Metalloproteinases in Cardiac Surgery: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol
2.2. Eligibility Criteria
2.3. Subject of Interest
2.4. Information Sources
2.5. Study Selection and Data Items
2.6. Risk of Bias in Individual Studies
3. Results
3.1. Included Studies
3.2. Excluded Studies
3.3. Main Findings
3.4. Risk of Bias and Study Quality
4. Discussion
4.1. Strengths and Limitations
4.2. Clinical Importance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Squiccimarro, E.; Labriola, C.; Malvindi, P.G.; Margari, V.; Guida, P.; Visicchio, G.; Kounakis, G.; Favale, A.; Dambruoso, P.; Mastrototaro, G.; et al. Prevalence and Clinical Impact of Systemic Inflammatory Reaction After Cardiac Surgery. J. Cardiothorac. Vasc. Anesthesia 2019, 33, 1682–1690. [Google Scholar] [CrossRef] [PubMed]
- Paparella, D.; Yau, T.; Young, E. Cardiopulmonary bypass induced inflammation: Pathophysiology and treatment. An update. Eur. J. Cardio-Thorac. Surg. 2002, 21, 232–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; La Rosa, C.C.-D.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef]
- Buchler, A.; Munch, M.; Farber, G.; Zhao, X.; Al-Haddad, R.; Farber, E.; Rotstein, B.H. Selective Imaging of Matrix Metalloproteinase-13 to Detect Extracellular Matrix Remodeling in Atherosclerotic Lesions. Mol. Imaging Biol. 2021, 24, 93–103. [Google Scholar] [CrossRef]
- DeLeon-Pennell, K.Y.; Meschiari, C.A.; Jung, M.; Lindsey, M.L. Matrix Metalloproteinases in Myocardial Infarction and Heart Failure. Matrix metalloproteinases in myocardial infarction and heart failure. Prog. Mol. Biol. Transl. Sci. 2017, 147, 75–100. [Google Scholar]
- Gao, W.; Fang, F.; Xia, T.J.; Zhang, Y.; Sun, J.; Wu, Q.; Wang, W. Doxycycline can reduce glycocalyx shedding by inhibiting matrix metalloproteinases in patients undergoing cardiopulmonary bypass: A randomized controlled trial. Microvasc. Res. 2022, 142, 104381. [Google Scholar] [CrossRef] [PubMed]
- Dorman, B.H.; Stroud, R.E.; Wyckoff, M.M.; Zellner, J.L.; Botta, D.; Leonardi, A.H.; Ikonomidis, J.S.; Spinale, F.G. Differential Effects of Epsilon-aminocaproic Acid and Aprotinin on Matrix Metalloproteinase Release in Patients Following Cardiopulmonary Bypass. J. Cardiovasc. Pharmacol. 2008, 51, 418–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [Updated March 2011]. The Cochrane Collaboration. 2011. Available online: www.handbook.cochrane.org (accessed on 1 August 2022).
- Higgins, J.P.T.; Sterne, J.A.C. Assessing risk of bias in included studies. In Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0; Higgins, J.P.T., Green, S., Eds.; The Cochrane Collaboration: London, UK, 2011; Available online: www.handbook.cochrane.org (accessed on 1 November 2020).
- Higgins, J.P.T.; Deeks, J.J.; Altman, D.G. Chapter 16: Special topics in statistics. In Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0; Higgins, J.P.T., Green, S., Eds.; The Cochrane Collaboration: London, UK, 2011; Available online: www.handbook.cochrane.org (accessed on 1 August 2022).
- Mayers, I.; Hurst, T.; Puttagunta, L.; Radomski, A.; Mycyk, T.; Sawicki, G.; Johnson, D.; Radomski, M.W. Cardiac surgery increases the activity of matrix metalloproteinases and nitric oxide synthase in human hearts. J. Thorac. Cardiovasc. Surg. 2001, 122, 746–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joffs, C.; Gunasinghe, H.R.; Multani, M.M.; Dorman, B.H.; Kratz, J.M.; Crumbley, A.J.; Crawford, F.A.; Spinale, F.G. Cardiopulmonary bypass induces the synthesis and release of matrix metalloproteinases. Ann. Thorac. Surg. 2001, 71, 1518–1523. [Google Scholar] [CrossRef]
- Galley, H.F.; Macaulay, G.D.; Webster, N.R. Matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 and tumour necrosis factor α release during cardiopulmonary bypass. Anaesthesia 2002, 57, 659–662. [Google Scholar] [CrossRef]
- Lalu, M.M.; Pasini, E.; Schulze, C.J.; Ferrari-Vivaldi, M.; Ferrari-Vivaldi, G.; Bachetti, T.; Schulz, R. Ischaemia–reperfusion injury activates matrix metalloproteinases in the human heart. Eur. Heart J. 2004, 26, 27–35. [Google Scholar] [CrossRef]
- Lin, T.-C.; Li, C.-Y.; Tsai, C.-S.; Ku, C.-H.; Wu, C.-T.; Wong, C.-S.; Ho, S.-T. Neutrophil-Mediated Secretion and Activation of Matrix Metalloproteinase-9 During Cardiac Surgery with Cardiopulmonary Bypass. Anesthesia Analg. 2005, 100, 1554–1560. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.S.; Arifi, A.A.; Wan, S.; Ho, A.M.; Wan, I.Y.; Wong, E.M.; Yim, A.P. Ventilation During Cardiopulmonary Bypass: Impact on Cytokine Response and Cardiopulmonary Function. Ann. Thorac. Surg. 2008, 85, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Spinale, F.G.; Koval, C.N.; Deschamps, A.M.; Stroud, R.E.; Ikonomidis, J.S. Dynamic Changes in Matrix Metalloproteinase Activity Within the Human Myocardial Interstitium During Myocardial Arrest and Reperfusion. Circulation 2008, 118, 16–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, M.; Lin, X.-Z.; Lu, G.-T.; Zheng, L.-J. Preoperative Inhalation of Milrinone Attenuates Inflammation in Patients Undergoing Cardiac Surgery with Cardiopulmonary Bypass. Med. Princ. Pract. 2011, 21, 30–35. [Google Scholar] [CrossRef]
- Zitta, K.; Meybohm, P.; Bein, B.; Gruenewald, M.; Lauer, F.; Steinfath, M.; Cremer, J.; Zacharowski, K.; Albrecht, M. Activities of cardiac tissue matrix metalloproteinases 2 and 9 are reduced by remote ischemic preconditioning in cardiosurgical patients with cardiopulmonary bypass. J. Transl. Med. 2014, 12, 94. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-C.; Lin, F.-Y.; Lin, Y.-W.; Hsu, C.-H.; Huang, G.-S.; Wu, Z.-F.; Tsai, Y.-T.; Lin, C.-Y.; Tsai, C.-S. Matrix Metalloproteinase-9 Production following Cardiopulmonary Bypass Was Not Associated with Pulmonary Dysfunction after Cardiac Surgery. Mediat. Inflamm. 2015, 2015, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Beer, L.; Warszawska, J.M.; Schenk, P.; Debreceni, T.; Dworschak, M.; Roth, G.A.; Szerafin, T.; Ankersmit, H.J. Intraoperative ventilation strategy during cardiopulmonary bypass attenuates the release of matrix metalloproteinases and improves oxygenation. J. Surg. Res. 2014, 195, 294–302. [Google Scholar] [CrossRef]
- McNair, E.D.; Bezaire, J.; Moser, M.; Mondal, P.; Conacher, J.; Franczak, A.; Sawicki, G.; Reid, D.; Khani-Hanjani, A. The Association of Matrix Metalloproteinases With Acute Kidney Injury Following CPB-Supported Cardiac Surgery. Can. J. Kidney Health Dis. 2021, 8. [Google Scholar] [CrossRef]
- Fang, L.; Yu, W.; Yu, G.; Ye, B.; Chen, G. Predictive value of matrix metalloprotease 9 on surgical outcomes after pericardiectomy. J. Cardiothorac. Surg. 2022, 17, 50. [Google Scholar] [CrossRef]
- Carney, D.E.; Lutz, C.J.; Picone, A.L.; Gatto, L.A.; Ramamurthy, N.S.; Golub, L.M.; Simon, S.R.; Searles, B.; Paskanik, A.; Snyder, K.; et al. Matrix Metalloproteinase Inhibitor Prevents Acute Lung Injury After Cardiopulmonary Bypass. Circulation 1999, 100, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Guenzinger, R.; Lahm, H.; Wottke, M.; Lange, R. Role of Metalloproteinases and Tissue Inhibitors of Metalloproteinases During Cardiopulmonary Bypass in Rats. ASAIO J. 2012, 58, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Gong, W.; Liu, H.; Guo, Z.; Ge, S. Inhibition of matrix metalloproteinase-9 with low-dose doxycycline reduces acute lung injury induced by cardiopulmonary bypass. Int. J. Clin. Exp. Med. 2014, 7, 4975–4982. [Google Scholar]
- Wang, C.-T.; Zhang, L.; Wu, H.-W.; Wei, L.; Xu, B.; Li, D.-M. Doxycycline attenuates acute lung injury following cardiopulmonary bypass: Involvement of matrix metalloproteinases. Int. J. Clin. Exp. Pathol. 2014, 7, 7460–7468. [Google Scholar] [PubMed]
- Irqsusi, M.; Mansouri, A.L.; Ramaswamy, A.; Rexin, P.; Salman, M.; Mahmood, S.; Mirow, N.; Ghazi, T.; Ramzan, R.; Rastan, A.J.; et al. Role of matrix metalloproteinases in mitral valve regurgitation: Association between the of MMP-1, MMP-9, TIMP-1, and TIMP-2 expression, degree of mitral valve insufficiency, and pathologic etiology. J. Card. Surg. 2022, 37, 1613–1622. [Google Scholar] [CrossRef]
- Sarkar, M.; Prabhu, V. Basics of cardiopulmonary bypass. Indian J. Anaesth. 2017, 61, 760–767. [Google Scholar] [CrossRef]
- Robich, M.; Ryzhov, S.; Kacer, D.; Palmeri, M.; Peterson, S.M.; Quinn, R.D.; Carter, D.; Sheppard, F.; Hayes, T.; Sawyer, D.B.; et al. Prolonged Cardiopulmonary Bypass is Associated With Endothelial Glycocalyx Degradation. J. Surg. Res. 2020, 251, 287–295. [Google Scholar] [CrossRef]
- Turner, N.A.; Porter, K.E. Regulation of myocardial matrix metalloproteinase expression and activity by cardiac fibroblasts. IUBMB Life 2012, 64, 143–150. [Google Scholar] [CrossRef]
- Arpino, V.; Brock, M.; Gill, S.E. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 2015, 44–46, 247–254. [Google Scholar] [CrossRef]
- Pardo, A.; Selman, M. MMP-1: The elder of the family. Int. J. Biochem. Cell Biol. 2005, 37, 283–288. [Google Scholar] [CrossRef]
- Phatharajaree, W.; Phrommintikul, A.; Chattipakorn, N. Matrix metalloproteinases and myocardial infarction. Can. J. Cardiol. 2007, 23, 727–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momiyama, Y.; Ohmori, R.; Tanaka, N.; Kato, R.; Taniguchi, H.; Adachi, T.; Nakamura, H.; Ohsuzu, F. High plasma levels of matrix metalloproteinase-8 in patients with unstable angina. Atherosclerosis 2010, 209, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Quillard, T.; Tesmenitsky, Y.; Croce, K.; Travers, R.; Shvartz, E.; Koskinas, K.C.; Sukhova, G.K.; Aikawa, E.; Aikawa, M.; Libby, P. Selective Inhibition of Matrix Metalloproteinase-13 Increases Collagen Content of Established Mouse Atherosclerosis. Arter. Thromb. Vasc. Biol. 2011, 31, 2464–2472. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, P.R.; Nascimento, L.D.; Gerlach, R.F.; Rodrigues, K.E.; Prado, A.F. Matrix Metalloproteinase 2 as a Pharmacological Target in Heart Failure. Pharmaceuticals 2022, 15, 920. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-Y.; Han, L.-Y.; Huang, X.-D.; Guan, C.-H.; Mao, X.-L.; Ye, Z.-S. Association of Matrix Metalloproteinase-1 and Matrix Metalloproteinase-3 Gene Variants with Ischemic Stroke and Its Subtype. J. Stroke Cerebrovasc. Dis. 2016, 26, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Olejarz, W.; Łacheta, D.; Kubiak-Tomaszewska, G. Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int. J. Mol. Sci. 2020, 21, 3946. [Google Scholar] [CrossRef]
Study, Year [Ref] | Study Design | N° of Patients | Population | MMP | Other Factors | Outcomes | Main Findings |
---|---|---|---|---|---|---|---|
Mayers, 2001 [11] | Prospective observational NRCT | 10 | Patients undergoing elective CABG with CPB | Pro-MMP-9, Pro-MMP-2, TIMP-4 | NOS | Changes of MMP-2, MMP-9, and NOS in human cardiac tissue during CABG |
|
Joofs, 2001 [12] | Prospective observational NRCT | 28 | Patients undergoing elective CABG with CPB | MMP-2, MMP-8, MMP-9, MMP-13 | - | Plasmatic changes of MMP-2, MMP-8, MMP-9, MMP-13 during and after CPB |
|
Galley, 2002 [13] | Prospective observational NRCT | 20 | Patients undergoing elective CABG with CPB | MMP-9, TIMP-1 | TNF α | Relationship among MMP-9, TNF α, and TIMP-1 during CPB |
|
Lalu, 2005 [14] | Prospective observational NRCT | 15 | Patients undergoing elective CABG with CPB | MMP-2, MMP-9, TIMP-1 | - | Changes in myocardial and plasma MMPs and TIMPs within 10 min of reperfusion and to determine whether these correlate with changes in acute post-ischaemic myocardial function |
|
Lin, 2005 [15] | Prospective observational NRCT | 21 | Patients undergoing elective CABG with or without CPB | MMP-9, TIMP-1 | Neutrophil | Correlation between MMP-9 and neutrophils during CPB |
|
Dorman, 2008 [7] | Prospective RCT | 60 | Patients undergoing elective CABG with CPB | MMP-2, MMP-8, MMP-9 | IL-6, IL-10 | Changes in ILs and MMPs in patients receiving aprotinin or epsilon-aminocaproic acid |
|
Ng, 2008 [16] | Prospective RCT | 50 | Patients undergoing elective CABG with CPB | MMP-9, TIMP-1 | IL-8, IL-10, TxB2 | The effect of continuing ventilation during CPB on inflammatory reactions and cardiopulmonary function |
|
Spinale, 2008 [17] | Prospective observational NRCT | 14 | Patients undergoing elective cardiac surgery with CPB | MMP-7, MMP-9 | IL-6, TNFα | Changes in MMP activity in the myocardium after ischemia/reperfusion |
|
Gong, 2011 [18] | Prospective RCT | 30 | Patients undergoing elective cardiac surgery with CPB | MMP-9 | IL-6, TNFα | Changes in biomarkers of BPB-related inflammation after the inhalation of milrinone |
|
Zitta, 2014 [19] | Prospective RCT | 35 | Patients undergoing elective cardiac surgery with CPB | Pro-MMP-2, MMP-2, Pro-MMP-9, MMP-9 | cardiac troponin T | MMP-2 and MMP-9 activity in remote ischemic preconditioning-mediated cardioprotection |
|
Lin, 2015 [20] | Prospective observational NRCT | 30 | Patients undergoing elective cardiac surgery with CPB | MMP-9 | - | Changes in MMP-9 following CPB. To investigate the association between MMP-9 and PaO2/FiO2 |
|
Beer, 2015 [21] | Prospective observational NRCT | 30 | Patients undergoing CABG with CPB | MMP-3, MMP-8, MMP-9 | LCN-2 | Difference in levels of MMP-3, MMP-8, MMP-9, TIMP-1, and LCN-2 with or without continuous mechanical ventilation during CPB |
|
McNair, 2021 [22] | Prospective observational NRCT | 30 | Patients undergoing elective cardiac surgery with CPB | MMP-2, MMP-9 | Serum creatinine | Changes in serum and urine MMP-2 and MMP-9 after CPB. To analyze MMP-2 and MMP-9 as early biomarkers of AKI |
|
Fang, 2022 [23] | Retrospective observational NRCT | 22 | Patients undergoing pericardiectomy with CPB | MMP-1, MMP-2, MMP-9, TIMP-1 | - | To evaluate the effect of MMPs and TIMPs on post-operative outcomes of patients with constrictive pericarditis undergoing pericardiectomy |
|
Gao, 2022 [6] | Prospective RCT | 36 | Patients undergoing elective CABG or valve replacement with CPB | MMP-2, MMP-9 | Syndecan-1 | Changes in MMPs with doxycycline administration |
|
Subgroup | MMP | Nomenclature | Mass (kDa) | Substrate | References |
---|---|---|---|---|---|
Interstitial collagenase | MMP-1 | Fibroblast collagenase | 52 | Collagens I, II, III, VI, VIII, and X, gelatin, aggrecan, MMP-2, MMP-9 | [23] |
MMP-8 | Neutrophil collagenase or collagenase 2 | 75 | Collagens I, II, III, V, VII, VIII and X, gelatin, aggrecan | [7,12,21] | |
MMP-13 | Collagenase 3 | 54 | Collagens I, II, III, and IV, gelatin, aggrecan | [12] | |
Gelatinases | MMP-2 | Gelatinase A | 72 | Gelatin, collagen types I, IV, V, VII, X, XI, and XIV, elastin, fibronectin, aggrecan | [6,7,11,12,14,19,23] |
MMP-9 | Gelatinase B | 92 | Gelatin, collagen types IV, V, VII, and X, elastin | [6,7,11,12,13,14,15,16,17,18,19,20,21,22,23] | |
Stromelysins | MMP-3 | Stromelysin 1 | 57 | Collagens III, IV, IX, and X, gelatin, aggrecan, MMP-1, MMP-7, MMP-8, MMP-9, MMP-13, laminin, fibronectin, non-helical collagen | [21] |
MMP-7 | Matrilysin | 28 | Collagens IV and X, gelatin, fibronectin | [17] | |
Glycoproteins | TIMP-1 | - | 28 | all MMPs except MMP-14 | [13,14,15,16,23] |
TIMP-2 | - | 21 | all MMPs | - | |
TIMP-3 | - | 24 | all MMPs | - | |
TIMP-4 | - | 23 | all MMPs | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serraino, G.F.; Jiritano, F.; Costa, D.; Ielapi, N.; Battaglia, D.; Bracale, U.M.; Mastroroberto, P.; Andreucci, M.; Serra, R. Metalloproteinases in Cardiac Surgery: A Systematic Review. Biomolecules 2023, 13, 113. https://doi.org/10.3390/biom13010113
Serraino GF, Jiritano F, Costa D, Ielapi N, Battaglia D, Bracale UM, Mastroroberto P, Andreucci M, Serra R. Metalloproteinases in Cardiac Surgery: A Systematic Review. Biomolecules. 2023; 13(1):113. https://doi.org/10.3390/biom13010113
Chicago/Turabian StyleSerraino, Giuseppe Filiberto, Federica Jiritano, Davide Costa, Nicola Ielapi, Domenica Battaglia, Umberto Marcello Bracale, Pasquale Mastroroberto, Michele Andreucci, and Raffaele Serra. 2023. "Metalloproteinases in Cardiac Surgery: A Systematic Review" Biomolecules 13, no. 1: 113. https://doi.org/10.3390/biom13010113
APA StyleSerraino, G. F., Jiritano, F., Costa, D., Ielapi, N., Battaglia, D., Bracale, U. M., Mastroroberto, P., Andreucci, M., & Serra, R. (2023). Metalloproteinases in Cardiac Surgery: A Systematic Review. Biomolecules, 13(1), 113. https://doi.org/10.3390/biom13010113