S.; Villanueva, V. Endometrial Cancer: An Overview of Pathophysiology, Management, and Care. Semin. Oncol. Nurs. 2019, 35, 157–165. [Google Scholar] [CrossRef]
- Arafa, M.; Somja, J.; Dehan, P.; Kridelka, F.; Goffin, F.; Boniver, J.; Delvenne, P. Current concepts in the pathology and epigenetics of endometrial carcinoma. Pathology 2010, 42, 613–617. [Google Scholar] [CrossRef]
- Biswas, S.; Rao, C.M. Epigenetics in cancer: Fundamentals and Beyond. Pharmacol. Ther. 2017, 173, 118–134. [Google Scholar] [CrossRef]
- Kanwal, R.; Gupta, S. Epigenetic modifications in cancer. Clin. Genet. 2012, 81, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Esteller, M. Aberrant DNA methylation as a cancer-inducing mechanism. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 629–656. [Google Scholar] [CrossRef] [Green Version]
- Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 2007, 8, 286–298. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, G.; Zhou, F.; Su, B.; Li, Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin. Exp. Med. 2018, 18, 1–14. [Google Scholar] [CrossRef]
- Caplakova, V.; Babusikova, E.; Blahovcova, E.; Balharek, T.; Zelieskova, M.; Hatok, J. DNA Methylation Machinery in the Endometrium and Endometrial Cancer. Anticancer Res. 2016, 36, 4407–4420. [Google Scholar] [CrossRef] [Green Version]
- Gokul, G.; Khosla, S. DNA methylation and cancer. Subcell. Biochem. 2013, 61, 597–625. [Google Scholar]
- Tao, M.H.; Freudenheim, J.L. DNA methylation in endometrial cancer. Epigenetics 2010, 5, 491–498. [Google Scholar] [CrossRef]
- Pallares, J.; Velasco, A.; Eritja, N.; Santacana, M.; Dolcet, X.; Cuatrecasas, M.; Palomar-Asenjo, V.; Catasus, L.; Prat, J.; Matias-Guiu, X. Promoter hypermethylation and reduced expression of RASSF1A are frequent molecular alterations of endometrial carcinoma. Mod. Pathol. 2008, 21, 691–699. [Google Scholar] [CrossRef] [Green Version]
- Seeber, L.M.; Zweemer, R.P.; Marchionni, L.; Massuger, L.F.; Smit, V.T.; van Baal, W.M.; Verheijen, R.H.; van Diest, P.J. Methylation profiles of endometrioid and serous endometrial cancers. Endocr. Relat. Cancer 2010, 17, 663–673. [Google Scholar] [CrossRef]
- Pijnenborg, J.M.; Dam-de Veen, G.C.; Kisters, N.; Delvoux, B.; van Engeland, M.; Herman, J.G.; Groothuis, P.G. RASSF1A methylation and K-ras and B-raf mutations and recurrent endometrial cancer. Ann. Oncol. 2007, 18, 491–497. [Google Scholar] [CrossRef]
- Kang, S.; Kim, J.W.; Kang, G.H.; Lee, S.; Park, N.H.; Song, Y.S.; Park, S.Y.; Kang, S.B.; Lee, H.P. Comparison of DNA hypermethylation patterns in different types of uterine cancer: Cervical squamous cell carcinoma, cervical adenocarcinoma and endometrial adenocarcinoma. Int. J. Cancer 2006, 118, 2168–2171. [Google Scholar] [CrossRef]
- Arafa, M.; Kridelka, F.; Mathias, V.; Vanbellinghen, J.F.; Renard, I.; Foidart, J.M.; Boniver, J.; Delvenne, P. High frequency of RASSF1A and RARb2 gene promoter methylation in morphologically normal endometrium adjacent to endometrioid adenocarcinoma. Histopathology 2008, 53, 525–532. [Google Scholar]
- Zhang, Q.Y.; Yi, D.Q.; Zhou, L.; Zhang, D.H.; Zhou, T.M. Status and significance of CpG island methylator phenotype in endometrial cancer. Gynecol. Obstet. Investig. 2011, 72, 183–191. [Google Scholar] [CrossRef]
- Jo, H.; Kim, J.W.; Kang, G.H.; Park, N.H.; Song, Y.S.; Kang, S.B.; Lee, H.P. Association of promoter hypermethylation of the RASSF1A gene with prognostic parameters in endometrial cancer. Oncol. Res. 2006, 16, 205–209. [Google Scholar] [CrossRef]
- Di Domenico, M.; Santoro, A.; Ricciardi, C.; Iaccarino, M.; Iaccarino, S.; Freda, M.; Feola, A.; Sanguedolce, F.; Losito, S.; Pasquali, D.; et al. Epigenetic fingerprint in endometrial carcinogenesis: The hypothesis of a uterine field cancerization. Cancer Biol. Ther. 2011, 12, 447–457. [Google Scholar] [CrossRef] [Green Version]
- Guida, M.; Sanguedolce, F.; Bufo, P.; Di Spiezio Sardo, A.; Bifulco, G.; Nappi, C.; Pannone, G. Aberrant DNA hypermethylation of hMLH-1 and CDKN2A/p16 genes in benign, premalignant and malignant endometrial lesions. Eur. J. Gynaecol. Oncol. 2009, 30, 267–270. [Google Scholar] [PubMed]
- Cornel, K.M.C.; Wouters, K.; Van de Vijver, K.K.; van der Wurff, A.A.M.; van Engeland, M.; Kruitwagen, R.; Pijnenborg, J.M.A. Gene Promoter Methylation in Endometrial Carcinogenesis. Pathol. Oncol. Res. 2019, 25, 659–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ignatov, A.; Bischoff, J.; Schwarzenau, C.; Krebs, T.; Kuester, D.; Herrmann, K.; Costa, S.D.; Roessner, A.; Semczuk, A.; Schneider-Stock, R. P16 alterations increase the metastatic potential of endometrial carcinoma. Gynecol. Oncol. 2008, 111, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Esteller, M.; Catasus, L.; Matias-Guiu, X.; Mutter, G.L.; Prat, J.; Baylin, S.B.; Herman, J.G. hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am. J. Pathol. 1999, 155, 1767–1772. [Google Scholar] [CrossRef] [Green Version]
- Pauly, N.; Baert, T.; Schmutzler, R.; du Bois, A.; Schneider, S.; Rhiem, K.; Schomig-Markiefka, B.; Siemanowski, J.; Heikaus, S.; Traut, A.; et al. Modern day screening for Lynch syndrome in endometrial cancer: The KEM experience. Arch. Gynecol. Obstet. 2021, 304, 975–984. [Google Scholar] [CrossRef]
- Xiong, Y.; Dowdy, S.C.; Eberhardt, N.L.; Podratz, K.C.; Jiang, S.W. hMLH1 promoter methylation and silencing in primary endometrial cancers are associated with specific alterations in MBDs occupancy and histone modifications. Gynecol. Oncol. 2006, 103, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Salvesen, H.B.; MacDonald, N.; Ryan, A.; Jacobs, I.J.; Lynch, E.D.; Akslen, L.A.; Das, S. PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int. J. Cancer 2001, 91, 22–26. [Google Scholar] [CrossRef]
- Ghazanfari, T.; Asaadi Tehrani, G.; Maziri, P. The Relationship between the Methylation of Promoter Regions of Tumor Suppressor Genes PTEN and APC with Endometrial Cancer. Asian Pac. J. Cancer Prev. 2019, 20, 2259–2265. [Google Scholar] [CrossRef]
- Suehiro, Y.; Okada, T.; Okada, T.; Anno, K.; Okayama, N.; Ueno, K.; Hiura, M.; Nakamura, M.; Kondo, T.; Oga, A.; et al. Aneuploidy predicts outcome in patients with endometrial carcinoma and is related to lack of CDH13 hypermethylation. Clin. Cancer Res. 2008, 14, 3354–3361. [Google Scholar] [CrossRef] [Green Version]
- Ignatov, A.; Bischoff, J.; Ignatov, T.; Schwarzenau, C.; Krebs, T.; Kuester, D.; Costa, S.D.; Roessner, A.; Semczuk, A.; Schneider-Stock, R. APC promoter hypermethylation is an early event in endometrial tumorigenesis. Cancer Sci. 2010, 101, 321–327. [Google Scholar] [CrossRef]
- Banno, K.; Yanokura, M.; Susumu, N.; Kawaguchi, M.; Hirao, N.; Hirasawa, A.; Tsukazaki, K.; Aoki, D. Relationship of the aberrant DNA hypermethylation of cancer-related genes with carcinogenesis of endometrial cancer. Oncol. Rep. 2006, 16, 1189–1196. [Google Scholar] [CrossRef] [Green Version]
- Zysman, M.; Saka, A.; Millar, A.; Knight, J.; Chapman, W.; Bapat, B. Methylation of adenomatous polyposis coli in endometrial cancer occurs more frequently in tumors with microsatellite instability phenotype. Cancer Res. 2002, 62, 3663–3666. [Google Scholar]
- Moreno-Bueno, G.; Hardisson, D.; Sanchez, C.; Sarrio, D.; Cassia, R.; Garcia-Rostan, G.; Prat, J.; Guo, M.; Herman, J.G.; Matias-Guiu, X.; et al. Abnormalities of the APC/beta-catenin pathway in endometrial cancer. Oncogene 2002, 21, 7981–7990. [Google Scholar] [CrossRef] [Green Version]
- Qian, B.; Ke, P.Q.; Wang, L.; Liu, W.J.; Li, M.X. Expression and methylation of adenomatous polyposis coli gene in endometrioid adenocarcinoma. Ai Zheng 2008, 27, 585–589. [Google Scholar]
- Leal Rojas, P.; Anabalon Rodriguez, L.; Garcia Munoz, P.; Tapia Escalona, O.; Guzman Gonzalez, P.; Araya Orostica, J.C.; Villaseca Hernandez, M.; Roa Strauch, J.C. Promoter hypermethylation gene patterns in gynecological tumors. Med. Clin. 2009, 132, 371–376. [Google Scholar] [CrossRef]
- Saito, T.; Nishimura, M.; Yamasaki, H.; Kudo, R. Hypermethylation in promoter region of E-cadherin gene is associated with tumor dedifferention and myometrial invasion in endometrial carcinoma. Cancer 2003, 97, 1002–1009. [Google Scholar] [CrossRef]
- Nieminen, T.T.; Gylling, A.; Abdel-Rahman, W.M.; Nuorva, K.; Aarnio, M.; Renkonen-Sinisalo, L.; Jarvinen, H.J.; Mecklin, J.P.; Butzow, R.; Peltomaki, P. Molecular analysis of endometrial tumorigenesis: Importance of complex hyperplasia regardless of atypia. Clin. Cancer Res. 2009, 15, 5772–5783. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Wang, H.; Liu, D.; Zhang, C.; Deng, Y.; Yang, F.; Zhang, T.; Zhang, C. Methylation of tumor suppressor gene CDH13 and SHP1 promoters and their epigenetic regulation by the UHRF1/PRMT5 complex in endometrial carcinoma. Gynecol. Oncol. 2016, 140, 145–151. [Google Scholar] [CrossRef]
- Sasaki, M.; Kotcherguina, L.; Dharia, A.; Fujimoto, S.; Dahiya, R. Cytosine-phosphoguanine methylation of estrogen receptors in endometrial cancer. Cancer Res. 2001, 61, 3262–3266. [Google Scholar]
- He, D.; Wang, X.; Zhang, Y.; Zhao, J.; Han, R.; Dong, Y. DNMT3A/3B overexpression might be correlated with poor patient survival, hypermethylation and low expression of ESR1/PGR in endometrioid carcinoma: An analysis of The Cancer Genome Atlas. Chin. Med. J. 2019, 132, 161–170. [Google Scholar] [CrossRef]
- Sasaki, M.; Dharia, A.; Oh, B.R.; Tanaka, Y.; Fujimoto, S.; Dahiya, R. Progesterone receptor B gene inactivation and CpG hypermethylation in human uterine endometrial cancer. Cancer Res. 2001, 61, 97–102. [Google Scholar] [PubMed]
- Li, R.; Saito, T.; Tanaka, R.; Satohisa, S.; Adachi, K.; Horie, M.; Akashi, Y.; Kudo, R. Hypermethylation in promoter region of retinoic acid receptor-beta gene and immunohistochemical findings on retinoic acid receptors in carcinogenesis of endometrium. Cancer Lett. 2005, 219, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.T.; Gu, F.; Huang, Y.W.; Liu, J.; Ruan, J.; Huang, R.L.; Wang, C.M.; Chen, C.L.; Jadhav, R.R.; Lai, H.C.; et al. Promoter hypomethylation of EpCAM-regulated bone morphogenetic protein gene family in recurrent endometrial cancer. Clin. Cancer Res. 2013, 19, 6272–6285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoivik, E.A.; Kusonmano, K.; Halle, M.K.; Berg, A.; Wik, E.; Werner, H.M.; Petersen, K.; Oyan, A.M.; Kalland, K.H.; Krakstad, C.; et al. Hypomethylation of the CTCFL/BORIS promoter and aberrant expression during endometrial cancer progression suggests a role as an Epi-driver gene. Oncotarget 2014, 5, 1052–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, F.F.; Li, D.; Yang, Q. Hypomethylation of ETS transcription factor binding sites and upregulation of PARP1 expression in endometrial cancer. Biomed. Res. Int. 2013, 2013, 946268. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Vega, F.; Gotea, V.; Petrykowska, H.M.; Margolin, G.; Krivak, T.C.; DeLoia, J.A.; Bell, D.W.; Elnitski, L. Recurrent patterns of DNA methylation in the ZNF154, CASP8, and VHL promoters across a wide spectrum of human solid epithelial tumors and cancer cell lines. Epigenetics 2013, 8, 1355–1372. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Chen, Y.; Liang, J.; Shi, B.; Wu, G.; Zhang, Y.; Wang, D.; Li, R.; Yi, X.; Zhang, H.; et al. Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 2005, 438, 981–987. [Google Scholar] [CrossRef]
- Qiu, X.; Gao, Z.; Shao, J.; Li, H. NCAPH is upregulated in endometrial cancer and associated with poor clinicopathologic characteristics. Ann. Hum. Genet. 2020, 84, 437–446. [Google Scholar] [CrossRef]
- Lan, H.; Yuan, J.; Chen, X.; Liu, C.; Guo, X.; Wang, X.; Song, J.; Cao, K.; Xiao, S. Multiomics profiling of the expression and prognosis of MCMs in endometrial carcinoma. Biosci. Rep. 2021, 41, BSR20211719. [Google Scholar] [CrossRef]
- Van der Weyden, L.; Adams, D.J. The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim. Biophys. Acta 2007, 1776, 58–85. [Google Scholar] [CrossRef] [Green Version]
- Dubois, F.; Bergot, E.; Levallet, G. Cancer and RASSF1A/RASSF1C, the Two Faces of Janus. Trends Cancer 2019, 5, 662–665. [Google Scholar] [CrossRef]
- Garcia-Gutierrez, L.; McKenna, S.; Kolch, W.; Matallanas, D. RASSF1A Tumour Suppressor: Target the Network for Effective Cancer Therapy. Cancers 2020, 12, 229. [Google Scholar] [CrossRef] [Green Version]
- Dammann, R.; Li, C.; Yoon, J.H.; Chin, P.L.; Bates, S.; Pfeifer, G.P. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat. Genet. 2000, 25, 315–319. [Google Scholar] [CrossRef]
- Lao, T.D.; Thieu, H.H.; Nguyen, D.H.; Le, T.A.H. Hypermethylation of the RASSF1A gene promoter as the tumor DNA marker for nasopharyngeal carcinoma. Int. J. Biol. Markers 2022, 37, 31–39. [Google Scholar] [CrossRef]
- Gupta, V.; Agarwal, P.; Deshpande, P. Impact of RASSF1A gene methylation on clinico-pathological features of tumor and non-tumor tissue of breast cancer. Ann. Diagn. Pathol. 2021, 52, 151722. [Google Scholar] [CrossRef]
- Sugara, M.; Chowdappa, R.; Kumar, K.V.V.; Gawari, R.; Swamy, S.N.; Kumar, S.S. Aberrant Promoter Hypermethylation of p16 and RASSF1a Genes in Colorectal Cancer—Significance in Young Patients. Indian J. Surg. Oncol. 2021, 12, 454–459. [Google Scholar] [CrossRef]
- Bin, Y.; Ding, Y.; Xiao, W.; Liao, A. RASSF1A: A promising target for the diagnosis and treatment of cancer. Clin. Chim. Acta 2020, 504, 98–108. [Google Scholar] [CrossRef]
- Bhagat, R.; Chadaga, S.; Premalata, C.S.; Ramesh, G.; Ramesh, C.; Pallavi, V.R.; Krishnamoorthy, L. Aberrant promoter methylation of the RASSF1A and APC genes in epithelial ovarian carcinoma development. Cell. Oncol. 2012, 35, 473–479. [Google Scholar] [CrossRef]
- Kang, S.; Lee, J.M.; Jeon, E.S.; Lee, S.; Kim, H.; Kim, H.S.; Seo, S.S.; Park, S.Y.; Sidransky, D.; Dong, S.M. RASSF1A hypermethylation and its inverse correlation with BRAF and/or KRAS mutations in MSI-associated endometrial carcinoma. Int. J. Cancer 2006, 119, 1316–1321. [Google Scholar] [CrossRef]
- Liao, X.; Siu, M.K.; Chan, K.Y.; Wong, E.S.; Ngan, H.Y.; Chan, Q.K.; Li, A.S.; Khoo, U.S.; Cheung, A.N. Hypermethylation of RAS effector related genes and DNA methyltransferase 1 expression in endometrial carcinogenesis. Int. J. Cancer 2008, 123, 296–302. [Google Scholar] [CrossRef]
- Fiolka, R.; Zubor, P.; Janusicova, V.; Visnovsky, J.; Mendelova, A.; Kajo, K.; Lasabova, Z.; Plank, L.; Danko, J. Promoter hypermethylation of the tumor-suppressor genes RASSF1A, GSTP1 and CDH1 in endometrial cancer. Oncol. Rep. 2013, 30, 2878–2886. [Google Scholar] [CrossRef] [Green Version]
- Multinu, F.; Chen, J.; Madison, J.D.; Torres, M.; Casarin, J.; Visscher, D.; Shridhar, V.; Bakkum-Gamez, J.; Sherman, M.; Wentzensen, N.; et al. Analysis of DNA methylation in endometrial biopsies to predict risk of endometrial cancer. Gynecol. Oncol. 2020, 156, 682–688. [Google Scholar] [CrossRef] [Green Version]
- Yanokura, M.; Banno, K.; Susumu, N.; Kawaguchi, M.; Kuwabara, Y.; Tsukazaki, K.; Aoki, D. Hypermethylation in the p16 promoter region in the carcinogenesis of endometrial cancer in Japanese patients. Anticancer Res. 2006, 26, 851–856. [Google Scholar]
- Yang, H.J.; Liu, V.W.; Wang, Y.; Tsang, P.C.; Ngan, H.Y. Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data. BMC Cancer 2006, 6, 212. [Google Scholar] [CrossRef] [Green Version]
- Chao, H.; Sun, J.; Lu, S. Methylation and expression of the p16 gene in endometrial carcinoma. Zhonghua Zhong Liu Za Zhi 2000, 22, 228–231. [Google Scholar] [PubMed]
- Whitcomb, B.P.; Mutch, D.G.; Herzog, T.J.; Rader, J.S.; Gibb, R.K.; Goodfellow, P.J. Frequent HOXA11 and THBS2 promoter methylation, and a methylator phenotype in endometrial adenocarcinoma. Clin. Cancer Res. 2003, 9, 2277–2287. [Google Scholar] [PubMed]
- Joensuu, E.I.; Abdel-Rahman, W.M.; Ollikainen, M.; Ruosaari, S.; Knuutila, S.; Peltomaki, P. Epigenetic signatures of familial cancer are characteristic of tumor type and family category. Cancer Res. 2008, 68, 4597–4605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pijnenborg, J.M.; Kisters, N.; van Engeland, M.; Dunselman, G.A.; de Haan, J.; de Goeij, A.F.; Groothuis, P.G. APC, beta-catenin, and E-cadherin and the development of recurrent endometrial carcinoma. Int. J. Gynecol. Cancer 2004, 14, 947–956. [Google Scholar] [CrossRef]
- Yanokura, M.; Banno, K.; Adachi, M.; Aoki, D.; Abe, K. Genome-wide DNA methylation sequencing reveals miR-663a is a novel epimutation candidate in CIMP-high endometrial cancer. Int. J. Oncol. 2017, 50, 1934–1946. [Google Scholar] [CrossRef] [Green Version]
- Yi, T.Z.; Guo, J.; Zhou, L.; Chen, X.; Mi, R.R.; Qu, Q.X.; Zheng, J.H.; Zhai, L. Prognostic value of E-cadherin expression and CDH1 promoter methylation in patients with endometrial carcinoma. Cancer Investig. 2011, 29, 86–92. [Google Scholar] [CrossRef]
- Pabalan, N.; Kunjantarachot, A.; Ruangpratheep, C.; Jarjanazi, H.; Christofolini, D.M.; Barbosa, C.P.; Bianco, B. Potential of RASSF1A promoter methylation as biomarker for endometrial cancer: A systematic review and meta-analysis. Gynecol. Oncol. 2017, 146, 603–608. [Google Scholar] [CrossRef]
- Fiegl, H.; Gattringer, C.; Widschwendter, A.; Schneitter, A.; Ramoni, A.; Sarlay, D.; Gaugg, I.; Goebel, G.; Muller, H.M.; Mueller-Holzner, E.; et al. Methylated DNA collected by tampons—A new tool to detect endometrial cancer. Cancer Epidemiol. Biomark. Prev. 2004, 13, 882–888. [Google Scholar] [CrossRef]
- Kim, G.E.; Kweon, S.S.; Lee, J.S.; Lee, J.H.; Nam, J.H.; Choi, C. Quantitative assessment of DNA methylation for the detection of cervical and endometrial adenocarcinomas in liquid-based cytology specimens. Anal. Quant. Cytopathol. Histpathol. 2012, 34, 195–203. [Google Scholar]
- Kumar, S.; Swamy, S.N.; Premalatha, C.S.; Pallavi, V.R.; Gawari, R. Aberrant Promoter Hypermethylation of RASSF1a and BRCA1 in Circulating Cell-Free Tumor DNA Serves as a Biomarker of Ovarian Carcinoma. Asian Pac. J. Cancer Prev. 2019, 20, 3001–3005. [Google Scholar]
- Serrano, M. The tumor suppressor protein p16INK4a. Exp. Cell Res. 1997, 237, 7–13. [Google Scholar] [CrossRef]
- Hirai, H.; Roussel, M.F.; Kato, J.Y.; Ashmun, R.A.; Sherr, C.J. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol. Cell. Biol. 1995, 15, 2672–2681. [Google Scholar] [CrossRef] [Green Version]
- Liggett, W.H., Jr.; Sidransky, D. Role of the p16 tumor suppressor gene in cancer. J. Clin. Oncol. 1998, 16, 1197–1206. [Google Scholar] [CrossRef]
- Salvesen, H.B.; Kumar, R.; Stefansson, I.; Angelini, S.; MacDonald, N.; Smeds, J.; Jacobs, I.J.; Hemminki, K.; Das, S.; Akslen, L.A. Low frequency of BRAF and CDKN2A mutations in endometrial cancer. Int. J. Cancer 2005, 115, 930–934. [Google Scholar] [CrossRef]
- Semczuk, A.; Boltze, C.; Marzec, B.; Szczygielska, A.; Roessner, A.; Schneider-Stock, R. p16INK4A alterations are accompanied by aberrant protein immunostaining in endometrial carcinomas. J. Cancer Res. Clin. Oncol. 2003, 129, 589–596. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Tang, L.D.; Zhou, Q.; Xiao, L.; Cao, Y. Aberrant promoter hypermethylation of p16 gene in endometrial carcinoma. Tumour Biol. 2015, 36, 1487–1491. [Google Scholar] [CrossRef]
- Su, L.; Wang, H.; Miao, J.; Liang, Y. Clinicopathological Significance and Potential Drug Target of CDKN2A/p16 in Endometrial Carcinoma. Sci. Rep. 2015, 5, 13238. [Google Scholar] [CrossRef] [Green Version]
- Chao, H.; Sun, J.; Lu, S. Growth inhibition effect of 5-aza-CdR on endometrial carcinoma xenografted in nude mice by p16 gene demethylation. Zhonghua Fu Chan Ke Za Zhi 2000, 35, 229–232. [Google Scholar]
- Ryan, N.A.J.; Glaire, M.A.; Blake, D.; Cabrera-Dandy, M.; Evans, D.G.; Crosbie, E.J. The proportion of endometrial cancers associated with Lynch syndrome: A systematic review of the literature and meta-analysis. Genet. Med. 2019, 21, 2167–2180. [Google Scholar] [CrossRef] [Green Version]
- Baretti, M.; Le, D.T. DNA mismatch repair in cancer. Pharmacol. Ther. 2018, 189, 45–62. [Google Scholar] [CrossRef]
- Yurgelun, M.B.; Kulke, M.H.; Fuchs, C.S.; Allen, B.A.; Uno, H.; Hornick, J.L.; Ukaegbu, C.I.; Brais, L.K.; McNamara, P.G.; Mayer, R.J.; et al. Cancer Susceptibility Gene Mutations in Individuals with Colorectal Cancer. J. Clin. Oncol. 2017, 35, 1086–1095. [Google Scholar] [CrossRef]
- Fu, L.; Sheng, J.Q.; Li, X.O.; Jin, P.; Mu, H.; Han, M.; Huang, J.S.; Sun, Z.Q.; Li, A.Q.; Wu, Z.T.; et al. Mismatch repair gene mutation analysis and colonoscopy surveillance in Chinese Lynch syndrome families. Cell. Oncol. 2013, 36, 225–231. [Google Scholar] [CrossRef]
- Dominguez-Valentin, M.; Sampson, J.R.; Seppala, T.T.; Ten Broeke, S.W.; Plazzer, J.P.; Nakken, S.; Engel, C.; Aretz, S.; Jenkins, M.A.; Sunde, L.; et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: Findings from the Prospective Lynch Syndrome Database. Genet. Med. 2020, 22, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Hampel, H.; Frankel, W.; Panescu, J.; Lockman, J.; Sotamaa, K.; Fix, D.; Comeras, I.; La Jeunesse, J.; Nakagawa, H.; Westman, J.A.; et al. Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res. 2006, 66, 7810–7817. [Google Scholar] [CrossRef] [Green Version]
- The Cancer Genome Atlas Research Network; Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar]
- Salvesen, H.B.; MacDonald, N.; Ryan, A.; Iversen, O.E.; Jacobs, I.J.; Akslen, L.A.; Das, S. Methylation of hMLH1 in a population-based series of endometrial carcinomas. Clin. Cancer Res. 2000, 6, 3607–3613. [Google Scholar]
- Kondo, E.; Furukawa, T.; Yoshinaga, K.; Kijima, H.; Semba, S.; Yatsuoka, T.; Yokoyama, T.; Fukushige, S.; Horii, A. Not hMSH2 but hMLH1 is frequently silenced by hypermethylation in endometrial cancer but rarely silenced in pancreatic cancer with microsatellite instability. Int. J. Oncol. 2000, 17, 535–541. [Google Scholar] [CrossRef]
- Bischoff, J.; Ignatov, A.; Semczuk, A.; Schwarzenau, C.; Ignatov, T.; Krebs, T.; Kuster, D.; Przadka-Rabaniuk, D.; Roessner, A.; Costa, S.D.; et al. hMLH1 promoter hypermethylation and MSI status in human endometrial carcinomas with and without metastases. Clin. Exp. Metastasis 2012, 29, 889–900. [Google Scholar] [CrossRef]
- Borden, L.E.; Locklear, T.M.; Grider, D.J.; Osborne, J.L.; Saks, E.J.; Valea, F.A.; Iglesias, D.A. Endometrial Cancer Characteristics and Risk of Recurrence. Am. J. Clin. Pathol. 2022, 157, 90–97. [Google Scholar] [CrossRef]
- Yang, L.; Hou, J.; Cui, X.H.; Suo, L.N.; Lv, Y.W. RG108 induces the apoptosis of endometrial cancer Ishikawa cell lines by inhibiting the expression of DNMT3B and demethylation of HMLH1. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5056–5064. [Google Scholar] [PubMed]
- Cui, M.; Wen, Z.; Chen, J.; Yang, Z.; Zhang, H. 5-Aza-2′-deoxycytidine is a potent inhibitor of DNA methyltransferase 3B and induces apoptosis in human endometrial cancer cell lines with the up-regulation of hMLH1. Med. Oncol. 2010, 27, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Loukovaara, M.; Pasanen, A.; Butzow, R. Mismatch repair protein and MLH1 methylation status as predictors of response to adjuvant therapy in endometrial cancer. Cancer Med. 2021, 10, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Risinger, J.I.; Hayes, A.K.; Berchuck, A.; Barrett, J.C. PTEN/MMAC1 mutations in endometrial cancers. Cancer Res. 1997, 57, 4736–4738. [Google Scholar] [PubMed]
- Alvarez-Garcia, V.; Tawil, Y.; Wise, H.M.; Leslie, N.R. Mechanisms of PTEN loss in cancer: It’s all about diversity. Semin. Cancer Biol. 2019, 59, 66–79. [Google Scholar] [CrossRef]
- Tashiro, H.; Blazes, M.S.; Wu, R.; Cho, K.R.; Bose, S.; Wang, S.I.; Li, J.; Parsons, R.; Ellenson, L.H. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. 1997, 57, 3935–3940. [Google Scholar]
- Slomovitz, B.M.; Coleman, R.L. The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin. Cancer Res. 2012, 18, 5856–5864. [Google Scholar] [CrossRef] [Green Version]
- Downes, C.P.; Ross, S.; Maccario, H.; Perera, N.; Davidson, L.; Leslie, N.R. Stimulation of PI 3-kinase signaling via inhibition of the tumor suppressor phosphatase, PTEN. Adv. Enzyme Regul. 2007, 47, 184–194. [Google Scholar] [CrossRef]
- Boruban, M.C.; Altundag, K.; Kilic, G.S.; Blankstein, J. From endometrial hyperplasia to endometrial cancer: Insight into the biology and possible medical preventive measures. Eur. J. Cancer Prev. 2008, 17, 133–138. [Google Scholar] [CrossRef]
- Mutter, G.L.; Lin, M.C.; Fitzgerald, J.T.; Kum, J.B.; Baak, J.P.; Lees, J.A.; Weng, L.P.; Eng, C. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J. Natl. Cancer Inst. 2000, 92, 924–930. [Google Scholar] [CrossRef]
- Zhang, H.M.; Fan, T.T.; Li, W.; Li, X.X. Expressions and significances of TTF-1 and PTEN in early endometrial cancer. Eur. Rev. Med. Pharmacol. Sci. 2017, 21 (Suppl. 3), 20–26. [Google Scholar]
- Salvesen, H.B.; Stefansson, I.; Kretzschmar, E.I.; Gruber, P.; MacDonald, N.D.; Ryan, A.; Jacobs, I.J.; Akslen, L.A.; Das, S. Significance of PTEN alterations in endometrial carcinoma: A population-based study of mutations, promoter methylation and PTEN protein expression. Int. J. Oncol. 2004, 25, 1615–1623. [Google Scholar] [CrossRef]
- Yi, T.; Song, Y.; Zuo, L.; Wang, S.; Miao, J. LINC00470 Stimulates Methylation of PTEN to Facilitate the Progression of Endometrial Cancer by Recruiting DNMT3a Through MYC. Front. Oncol. 2021, 11, 646217. [Google Scholar] [CrossRef]
- Chen, Z.; Che, Q.; Jiang, F.Z.; Wang, H.H.; Wang, F.Y.; Liao, Y.; Wan, X.P. Piwil1 causes epigenetic alteration of PTEN gene via upregulation of DNA methyltransferase in type I endometrial cancer. Biochem. Biophys. Res. Commun. 2015, 463, 876–880. [Google Scholar] [CrossRef]
- Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene 2017, 36, 1461–1473. [Google Scholar] [CrossRef]
- Croce, J.C.; McClay, D.R. Evolution of the Wnt pathways. Methods Mol. Biol. 2008, 469, 3–18. [Google Scholar]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/beta-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Fatima, I.; Barman, S.; Rai, R.; Thiel, K.W.W.; Chandra, V. Targeting Wnt Signaling in Endometrial Cancer. Cancers 2021, 13, 2351. [Google Scholar] [CrossRef]
- Yang, C.; Ota-Kurogi, N.; Ikeda, K.; Okumura, T.; Horie-Inoue, K.; Takeda, S.; Inoue, S. MicroRNA-191 regulates endometrial cancer cell growth via TET1-mediated epigenetic modulation of APC. J. Biochem. 2020, 168, 7–14. [Google Scholar] [CrossRef]
- Wong, S.H.M.; Fang, C.M.; Chuah, L.H.; Leong, C.O.; Ngai, S.C. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit. Rev. Oncol. Hematol. 2018, 121, 11–22. [Google Scholar] [CrossRef]
- Mendonsa, A.M.; Na, T.Y.; Gumbiner, B.M. E-cadherin in contact inhibition and cancer. Oncogene 2018, 37, 4769–4780. [Google Scholar] [CrossRef]
- Youssef, M.Y.; Mohamed, M.A. Could E-Cadherin and CD10 Expression be Used to Differentiate Between Atypical Endometrial Hyperplasia and Endometrial Carcinoma? Int. J. Gynecol. Pathol. 2019, 38, 128–137. [Google Scholar] [CrossRef]
- Lewczuk, L.; Pryczynicz, A.; Guzinska-Ustymowicz, K. Expression level of E-, N- and P-cadherin proteins in endometrial cancer. Oncol. Lett. 2021, 21, 261. [Google Scholar] [CrossRef]
- Nishimura, M.; Saito, T.; Yamasaki, H.; Kudo, R. Suppression of gap junctional intercellular communication via 5′ CpG island methylation in promoter region of E-cadherin gene in endometrial cancer cells. Carcinogenesis 2003, 24, 1615–1623. [Google Scholar] [CrossRef] [Green Version]
- Rahnama, F.; Thompson, B.; Steiner, M.; Shafiei, F.; Lobie, P.E.; Mitchell, M.D. Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology 2009, 150, 1466–1472. [Google Scholar] [CrossRef] [Green Version]
- Yi, T.Z.; Li, J.; Han, X.; Guo, J.; Qu, Q.; Guo, L.; Sun, H.D.; Tan, W.H. DNMT inhibitors and HDAC inhibitors regulate E-cadherin and Bcl-2 expression in endometrial carcinoma in vitro and in vivo. Chemotherapy 2012, 58, 19–29. [Google Scholar] [CrossRef]
- Rimel, B.J.; Huettner, P.; Powell, M.A.; Mutch, D.G.; Goodfellow, P.J. Absence of MGMT promoter methylation in endometrial cancer. Gynecol. Oncol. 2009, 112, 224–228. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Li, Q.L.; Pan, W.; Li, J.; Zhang, M.F.; Cao, T.; Su, S.G.; Shen, H. PRMT6 promotes endometrial cancer via AKT/mTOR signaling and indicates poor prognosis. Int. J. Biochem. Cell Biol. 2020, 120, 105681. [Google Scholar] [CrossRef]
- Raffone, A.; Travaglino, A.; Saccone, G.; Mascolo, M.; Insabato, L.; Mollo, A.; De Placido, G.; Zullo, F. PAX2 in endometrial carcinogenesis and in differential diagnosis of endometrial hyperplasia: A systematic review and meta-analysis of diagnostic accuracy. Acta Obstet. Gynecol. Scand. 2019, 98, 287–299. [Google Scholar] [CrossRef]
- Jia, N.; Wang, J.; Li, Q.; Tao, X.; Chang, K.; Hua, K.; Yu, Y.; Wong, K.K.; Feng, W. DNA methylation promotes paired box 2 expression via myeloid zinc finger 1 in endometrial cancer. Oncotarget 2016, 7, 84785–84797. [Google Scholar] [CrossRef] [Green Version]
- Duenas-Gonzalez, A.; Medina-Franco, J.L.; Chavez-Blanco, A.; Dominguez-Gomez, G.; Fernandez-de Gortari, E. Developmental DNA methyltransferase inhibitors in the treatment of gynecologic cancers. Expert Opin. Pharmacother. 2016, 17, 323–338. [Google Scholar] [CrossRef]
- Pohlmann, P.; DiLeone, L.P.; Cancella, A.I.; Caldas, A.P.; Dal Lago, L.; Campos, O., Jr.; Monego, E.; Rivoire, W.; Schwartsmann, G. Phase II trial of cisplatin plus decitabine, a new DNA hypomethylating agent, in patients with advanced squamous cell carcinoma of the cervix. Am. J. Clin. Oncol. 2002, 25, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Glasspool, R.M.; Brown, R.; Gore, M.E.; Rustin, G.J.; McNeish, I.A.; Wilson, R.H.; Pledge, S.; Paul, J.; Mackean, M.; Hall, G.D.; et al. A randomised, phase II trial of the DNA-hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in combination with carboplatin vs carboplatin alone in patients with recurrent, partially platinum-sensitive ovarian cancer. Br. J. Cancer 2014, 110, 1923–1929. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jia, N.; Tao, X.; Hua, K.; Feng, W. The expression and significance of histone lysine methylation in endometrial cancer. Oncol. Lett. 2017, 14, 6210–6216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oki, S.; Sone, K.; Oda, K.; Hamamoto, R.; Ikemura, M.; Maeda, D.; Takeuchi, M.; Tanikawa, M.; Mori-Uchino, M.; Nagasaka, K.; et al. Oncogenic histone methyltransferase EZH2: A novel prognostic marker with therapeutic potential in endometrial cancer. Oncotarget 2017, 8, 40402–40411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavaliere, A.F.; Perelli, F.; Zaami, S.; Piergentili, R.; Mattei, A.; Vizzielli, G.; Scambia, G.; Straface, G.; Restaino, S.; Signore, F. Towards Personalized Medicine: Non-Coding RNAs and Endometrial Cancer. Healthcare 2021, 9, 965. [Google Scholar] [CrossRef]
Gene | Alternate Gene Name | Methylation Locations | References |
---|---|---|---|
Hypermethylated genes | |||
RASSF1A | Ras association domain family 1 isoform A | Promoter | [19,20,21,22,23,24,25] |
p16 | Cyclin-dependent kinase inhibitor 2A | Promoter | [26,27,28,29] |
hMLH1 | Human mutL homolog 1 | Promoter | [20,26,30,31,32] |
PTEN | Phosphatase and tensin homolog | Promoter | [20,33,34] |
APC | Adenomatous polyposis coli | Promoter | [35,36,37,38,39,40] |
E-cadherin | Epithelial cadherin | Promoter | [22,36,37,41,42] |
CDH13 | Cadherin-13 | Promoter | [20,35,43,44] |
ESR1 | Estrogen receptor 1 | Promoter | [45,46] |
O6-MGMT | O6-methylguanine-DNA methyltransferase | Promoter | [28,35] |
PRs | Progesterone receptors | Promoter | [46,47] |
RARβ2 | Retinoic acid receptor β2 | Promoter | [48] |
Hypomethylated genes | |||
BMP | Bone morphogenetic protein | Promoter | [49] |
CTCFL | CCCTC-binding factor-like protein | Promoter | [50] |
PARP1 | Poly (ADP-ribose) polymerase 1 | Promoter | [51] |
CASP8 | Caspase-8 | Promoter | [52] |
PAX2 | Paired box 2 | Promoter | [53] |
NCAPH | non-SMC condensin I complex subunit H | Promoter | [54] |
MCM | Minichromosome maintenance | Promoter | [55] |
References | Frequencies of Gene Methylation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RASSF1A | p16 | hMLH1 | PTEN | APC | E-cadherin | CDH13 | ESR1 | O6-MGMT | PRs | RARβ2 | |
[65] | 30~50% | / | / | / | / | / | / | / | / | / | / |
[24,25,66] | 51~70% | / | / | / | / | / | / | / | / | / | / |
[19,20,21,22,23,67] | 71~90% | / | / | / | / | / | / | / | / | / | / |
[20,29,35,69] | / | 0~20% | / | / | / | / | / | / | / | / | / |
[24,28,70,71] | / | 21~40% | / | / | / | / | / | / | / | / | / |
[26,27] | / | 75~95% | / | / | / | / | / | / | / | / | / |
[20,70] | / | / | 10~30% | / | / | / | / | / | / | / | / |
[72] | / | / | 31~50% | / | / | / | / | / | / | / | / |
[26,31,32] | / | / | 61~85% | / | / | / | / | / | / | / | / |
[20] | / | / | / | 1~10% | / | / | / | / | / | / | / |
[33,34] | / | / | / | 11~30% | / | / | / | / | / | / | / |
[28,34,37,38] | / | / | / | / | 10~30% | / | / | / | / | / | / |
[35,39,73] | / | / | / | / | 31~50% | / | / | / | / | / | / |
[36,40] | / | / | / | / | 51~70% | / | / | / | / | / | / |
[37,74,75] | / | / | / | / | / | 0~20% | / | / | / | / | / |
[36,42,67,76] | / | / | / | / | / | 21~40% | / | / | / | / | / |
[22] | / | / | / | / | / | 41~60% | / | / | / | / | / |
[41] | / | / | / | / | / | 61~85% | / | / | / | / | / |
[20,35,43,44] | / | / | / | / | / | / | 61~90% | / | / | / | / |
[20] | / | / | / | / | / | / | / | 0~10% | / | / | / |
[46] | / | / | / | / | / | / | / | 40~50% | / | / | / |
[45] | / | / | / | / | / | / | / | 90~100% | / | / | / |
[35] | / | / | / | / | / | / | / | / | 0~10% | / | / |
[28] | / | / | / | / | / | / | / | / | 30~40% | / | / |
[46] | / | / | / | / | / | / | / | / | / | 20~30% | / |
[47] | / | / | / | / | / | / | / | / | / | 70~80% | / |
[48] | / | / | / | / | / | / | / | / | / | / | 90~100% |
Frequencies of Gene Methylation in Different Histologic Tissue | ||||
---|---|---|---|---|
NE | HE | EC | Reference | |
RASSF1A | 30% | 36.8% | 85.4% | [67] |
36% | 50% | 74% | [23] | |
p16 | 10% | 7.7% | 38.2% | [28] |
0% | 16.7% | 34.21% | [71] | |
APC | 33.3% | 42.4% | 19.6% | [28] |
0% | 7.2% | 22% | [37] | |
E-cadherin | 20% | 21.1% | 31.4% | [67] |
0% | 0% | 22% | [36] | |
0% | 0% | 14% | [37] | |
0% | 0% | 36.6% | [76] | |
0% | 0% | 38.5% | [42] | |
CDH13 | 14.81% | 40.58% | 81.36% | [44] |
O6-MGMT | 8.3% | 18.2% | 31.4% | [28] |
RARβ2 | 0% | 75% | 92.2% | [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Ding, H.; Chen, J.; Lei, J.; Zhao, M.; Ji, B.; Chen, Y.; Qin, S.; Gao, Q. Research Progress of DNA Methylation in Endometrial Cancer. Biomolecules 2022, 12, 938. https://doi.org/10.3390/biom12070938
Xu T, Ding H, Chen J, Lei J, Zhao M, Ji B, Chen Y, Qin S, Gao Q. Research Progress of DNA Methylation in Endometrial Cancer. Biomolecules. 2022; 12(7):938. https://doi.org/10.3390/biom12070938
Chicago/Turabian StyleXu, Ting, Hongmei Ding, Jie Chen, Jiahui Lei, Meng Zhao, Bingyu Ji, Youguo Chen, Songbing Qin, and Qinqin Gao. 2022. "Research Progress of DNA Methylation in Endometrial Cancer" Biomolecules 12, no. 7: 938. https://doi.org/10.3390/biom12070938
APA StyleXu, T., Ding, H., Chen, J., Lei, J., Zhao, M., Ji, B., Chen, Y., Qin, S., & Gao, Q. (2022). Research Progress of DNA Methylation in Endometrial Cancer. Biomolecules, 12(7), 938. https://doi.org/10.3390/biom12070938