Testosterone Enanthate: An In Vitro Study of the Effects Triggered in MG-63 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Cell Culture Treatments
2.3. TE Cytotoxicity
2.4. Chemiluminescence
2.5. In Vitro Osteogenesis
2.6. qPCR Analysis
2.7. Mineralization Assay
2.8. Statistical Analysis
3. Results
3.1. MG-63 Cells Can Be Maintained under Standard Culturing Conditions with the Addition of 10 µM of TE
3.2. The Addition of TE in Culture Promotes MG-63 Differentiation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiapasco, M.; Casentini, P. Horizontal bone-augmentation procedures in implant dentistry: Prosthetically guided regeneration. Periodontol. 2000 2018, 77, 213–240. [Google Scholar] [CrossRef] [PubMed]
- Corbella, S.; Weinstein, R.; Francetti, L.; Taschieri, S.; Del Fabbro, M. Periodontal regeneration in aggressive periodontitis patients: A systematic review of the literature. J. Investig. Clin. Dent. 2017, 8, e12245. [Google Scholar] [CrossRef] [PubMed]
- Rocchietta, I.; Ferrantino, L.; Simion, M. Vertical ridge augmentation in the esthetic zone. Periodontol. 2000 2018, 77, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Roccuzzo, A.; Marchese, S.; Worsaae, N.; Jensen, S.S. The sandwich osteotomy technique to treat vertical alveolar bone defects prior to implant placement: A systematic review. Clin. Oral Investig. 2020, 24, 1073–1089. [Google Scholar] [CrossRef] [PubMed]
- Chanchareonsook, N.; Junker, R.; Jongpaiboonkit, L.; Jansen, J.A. Tissue-engineered mandibular bone reconstruction for continuity defects: A systematic approach to the literature. Tissue Eng. Part B Rev. 2014, 20, 147–162. [Google Scholar] [CrossRef]
- Janssen, N.G.; Weijs, W.L.J.; Koole, R.; Rosenberg, A.J.W.P.; Meijer, G.J. Tissue engineering strategies for alveolar cleft reconstruction: A systematic review of the literature. Clin. Oral Investig. 2014, 18, 219–226. [Google Scholar] [CrossRef]
- Duong, H.Y.; Roccuzzo, A.; Stähli, A.; Salvi, G.E.; Lang, N.P.; Sculean, A. Oral health-related quality of life of patients rehabilitated with fixed and removable implant-supported dental prostheses. Periodontol. 2000 2022, 88, 201–237. [Google Scholar] [CrossRef] [PubMed]
- Buser, D.; Chappuis, V.; Kuchler, U.; Bornstein, M.M.; Wittneben, J.G.; Buser, R.; Cavusoglu, Y.; Belser, U.C. Long-term stability of early implant placement with contour augmentation. J. Dent. Res. 2013, 92 (Suppl. S12), 176s–182s. [Google Scholar] [CrossRef]
- Lumetti, S.; Galli, C.; Manfredi, E.; Consolo, U.; Marchetti, C.; Ghiacci, G.; Toffoli, A.; Bonanini, M.; Salgarelli, A.; Macaluso, G.M. Correlation between density and resorption of fresh-frozen and autogenous bone grafts. Biomed. Res. Int. 2014, 2014, 508328. [Google Scholar] [CrossRef]
- Stern, A.; Barzani, G. Autogenous bone harvest for implant reconstruction. Dent. Clin. N. Am. 2015, 59, 409–420. [Google Scholar] [CrossRef]
- Dahlin, C.; Johansson, A. Iliac crest autogenous bone graft versus alloplastic graft and guided bone regeneration in the reconstruction of atrophic maxillae: A 5-year retrospective study on cost-effectiveness and clinical outcome. Clin. Implant Dent. Relat. Res. 2011, 13, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Khademhosseini, A.; Vacanti, J.P.; Langer, R. Progress in tissue engineering. Sci. Am. 2009, 300, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.; Vacanti, J.P. Tissue Engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langer, R.; Vacanti, J. Advances in tissue engineering. J. Pediatr. Surg. 2016, 51, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Parisi, L.; Toffoli, A.; Ghiacci, G.; Macaluso, G.M. Tailoring the Interface of Biomaterials to Design Effective Scaffolds. J. Funct. Biomater. 2018, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, A.; Atala, A. Tissue Engineering: Toward a New Era of Medicine. Annu. Rev. Med. 2017, 68, 29–40. [Google Scholar] [CrossRef]
- Donos, N.; Dereka, X.; Calciolari, E. The use of bioactive factors to enhance bone regeneration: A narrative review. J. Clin. Periodontol. 2019, 46 (Suppl. S21), 124–161. [Google Scholar] [CrossRef] [Green Version]
- Hiort, O. The differential role of androgens in early human sex development. BMC Med. 2013, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Ghiacci, G.; Graiani, G.; Cacchioli, A.; Galli, C.; Lumetti, S.; Ravanetti, F.; Elviri, L.; Manfredi, E.; Macaluso, G.M.; Sala, R. Stanozolol-soaked grafts enhance new bone formation in rat calvarial critical-size defects. Biomed. Mater. 2017, 12, 045016. [Google Scholar] [CrossRef]
- Cheng, B.H.; Chu, T.M.; Chang, C.; Kang, H.Y.; Huang, K.E. Testosterone delivered with a scaffold is as effective as bone morphologic protein-2 in promoting the repair of critical-size segmental defect of femoral bone in mice. PLoS ONE 2013, 8, e70234. [Google Scholar] [CrossRef] [Green Version]
- Ghiacci, G.; Lumetti, S.; Manfredi, E.; Mori, D.; Macaluso, G.M.; Sala, R. Stanozolol promotes osteogenic gene expression and apposition of bone mineral in vitro. J. Appl. Oral Sci. 2018, 27, e20180014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, J.A.; Partridge, N.C. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology 2016, 31, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Parisi, L.; Buser, D.; Chappuis, V.; Asparuhova, M.B. Cellular responses to deproteinized bovine bone mineral biofunctionalized with bone-conditioned medium. Clin. Oral Investig. 2021, 25, 2159–2173. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.; Laurent, M.R.; Dubois, V.; Claessens, F.; O’Brien, C.A.; Bouillon, R.; Vanderschueren, D.; Manolagas, S.C. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol. Rev. 2017, 97, 135–187. [Google Scholar] [CrossRef]
- Raines, A.L.; Berger, M.B.; Patel, N.; Hyzy, S.L.; Boyan, B.D.; Schwartz, Z. VEGF-A regulates angiogenesis during osseointegration of Ti implants via paracrine/autocrine regulation of osteoblast response to hierarchical microstructure of the surface. J. Biomed. Mater. Res. A 2019, 107, 423–433. [Google Scholar] [CrossRef]
- Lotz, E.M.; Lohmann, C.H.; Boyan, B.D.; Schwartz, Z. Bisphosphonates inhibit surface-mediated osteogenesis. J. Biomed. Mater. Res. A 2020, 108, 1774–1786. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghezzi, B.; Parisi, L.; Calciolari, E.; Toffoli, A.; Matera, B.; Lumetti, S.; Passeri, G.; Macaluso, G.M. Testosterone Enanthate: An In Vitro Study of the Effects Triggered in MG-63 Cells. Biomolecules 2022, 12, 1159. https://doi.org/10.3390/biom12081159
Ghezzi B, Parisi L, Calciolari E, Toffoli A, Matera B, Lumetti S, Passeri G, Macaluso GM. Testosterone Enanthate: An In Vitro Study of the Effects Triggered in MG-63 Cells. Biomolecules. 2022; 12(8):1159. https://doi.org/10.3390/biom12081159
Chicago/Turabian StyleGhezzi, Benedetta, Ludovica Parisi, Elena Calciolari, Andrea Toffoli, Biagio Matera, Simone Lumetti, Giovanni Passeri, and Guido Maria Macaluso. 2022. "Testosterone Enanthate: An In Vitro Study of the Effects Triggered in MG-63 Cells" Biomolecules 12, no. 8: 1159. https://doi.org/10.3390/biom12081159
APA StyleGhezzi, B., Parisi, L., Calciolari, E., Toffoli, A., Matera, B., Lumetti, S., Passeri, G., & Macaluso, G. M. (2022). Testosterone Enanthate: An In Vitro Study of the Effects Triggered in MG-63 Cells. Biomolecules, 12(8), 1159. https://doi.org/10.3390/biom12081159