A Five-Year Update on Matrix Compounds for MALDI-MS Analysis of Lipids
Abstract
:1. Introduction
MALDI MS and the Role of the Matrix
- Typical organic matrices derived from cinnamic or benzoic acid. These compounds possess both an aromatic ring to absorb the UV laser light and acidic functional groups to enable the ionization of the analyte(s).
- Liquid crystalline matrices (for instance, norharmane combined with α-cyano-4-hydroxycinnamic acid (CHCA) [6]), which are useful if particular soft ionization is needed (e.g., for sulfated lipids which tend to undergo sulfate loss). However, the interest in this matrix class has been decreasing for a few years because applications are limited.
- Inorganic matrices such as graphene (or suitable derivatives such as graphene oxide [7]) or metal particles that provide only a weak background [8]. This is helpful for small molecules, including free fatty acids (FFA) that easily interfere with typical matrix peaks. One alumina-based material called DIUTHAME became recently commercially available and was shown to offer an improved reproducibility in comparison to 2,5-dihydroxybenzoic acid (DHB) [9], one of the most widely used MALDI matrices.
2. The Role of the Matrix
Commonly Used MALDI Matrices
3. Which Matrix Is Most Suitable for Individual Lipid Classes?
3.1. Free Fatty Acids
3.2. Cholesterol and Cholesteryl Esters
3.3. Glycerolipids and Glycerophospholipids
3.3.1. Di- and Triacylglycerols
3.3.2. Phospholipids
3.4. Selected Examples of Typical Analytical Problems
3.4.1. Oxidized Lipids
3.4.2. Phosphorylated Phosphatidylinositols
3.4.3. Cardiolipins
3.5. Glycolipids
3.6. Problems Related to Mixture Analysis
- Although lipids are typically enriched by extraction with organic solvents, some salt is still present after extraction in the organic phase. The presence of these salts affects the detection of particularly acidic lipids [75].
- The age of the used mass spectrometer and potential contaminations (in both the ion source and the detector) negatively affect the detectability of the analytes. To the best of our knowledge, this particularly applies to negatively charged lipids. This renders the comparison of the data by different groups challenging.
3.6.1. Separation of the Mixture into the Individual Lipid Classes
3.6.2. Choosing the Most Suitable Matrix
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leopold, J.; Popkova, Y.; Engel, K.M.; Schiller, J. Recent developments of useful MALDI matrices for the mass spectrometric characterization of lipids. Biomolecules 2018, 8, 1664–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, D.-W.; Lee, S.; Chun, Y.-S. How cancer cells remodel lipid metabolism: Strategies targeting transcription factors. Lipids Health Dis. 2021, 20, 163. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Gross, R.W. The foundations and development of lipidomics. J. Lipid Res. 2022, 63, 100164. [Google Scholar] [CrossRef] [PubMed]
- Engel, K.M.; Prabutzki, P.; Leopold, J.; Nimptsch, A.; Lemmnitzer, K.; Vos, D.R.; Hopf, C.; Schiller, J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog. Lipid Res. 2022, 86, 101145. [Google Scholar] [CrossRef] [PubMed]
- Solntceva, V.; Kostrzewa, M.; Larrouy-Maumus, G. Detection of species-specific lipids by routine MALDI TOF mass spectrometry to unlock the challenges of microbial identification and antimicrobial susceptibility testing. Front. Cell. Infect. Microbiol. 2021, 10, 621452. [Google Scholar] [CrossRef]
- Schmidt De León, T.; Salum, M.L.; Erra-Balsells, R. norHarmane containing ionic liquid matrices for low molecular weight MALDI-MS carbohydrate analysis: The perfect couple with alpha-cyano-4-hydroxycinnamic acid. J. Mass Spectrom. 2019, 54, 643–654. [Google Scholar] [CrossRef]
- Kim, S.-W.; Kwon, S.; Kim, Y.-K. Graphene oxide derivatives and their nanohybrid structures for laser desorption/ionization time-of-flight mass spectrometry analysis of small molecules. Nanomaterials 2021, 11, 288. [Google Scholar] [CrossRef]
- Ma, W.; Li, J.; Li, X.; Bai, Y.; Liu, H. Nanostructured substrates as matrices for surface assisted laser desorption/ionization mass spectrometry: A progress report from material research to biomedical applications. Small Methods 2021, 5, e2100762. [Google Scholar] [CrossRef]
- Hasan, M.M.; Eto, F.; Mamun, M.A.; Sato, S.; Islam, A.; Waliullah, A.S.M.; Chi, D.H.; Takahashi, Y.; Kahyo, T.; Naito, Y.; et al. Desorption ionization using through-hole alumina membrane offers higher reproducibility than 2,5-dihydroxybenzoic acid, a widely used matrix in Fourier transform ion cyclotron resonance mass spectrometry imaging analysis. Rapid Commun. Mass Spectrom. 2021, 35, e9076. [Google Scholar] [CrossRef]
- Yan, Y.; Ubukata, M.; Cody, R.B.; Holy, T.E.; Gross, M.L. High-energy collision-induced dissociation by MALDI TOF/TOF causes charge-remote fragmentation of steroid sulfates. J. Am. Soc. Mass Spectrom. 2014, 25, 1404–1411. [Google Scholar] [CrossRef] [Green Version]
- Hillenkamp, F.; Peter-Katalinić, J. MALDI MS: A Practical Guide to Instrumentation, Methods and Application, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2014; ISBN 978-3-527-33331-8. [Google Scholar]
- Zhou, Q.; Fülöp, A.; Hopf, C. Recent developments of novel matrices and on-tissue chemical derivatization reagents for MALDI-MSI. Anal. Bioanal. Chem. 2021, 413, 2599–2617. [Google Scholar] [CrossRef]
- Qiao, Z.; Lissel, F. MALDI matrices for the analysis of low molecular weight compounds: Rational design, challenges and perspectives. Chem.-Asian J. 2021, 16, 868–878. [Google Scholar] [CrossRef]
- O’Rourke, M.B.; Djordjevic, S.P.; Padula, M.P. The quest for improved reproducibility in MALDI mass spectrometry. Mass Spectrom. Rev. 2018, 37, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Pridmore, C.J.; Mosely, J.A.; Sanderson, J.M. The reproducibility of phospholipid analyses by MALDI-MSMS. Analyst 2011, 136, 2598–2605. [Google Scholar] [CrossRef] [Green Version]
- Calvano, C.D.; Monopoli, A.; Cataldi, T.R.I.; Palmisano, F. MALDI matrices for low molecular weight compounds: An endless story? Anal. Bioanal. Chem. 2018, 410, 4015–4038. [Google Scholar] [CrossRef]
- Lee, P.Y.; Yeoh, Y.; Omar, N.; Pung, Y.-F.; Lim, L.C.; Low, T.Y. Molecular tissue profiling by MALDI imaging: Recent progress and applications in cancer research. Crit. Rev. Clin. Lab. Sci. 2021, 58, 513–529. [Google Scholar] [CrossRef]
- Strittmatter, N. Tiffany Porta Siegel (Ed.). MALDI mass spectrometry imaging: From fundamentals to spatial omics. Anal. Bioanal. Chem. 2022, 414, 4791–4792. [Google Scholar] [CrossRef]
- Schiller, J.; Süß, R.; Fuchs, B.; Müller, M.; Petković, M.; Zschörnig, O.; Waschipky, H. The suitability of different DHB isomers as matrices for the MALDI-TOF MS analysis of phospholipids: Which isomer for what purpose? Eur. Biophys. J. 2007, 36, 517–527. [Google Scholar] [CrossRef]
- Ibrahim, H.; Jurcic, K.; Wang, J.S.-H.; Whitehead, S.N.; Yeung, K.K.-C. 1,6-Diphenyl-1,3,5-hexatriene (DPH) as a novel matrix for MALDI MS imaging of fatty acids, phospholipids, and sulfatides in brain tissues. Anal. Chem. 2017, 89, 12828–12836. [Google Scholar] [CrossRef] [Green Version]
- Dutta, T.; Steklý, T.; Kučera, L.; Lemr, K. Dual-polarity MALDI mass spectrometry and imaging of oil binders and fatty acids in artworks using cyanographene as a single matrix. Talanta 2022, 242, 123291. [Google Scholar] [CrossRef]
- Paine, M.R.L.; Poad, B.L.J.; Eijkel, G.B.; Marshall, D.L.; Blanksby, S.J.; Heeren, R.M.A.; Ellis, S.R. Mass spectrometry imaging with isomeric resolution enabled by ozone-induced dissociation. Angew. Chemie Int. Ed. 2018, 57, 10530–10534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Xu, M.; Shi, X.; Liu, Y.; Li, Z.; Jagodinsky, J.C.; Ma, M.; Welham, N.V.; Morris, Z.S.; Li, L. Quantification and molecular imaging of fatty acid isomers from complex biological samples by mass spectrometry. Chem. Sci. 2021, 12, 8115–8122. [Google Scholar] [CrossRef] [PubMed]
- Bednařík, A.; Preisler, J.; Bezdeková, D.; Machálková, M.; Hendrych, M.; Navrátilová, J.; Knopfová, L.; Moskovets, E.; Soltwisch, J.; Dreisewerd, K. Ozonization of tissue sections for MALDI MS imaging of carbon-carbon double bond positional isomers of phospholipids. Anal. Chem. 2020, 92, 6245–6250. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Chen, P.; Li, Z.; Wang, X.; Sun, C. Multi-wavelength visible-light induced [2+2] cycloaddition for identification of lipid isomers in biological samples. J. Chromatogr. A 2022, 1662, 462742. [Google Scholar] [CrossRef]
- Koktavá, M.; Valášek, J.; Bezdeková, D.; Prysiazhnyi, V.; Adamová, B.; Beneš, P.; Navrátilová, J.; Hendrych, M.; Vlček, P.; Preisler, J.; et al. Metal oxide laser ionization mass spectrometry imaging of fatty acids and their double bond positional isomers. Anal. Chem. 2022, 94, 8928–8936. [Google Scholar] [CrossRef]
- Borisov, R.S.; Matveeva, M.D.; Zaikin, V.G. Reactive matrices for analytical matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Crit. Rev. Anal. Chem. 2021, 51, 1–17. [Google Scholar] [CrossRef]
- Li, B.; Gao, W.; Ling, L.; Yu, S. Enzyme-assisted ReMALDI-MS assay for quantification of cholesterol in food. Food Chem. 2022, 383, 132444. [Google Scholar] [CrossRef]
- Angerer, T.B.; Bour, J.; Biagi, J.-L.; Moskovets, E.; Frache, G. Evaluation of 6 MALDI-matrices for 10 μm lipid imaging and on-tissue MSn with AP-MALDI-orbitrap. J. Am. Soc. Mass Spectrom. 2022, 33, 760–771. [Google Scholar] [CrossRef]
- Yu, J.; Kang, Y.; Zhang, H.; Yang, F.; Zhen, H.; Zhu, X.; Wu, T.; Du, Y. A polymer-based matrix for effective SALDI analysis of lipids. J. Am. Soc. Mass Spectrom. 2021, 32, 1189–1195. [Google Scholar] [CrossRef]
- Nezhad, Z.S.; Salazar, J.P.; Pryce, R.S.; Munter, L.M.; Chaurand, P. Absolute quantification of cholesterol from thin tissue sections by silver-assisted laser desorption ionization mass spectrometry imaging. Anal. Bioanal. Chem. 2022, 414, 6947–6954. [Google Scholar] [CrossRef]
- Fournelle, F.; Chaurand, P. Metal-assisted laser desorption ionization imaging mass spectrometry. Methods Mol. Biol. 2022, 2437, 99–115. [Google Scholar] [CrossRef]
- Hornemann, T. Lipidomics in biomarker research. In Prevention and Treatment of Atherosclerosis; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2022; Volume 270, pp. 493–510. [Google Scholar] [CrossRef]
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Köfeler, H.; et al. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef]
- Cooke, M.; Kazanietz, M.G. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci. Signal. 2022, 15, eabo0264. [Google Scholar] [CrossRef]
- Heinonen, S.; Lautala, S.; Koivuniemi, A.; Bunker, A. Insights into the behavior of unsaturated diacylglycerols in mixed lipid bilayers in relation to protein kinase C activation-A molecular dynamics simulation study. Biochim. Biophys. Acta Biomembr. 2022, 1864, 183961. [Google Scholar] [CrossRef]
- Lu, Y.; Cao, Y.; Zhang, L.; Lv, Y.; Zhang, Y.; Su, Y.; Guo, Y. Online quaternized derivatization mapping and glycerides profiling of cancer tissues by laser ablation carbon fiber ionization mass spectrometry. Anal. Chem. 2022, 94, 3756–3761. [Google Scholar] [CrossRef]
- Kuo, T.-H.; Kuei, M.-S.; Hsiao, Y.; Chung, H.-H.; Hsu, C.-C.; Chen, H.-J. Matrix-assisted laser desorption/ionization mass spectrometry typings of edible oils through spectral networking of triacylglycerol fingerprints. ACS Omega 2019, 4, 15734–15741. [Google Scholar] [CrossRef] [Green Version]
- Abbattista, R.; Ventura, G.; Calvano, C.D.; Cataldi, T.R.I.; Losito, I. Bioactive compounds in waste by-products from olive oil production: Applications and structural characterization by mass spectrometry techniques. Foods 2021, 10, 1236. [Google Scholar] [CrossRef]
- England, P.; Tang, W.; Kostrzewa, M.; Shahrezaei, V.; Larrouy-Maumus, G. Discrimination of bovine milk from non-dairy milk by lipids fingerprinting using routine matrix-assisted laser desorption ionization mass spectrometry. Sci. Rep. 2020, 10, 5160. [Google Scholar] [CrossRef] [Green Version]
- Šebela, M. Biomolecular profiling by MALDI-TOF mass spectrometry in food and beverage analyses. Int. J. Mol. Sci. 2022, 23, 13631. [Google Scholar] [CrossRef]
- Bury, C.S.; Heaton, C.; Cole, L.; McColm, R.; Francese, S. Exploring the problem of determining human age from fingermarks using MALDI MS-machine learning combined approaches. Anal. Methods 2022, 14, 789–797. [Google Scholar] [CrossRef]
- Hinners, P.; Thomas, M.; Lee, Y.J. Determining fingerprint age with mass spectrometry imaging via ozonolysis of triacylglycerols. Anal. Chem. 2020, 92, 3125–3132. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ozturk-Kerimoglu, B.; He, L.; Zhang, M.; Pan, J.; Liu, Y.; Zhang, Y.; Huang, S.; Wu, Y.; Jin, G. Advanced lipidomics in the modern meat industry: Quality traceability, processing requirement, and health concerns. Front. Nutr. 2022, 9, 925846. [Google Scholar] [CrossRef] [PubMed]
- Dannenberger, D.; Eggert, A.; Kalbe, C.; Woitalla, A.; Schwudke, D. Are n -3 PUFAs from microalgae incorporated into membrane and storage lipids in pig muscle tissues?—A lipidomic approach. ACS Omega 2022, 7, 24785–24794. [Google Scholar] [CrossRef] [PubMed]
- Shanta, P.V.; Li, B.; Stuart, D.D.; Cheng, Q. Lipidomic profiling of algae with microarray MALDI-MS toward ecotoxicological monitoring of herbicide exposure. Environ. Sci. Technol. 2021, 55, 10558–10568. [Google Scholar] [CrossRef] [PubMed]
- Vieler, A.; Wilhelm, C.; Goss, R.; Süß, R.; Schiller, J. The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC. Chem. Phys. Lipids 2007, 150, 143–155. [Google Scholar] [CrossRef]
- Züllig, T.; Köfeler, H.C. High resolution mass spectrometry in lipidomics. Mass Spectrom. Rev. 2021, 40, 162–176. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Xu, T.; Peng, C.; Wu, S. Advances in MALDI mass spectrometry imaging single cell and tissues. Front. Chem. 2021, 9, 782432. [Google Scholar] [CrossRef]
- Tressler, C.; Tilley, S.; Yang, E.; Donohue, C.; Barton, E.; Creissen, A.; Glunde, K. Factorial design to optimize matrix spraying parameters for MALDI mass spectrometry imaging. J. Am. Soc. Mass Spectrom. 2021, 32, 2728–2737. [Google Scholar] [CrossRef]
- Li, X.; Nakayama, K.; Goto, T.; Akamatsu, S.; Shimizu, K.; Ogawa, O.; Inoue, T. Comparative evaluation of the extraction and analysis of urinary phospholipids and lysophospholipids using MALDI-TOF/MS. Chem. Phys. Lipids 2019, 223, 104787. [Google Scholar] [CrossRef]
- Lippa, K.A.; Aristizabal-Henao, J.J.; Beger, R.D.; Bowden, J.A.; Broeckling, C.; Beecher, C.; Clay Davis, W.; Dunn, W.B.; Flores, R.; Goodacre, R.; et al. Reference materials for MS-based untargeted metabolomics and lipidomics: A review by the metabolomics quality assurance and quality control consortium (mQACC). Metabolomics 2022, 18, 24. [Google Scholar] [CrossRef]
- Wolrab, D.; Jirásko, R.; Cífková, E.; Höring, M.; Mei, D.; Chocholoušková, M.; Peterka, O.; Idkowiak, J.; Hrnčiarová, T.; Kuchař, L.; et al. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat. Commun. 2022, 13, 124. [Google Scholar] [CrossRef]
- Höring, M.; Stieglmeier, C.; Schnabel, K.; Hallmark, T.; Ekroos, K.; Burkhardt, R.; Liebisch, G. Benchmarking one-phase lipid extractions for plasma lipidomics. Anal. Chem. 2022, 94, 12292–12296. [Google Scholar] [CrossRef]
- Perry, W.J.; Patterson, N.H.; Prentice, B.M.; Neumann, E.K.; Caprioli, R.M.; Spraggins, J.M. Uncovering matrix effects on lipid analyses in MALDI imaging mass spectrometry experiments. J. Mass Spectrom. 2020, 55, e4491. [Google Scholar] [CrossRef]
- Wang, H.-Y.J.; Hsu, F. Structural characterization of phospholipids and sphingolipids by in-source fragmentation MALDI/TOF mass spectrometry. Anal. Bioanal. Chem. 2022, 414, 2089–2102. [Google Scholar] [CrossRef]
- Zhong, S.; Li, L.; Shen, X.; Li, Q.; Xu, W.; Wang, X.; Tao, Y.; Yin, H. An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radic. Biol. Med. 2019, 144, 266–278. [Google Scholar] [CrossRef]
- Mastrogiovanni, M.; Trostchansky, A.; Naya, H.; Dominguez, R.; Marco, C.; Povedano, M.; López-Vales, R.; Rubbo, H. HPLC-MS/MS oxylipin analysis of plasma from amyotrophic lateral sclerosis patients. Biomedicines 2022, 10, 674. [Google Scholar] [CrossRef]
- Engel, K.M.; Schiller, J. A comparison of PC oxidation products as detected by MALDI-TOF and ESI-IT mass spectrometry. Chem. Phys. Lipids 2017, 203, 33–45. [Google Scholar] [CrossRef]
- Qin, Z.-N.; Ding, J.; Yu, Q.-W.; Zhou, P.; Feng, Y. A boronic acid-modified C60 derivatization reagent for the rapid detection of 3-monochloropropane-1,2-diol using matrix-assisted laser desorption/ionization-mass spectrometry. Rapid Commun. Mass Spectro. 2021, 35, e9169. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Takahashi, M.; Sugiura, Y.; Izumi, Y.; Nishiyama, K.; Nishida, M.; Suematsu, M.; Bamba, T.; Yamada, K.-I. Structural library and visualization of endogenously oxidized phosphatidylcholines using mass spectrometry-based techniques. Nat. Commun. 2021, 12, 6339. [Google Scholar] [CrossRef]
- Fuchs, B.; Bresler, K.; Schiller, J. Oxidative changes of lipids monitored by MALDI MS. Chem. Phys. Lipids 2011, 164, 782–795. [Google Scholar] [CrossRef]
- Bui, H.H.; Sanders, P.E.; Bodenmiller, D.; Kuo, M.S.; Donoho, G.P.; Fischl, A.S. Direct analysis of PI(3,4,5)P3 using liquid chromatography electrospray ionization tandem mass spectrometry. Anal. Biochem. 2018, 547, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Jackson, S.N.; Woods, A.S.; Goodlett, D.R.; Ernst, R.K.; Scott, A.J. Streamlined analysis of cardiolipins in prokaryotic and eukaryotic samples using a norharmane matrix by MALDI-MSI. J. Am. Soc. Mass Spectrom. 2020, 31, 2495–2502. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Pei, C.; Shu, W.; Wan, J. Inorganic matrices assisted laser desorption/ionization mass spectrometry for metabolic analysis in biofluids. Chem.-Asian J. 2022, 17, e202101310. [Google Scholar] [CrossRef] [PubMed]
- Lobasso, S.; Tanzarella, P.; Mannavola, F.; Tucci, M.; Silvestris, F.; Felici, C.; Ingrosso, C.; Corcelli, A.; Lopalco, P. A lipidomic approach to identify potential biomarkers in exosomes from melanoma cells with different metastatic potential. Front. Physiol. 2021, 12, 748895. [Google Scholar] [CrossRef] [PubMed]
- Engel, K.M.; Sampels, S.; Dzyuba, B.; Podhorec, P.; Policar, T.; Dannenberger, D.; Schiller, J. Swimming at different temperatures: The lipid composition of sperm from three freshwater fish species determined by mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Phys. Lipids 2019, 221, 65–72. [Google Scholar] [CrossRef]
- Larrouy-Maumus, G. Shotgun bacterial lipid A analysis using routine MALDI-TOF mass spectrometry. Methods Mol. Biol. 2021, 2306, 275–283. [Google Scholar] [CrossRef]
- Prabutzki, P.; Leopold, J.; Schubert, S.; Schiller, J.; Nimptsch, A. De novo synthesis of phospholipids and sphingomyelin in multipotent stromal cells—Monitoring studies by mass spectrometry. Chem. Phys. Lipids 2020, 232, 104965. [Google Scholar] [CrossRef]
- Scott, A.J.; Flinders, B.; Cappell, J.; Liang, T.; Pelc, R.S.; Tran, B.; Kilgour, D.P.A.; Heeren, R.M.A.; Goodlett, D.R.; Ernst, R.K. Norharmane matrix enhances detection of endotoxin by MALDI-MS for simultaneous profiling of pathogen, host, and vector systems. Pathog. Dis. 2016, 74, ftw097. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Yang, K.; Zhao, Z.; Guan, S.; Han, X.; Gross, R.W. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte-matrix interactions. Anal. Chem. 2008, 80, 7576–7585. [Google Scholar] [CrossRef] [Green Version]
- Nagasawa, H.; Miyazaki, S.; Kyogashima, M. Simple separation of glycosphingolipids in the lower phase of a Folch’s partition from crude lipid fractions using zirconium dioxide. Glycoconj. J. 2022, 39, 789–795. [Google Scholar] [CrossRef]
- McMillen, J.C.; Fincher, J.A.; Klein, D.R.; Spraggins, J.M.; Caprioli, R.M. Effect of MALDI matrices on lipid analyses of biological tissues using MALDI-2 postionization mass spectrometry. J. Mass Spectrom. 2020, 55, e4663. [Google Scholar] [CrossRef]
- Monopoli, A.; Ventura, G.; Aloia, A.; Ciriaco, F.; Nacci, A.; Cataldi, T.R.I.; Calvano, C.D. Synthesis and investigation of novel CHCA-derived matrices for matrix-assisted laser desorption/ionization mass spectrometric analysis of lipids. Molecules 2022, 27, 2565. [Google Scholar] [CrossRef]
- Dufresne, M.; Fincher, J.A.; Patterson, N.H.; Schey, K.L.; Norris, J.L.; Caprioli, R.M.; Spraggins, J.M. α-Cyano-4-hydroxycinnamic acid and tri-potassium citrate salt pre-coated silicon nanopost array provides enhanced lipid detection for high spatial resolution MALDI imaging mass spectrometry. Anal. Chem. 2021, 93, 12243–12249. [Google Scholar] [CrossRef]
- Köfeler, H.C.; Ahrends, R.; Baker, E.S.; Ekroos, K.; Han, X.; Hoffmann, N.; Holčapek, M.; Wenk, M.R.; Liebisch, G. Recommendations for good practice in MS-based lipidomics. J. Lipid Res. 2021, 62, 100138. [Google Scholar] [CrossRef]
- Yang, Z.; Li, W.; Huang, H.; Ren, S.; Men, Y.; Li, F.; Yu, X.; Luo, Q. Detection of serum phospholipids by microchannel-integrated black phosphorus-assisted laser desorption/ionization mass spectrometry. Talanta 2022, 237, 122978. [Google Scholar] [CrossRef]
- Schröter, J.; Fülöp, A.; Hopf, C.; Schiller, J. The combination of 2,5-dihydroxybenzoic acid and 2,5-dihydroxyacetophenone matrices for unequivocal assignment of phosphatidylethanolamine species in complex mixtures. Anal. Bioanal. Chem. 2018, 410, 2437–2447. [Google Scholar] [CrossRef]
- Engel, K.M.; Schiller, J. The value of coupling thin-layer chromatography to mass spectrometry in lipid research—A review. J. Chromatogr. B 2021, 1185, 123001. [Google Scholar] [CrossRef]
- Borisov, R.; Kanateva, A.; Zhilyaev, D. Recent advances in combinations of TLC with MALDI and other desorption/ionization mass-spectrometry techniques. Front. Chem. 2021, 9, 771801. [Google Scholar] [CrossRef]
- Chudzik, A.; Migdał, P.; Paściak, M. Different cutibacterium acnes phylotypes release distinct extracellular vesicles. Int. J. Mol. Sci. 2022, 23, 5797. [Google Scholar] [CrossRef]
- Fuchs, B.; Bischoff, A.; Sü, R.; Teuber, K.; Schürenberg, M.; Suckau, D.; Schiller, J. Phosphatidylcholines and -ethanolamines can be easily mistaken in phospholipid mixtures: A negative ion MALDI-TOF MS study with 9-aminoacridine as matrix and egg yolk as selected example. Anal. Bioanal. Chem. 2009, 395, 2479–2487. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Ionic Liquid-assisted laser desorption/ionization-mass spectrometry: Matrices, microextraction, and separation. Methods Protoc. 2018, 1, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.E. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in veterinary medicine: Recent advances (2019-present). Vet. World 2022, 15, 2623–2657. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yi, J.; Han, G.; Qiao, L. MALDI-TOF mass spectrometry in clinical analysis and research. ACS Meas. Sci. Au 2022, 2, 385–404. [Google Scholar] [CrossRef] [PubMed]
- Salum, M.L.; Itovich, L.M.; Erra-Balsells, R. Z-sinapinic acid: The change of the stereochemistry of cinnamic acids as rational synthesis of a new matrix for carbohydrate MALDI-MS analysis. J. Mass Spectrom. 2013, 48, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Michael Grayson. Franz Hillenkamp: Transcript of Interviews. Available online: https://www.asms.org/docs/default-source/oral-histories/hillenkamp_f_0704_full.pdf?sfvrsn=442e74c3_2 (accessed on 20 February 2023).
- Tambe, S.; Blott, H.; Fülöp, A.; Spang, N.; Flottmann, D.; Bräse, S.; Hopf, C.; Junker, H.-D. Structure-performance relationships of phenyl cinnamic acid derivatives as MALDI-MS matrices for sulfatide detection. Anal. Bioanal. Chem. 2017, 409, 1569–1580. [Google Scholar] [CrossRef]
- Jaskolla, T.W.; Lehmann, W.-D.; Karas, M. 4-Chloro-alpha-cyanocinnamic acid is an advanced, rationally designed MALDI matrix. Proc. Natl. Acad. Sci. USA 2008, 105, 12200–12205. [Google Scholar] [CrossRef] [Green Version]
- Weißflog, J.; Svatoš, A. 1,8-Di(piperidinyl)-naphthalene-rationally designed MAILD/MALDI matrix for metabolomics and imaging mass spectrometry. RSC Adv. 2016, 6, 75073–75081. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leopold, J.; Prabutzki, P.; Engel, K.M.; Schiller, J. A Five-Year Update on Matrix Compounds for MALDI-MS Analysis of Lipids. Biomolecules 2023, 13, 546. https://doi.org/10.3390/biom13030546
Leopold J, Prabutzki P, Engel KM, Schiller J. A Five-Year Update on Matrix Compounds for MALDI-MS Analysis of Lipids. Biomolecules. 2023; 13(3):546. https://doi.org/10.3390/biom13030546
Chicago/Turabian StyleLeopold, Jenny, Patricia Prabutzki, Kathrin M. Engel, and Jürgen Schiller. 2023. "A Five-Year Update on Matrix Compounds for MALDI-MS Analysis of Lipids" Biomolecules 13, no. 3: 546. https://doi.org/10.3390/biom13030546
APA StyleLeopold, J., Prabutzki, P., Engel, K. M., & Schiller, J. (2023). A Five-Year Update on Matrix Compounds for MALDI-MS Analysis of Lipids. Biomolecules, 13(3), 546. https://doi.org/10.3390/biom13030546