SVM-Based Model Combining Patients’ Reported Outcomes and Lymphocyte Phenotypes of Depression in Systemic Lupus Erythematosus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Demographics and Clinical Characteristics
2.3. Patients’ Reported Outcomes
2.4. Objective Evaluation Variables
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shipa, M.; Santos, L.R.; Nguyen, D.X.; Embleton-Thirsk, A.; Parvaz, M.; Heptinstall, L.L.; Pepper, R.J.; Isenberg, D.A.; Gordon, C.; Ehrenstein, M.R. Identification of biomarkers to stratify response to B-cell-targeted therapies in systemic lupus erythematosus: An exploratory analysis of a randomised controlled trial. Lancet Rheumatol. 2023, 5, e24–e35. [Google Scholar] [CrossRef]
- Gu, X.X.; Jin, Y.; Fu, T.; Zhang, X.M.; Li, T.; Yang, Y.; Li, R.; Zhou, W.; Guo, J.X.; Zhao, R.; et al. Relevant Characteristics Analysis Using Natural Language Processing and Machine Learning Based on Phenotypes and T-Cell Subsets in Systemic Lupus Erythematosus Patients with Anxiety. Front. Psychiatry 2021, 12, 793505. [Google Scholar] [CrossRef] [PubMed]
- Bingham, K.S.; DiazMartinez, J.; Green, R.; Tartaglia, M.C.; Ruttan, L.; Su, J.; Wither, J.E.; Kakvan, M.; Anderson, N.; Bonilla, D.; et al. Longitudinal relationships between cognitive domains and depression and anxiety symptoms in systemic lupus erythematosus. Semin. Arthritis Rheum. 2021, 51, 1186–1192. [Google Scholar] [CrossRef]
- Chalhoub, N.E.; Luggen, M.E. Depression-, Pain-, and Health-Related Quality of Life in Patients with Systemic Lupus Erythematosus. Int. J. Rheumatol. 2022, 2022, 6290736. [Google Scholar] [CrossRef]
- Zhao, Q.; Deng, N.; Chen, S.; Cui, Y.; Du, X.; Gu, Z. Systemic lupus erythematosus is associated with negatively variable impacts on domains of sleep disturbances: A systematic review and meta-analysis. Psychol. Health Med. 2018, 23, 685–697. [Google Scholar] [CrossRef]
- Shen, B.; Tan, W.; Feng, G.; He, Y.; Liu, J.; Chen, W.; Huang, X.; Da, Z.; Xu, X.; Liu, H.; et al. The correlations of disease activity, socioeconomic status, quality of life, and depression/anxiety in Chinese patients with systemic lupus erythematosus. Clin. Dev. Immunol. 2013, 2013, 270878. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, R.; Gu, C.; Gu, Z.; Li, L.; Li, Z.; Dong, C.; Zhu, J.; Fu, T.; Gao, J. The impact of systemic lupus erythematosus on health-related quality of life assessed using the SF-36: A systematic review and meta-analysis. Psychol. Health Med. 2019, 24, 978–991. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Feng, G.; Tang, W.; Huang, X.; Yan, H.; He, Y.; Chen, W.; Da, Z.; Liu, H.; Gu, Z. The quality of life in Chinese patients with systemic lupus erythematosus is associated with disease activity and psychiatric disorders: A path analysis. Clin. Exp. Rheumatol. 2014, 32, 101–107. [Google Scholar]
- Li, Z.; Yang, Y.; Dong, C.; Li, L.; Cui, Y.; Zhao, Q.; Gu, Z. The prevalence of suicidal ideation and suicide attempt in patients with rheumatic diseases: A systematic review and meta-analysis. Psychol. Health Med. 2018, 23, 1025–1036. [Google Scholar] [CrossRef]
- Feng, J.Z.; Wang, Y.; Peng, J.; Sun, M.W.; Zeng, J.; Jiang, H. Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries. J. Crit. Care 2019, 54, 110–116. [Google Scholar] [CrossRef]
- Barraclough, M.; Erdman, L.; Diaz-Martinez, J.P.; Knight, A.; Bingham, K.; Su, J.; Kakvan, M.; Munoz Grajales, C.; Tartaglia, M.C.; Ruttan, L.; et al. Systemic lupus erythematosus phenotypes formed from machine learning with a specific focus on cognitive impairment. Rheumatology 2022. [Google Scholar] [CrossRef] [PubMed]
- Bergmans, R.S.; Loewenstein, E.; Aboul-Hassan, D.; Chowdhury, T.; Schaefer, G.; Wegryn-Jones, R.; Xiao, L.Z.; Yu, C.; Moore, M.N.; Kahlenberg, J.M. Social determinants of depression in systemic lupus erythematosus: A systematic scoping review. Lupus 2023, 32, 23–41. [Google Scholar] [CrossRef]
- Chen, H.; Cui, H.; Geng, Y.; Jin, T.; Shi, S.; Li, Y.; Chen, X.; Shen, B. Development of a nomogram prediction model for depression in patients with systemic lupus erythematosus. Front. Psychol. 2022, 13, 951431. [Google Scholar] [CrossRef]
- Sorensen, N.V.; Frandsen, B.H.; Orlovska-Waast, S.; Buus, T.B.; Odum, N.; Christensen, R.H.; Benros, M.E. Immune cell composition in unipolar depression: A comprehensive systematic review and meta-analysis. Mol. Psychiatry 2023, 28, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.; Stapf, T.M.; Kirnich, V.B.; Hennings, A.; Riemer, S.; Chrobok, A.; Fries, D.R.; Pedrosa Gil, F.; Rief, W.; Schwarz, M.J.; et al. Stability of Cellular Immune Parameters over 12 Weeks in Patients with Major Depression or Somatoform Disorder and in Healthy Controls. Neuroimmunomodulation 2018, 25, 7–17. [Google Scholar] [CrossRef]
- Miyata, S.; Yamagata, H.; Matsuo, K.; Uchida, S.; Harada, K.; Fujihara, K.; Yanagawa, Y.; Watanabe, Y.; Mikuni, M.; Nakagawa, S.; et al. Characterization of the signature of peripheral innate immunity in women with later-life major depressive disorder. Brain Behav. Immun. 2020, 87, 831–839. [Google Scholar] [CrossRef]
- Williams, E.M.; Hyer, J.M.; Viswanathan, R.; Faith, T.D.; Egede, L.; Oates, J.C.; Marshall, G.D. Cytokine balance and behavioral intervention; findings from the Peer Approaches to Lupus Self-Management (PALS) project. Hum. Immunol. 2017, 78, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.; Wang, X.; Xu, J.; Jin, C.; Chen, J.; Wang, X.; Wang, J.; Qin, L.; Yang, P. Pristane induced lupus mice as a model for neuropsychiatric lupus (NPSLE). Behav. Brain Funct. 2023, 19, 3. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.Q.; Li, Y.Y.; Wang, H.L.; Mao, X.T.; Guo, J.X.; Wang, F.; Huang, L.J.; Li, Y.N.; Ma, X.Y.; Gao, Z.J.; et al. Stress-Induced Metabolic Disorder in Peripheral CD4(+) T Cells Leads to Anxiety-like Behavior. Cell 2019, 179, 864–879.e819. [Google Scholar] [CrossRef] [PubMed]
- Andaur Navarro, C.L.; Damen, J.A.A.; van Smeden, M.; Takada, T.; Nijman, S.W.J.; Dhiman, P.; Ma, J.; Collins, G.S.; Bajpai, R.; Riley, R.D.; et al. Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models. J. Clin. Epidemiol. 2022, 154, 8–22. [Google Scholar] [CrossRef]
- Zhong, M.; Zhang, H.; Yu, C.; Jiang, J.; Duan, X. Application of machine learning in predicting the risk of postpartum depression: A systematic review. J. Affect. Disord. 2022, 318, 364–379. [Google Scholar] [CrossRef]
- Thibault, T.; Bourredjem, A.; Maurier, F.; Wahl, D.; Muller, G.; Aumaitre, O.; Seve, P.; Blaison, G.; Pennaforte, J.L.; Martin, T.; et al. The mediating effect of fatigue in impaired quality of life in systemic lupus erythematosus: Mediation analysis of the French EQUAL cohort. Rheumatology 2023. [Google Scholar] [CrossRef]
- Aranow, C.; Atish-Fregoso, Y.; Lesser, M.; Mackay, M.; Anderson, E.; Chavan, S.; Zanos, T.P.; Datta-Chaudhuri, T.; Bouton, C.; Tracey, K.J.; et al. Transcutaneous auricular vagus nerve stimulation reduces pain and fatigue in patients with systemic lupus erythematosus: A randomised, double-blind, sham-controlled pilot trial. Ann. Rheum. Dis. 2021, 80, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Palagini, L.; Tani, C.; Mauri, M.; Carli, L.; Vagnani, S.; Bombardieri, S.; Gemignani, A.; Mosca, M. Sleep disorders and systemic lupus erythematosus. Lupus 2014, 23, 115–123. [Google Scholar] [CrossRef]
- Beurel, E.; Medina-Rodriguez, E.M.; Jope, R.S. Targeting the Adaptive Immune System in Depression: Focus on T Helper 17 Cells. Pharmacol. Rev. 2022, 74, 373–386. [Google Scholar] [CrossRef]
- Pu, Y.; Zhang, Q.; Tang, Z.; Lu, C.; Wu, L.; Zhong, Y.; Chen, Y.; Hashimoto, K.; Luo, Y.; Liu, Y. Fecal microbiota transplantation from patients with rheumatoid arthritis causes depression-like behaviors in mice through abnormal T cells activation. Transl. Psychiatry 2022, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- Gascue, A.; Merino, J.; Paiva, B. Flow Cytometry. Hematol. Oncol. Clin. North. Am. 2018, 32, 765–775. [Google Scholar] [CrossRef]
- Mohd Ashari, N.S.; Mohamed Sanusi, S.N.F.; Mohd Yasin, M.A.; Che Hussin, C.M.; Wong, K.K.; Shafei, M.N. Major depressive disorder patients on antidepressant treatments display higher number of regulatory T cells. Malays. J. Pathol. 2019, 41, 169–176. [Google Scholar]
- Varun, C.N.; Venkataswamy, M.M.; Ravikumar, R.; Nagaraju, R.; Debnath, M.; Varambally, S.; Venkatasubramanian, G.; Ravi, V. Th17 and MAIT cell mediated inflammation in antipsychotic free schizophrenia patients. Schizophr. Res. 2019, 212, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Gargano, F.; Guerrera, G.; Piras, E.; Serafini, B.; Di Paola, M.; Rizzetto, L.; Buscarinu, M.C.; Annibali, V.; Vuotto, C.; De Bardi, M.; et al. Proinflammatory mucosal-associated invariant CD8+ T cells react to gut flora yeasts and infiltrate multiple sclerosis brain. Front. Immunol. 2022, 13, 890298. [Google Scholar] [CrossRef]
- Cho, Y.N.; Kee, S.J.; Kim, T.J.; Jin, H.M.; Kim, M.J.; Jung, H.J.; Park, K.J.; Lee, S.J.; Lee, S.S.; Kwon, Y.S.; et al. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. J. Immunol. 2014, 193, 3891–3901. [Google Scholar] [CrossRef]
- Chiba, A.; Tamura, N.; Yoshikiyo, K.; Murayama, G.; Kitagaichi, M.; Yamaji, K.; Takasaki, Y.; Miyake, S. Activation status of mucosal-associated invariant T cells reflects disease activity and pathology of systemic lupus erythematosus. Arthritis Res. Ther. 2017, 19, 58. [Google Scholar] [CrossRef] [PubMed]
- Devarajan, P.; Chen, Z. Autoimmune effector memory T cells: The bad and the good. Immunol. Res. 2013, 57, 12–22. [Google Scholar] [CrossRef]
- Sallusto, F.; Impellizzieri, D.; Basso, C.; Laroni, A.; Uccelli, A.; Lanzavecchia, A.; Engelhardt, B. T-cell trafficking in the central nervous system. Immunol. Rev. 2012, 248, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Gate, D.; Saligrama, N.; Leventhal, O.; Yang, A.C.; Unger, M.S.; Middeldorp, J.; Chen, K.; Lehallier, B.; Channappa, D.; De Los Santos, M.B.; et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 2020, 577, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Dubois, T.; Zdanowicz, N.; Reynaert, C.; Jacques, D. Depression, family and immunity: Influence of humoral immunity on family relationships and on the severity of depression. Psychiatr. Danub. 2016, 28, 170–174. [Google Scholar]
- Li, Q.; Luo, Y.; Liu, D.; Li, B.; Liu, Y.; Wang, T. Construction and prognostic value of enhanced CT image omics model for noninvasive prediction of HRG in bladder cancer based on logistic regression and support vector machine algorithm. Front. Oncol. 2022, 12, 966506. [Google Scholar] [CrossRef]
All SLE Patients (94 Samples) | Depression (18 Samples) | Non-Depression (76 Samples) | p | |
---|---|---|---|---|
Age, years a | 39.09 ± 13.70 | 37.5 ± 11.18 | 39.46 ± 14.27 | 0.588 |
Gender, women b | 87 (92.6) | 14 (77.8) | 73 (96.1) | 0.008 * |
BMI a | 22.42 ± 3.30 | 23.26 ± 3.85 | 22.21 ± 3.15 | 0.228 |
Place of residence b | 0.727 | |||
Urban | 40 (42.6) | 7 (38.9) | 33 (43.4) | |
Rural | 54 (57.4) | 11 (61.1) | 43 (56.6) | |
Marital status b | 0.148 | |||
Married | 70 (74.5) | 11 (61.1) | 59 (77.6) | |
Other | 24 (25.5) | 7 (38.9) | 17 (22.4) | |
Education level b | 0.703 | |||
≤9 years | 59 (62.8) | 12 (66.7) | 47 (61.8) | |
>9 years | 35 (37.2) | 6 (33.3) | 29 (38.2) | |
Employment, yes b | 62 (66.0) | 14 (77.8) | 48 (63.2) | 0.239 |
Yearly per capita income, yuan b | 0.203 | |||
<15,000 | 41 (44.1) | 5 (27.8) | 36 (48.0) | |
15,000–33,000 | 29 (31.2) | 6 (33.3) | 23 (30.7) | |
>33,000 | 23 (24.7) | 7 (38.9) | 16 (21.3) | |
Medical insurance, yes b | 71 (76.3) | 15 (88.2) | 56 (73.7) | 0.202 |
Social support a | 39.95 ± 7.07 | 38.12 ± 7.96 | 40.36 ± 6.85 | 0.240 |
Objective support | 8.26 ± 2.15 | 7.00 ± 2.45 | 8.56 ± 1.97 | 0.005 * |
Subjective support | 24.82 ± 5.22 | 24.50 ± 5.82 | 24.89 ± 5.10 | 0.776 |
Utilization of support | 6.92 ± 2.38 | 7.00 ± 1.94 | 6.91 ± 2.48 | 0.885 |
Coping style a | ||||
Positive attitude | 23.07 ± 7.84 | 20.78 ± 8.98 | 23.64 ± 7.49 | 0.168 |
Negative attitude | 10.49 ± 5.57 | 11.00 ± 6.58 | 10.36 ± 5.34 | 0.666 |
Fatigue a | 50.35 ± 14.01 | 60.88 ± 13.49 | 47.93 ± 13.05 | 0.002 * |
Sleep quality a | 5.41 ± 3.32 | 7.00 ± 3.77 | 5.01 ± 3.10 | 0.022 * |
Prednisone, mg/qd a | 11.99 ± 11.95 | 10.17 ± 6.71 | 12.61 ± 13.28 | 0.498 |
Hydroxychloroquine, g/qd a | 0.22 ± 0.06 | 0.22 ± 0.06 | 0.22 ± 0.07 | 0.660 |
SLE Patients | Depression | Non-Depression | p | |
---|---|---|---|---|
Disease duration, years a | 5 (1.1, 10) | 5 (1, 10) | 6 (1.2, 10) | 0.853 |
SLEDAI a | 6 (4, 10) | 8.5 (3.75, 12) | 6 (4, 9.5) | 0.187 |
White blood cells, 109/L a | 4.3 (3.4, 6.4) | 4.9 (4.03, 5.70) | 4.3 (3.28, 6.73) | 0.744 |
Neutrophils, 109/L a | 2.87 (2.10, 4.26) | 3.43 (2.52, 4.22) | 2.83 (1.92, 4.27) | 0.203 |
Red blood cells, 1012/L a | 4.37 (4.07, 4.66) | 4.47 (4.00, 4.86) | 4.36 (4.07, 4.64) | 0.557 |
Hemoglobin, g/L a | 126 (115, 136) | 129 (110.5, 139.5) | 126 (115.75, 136) | 0.764 |
Platelets, 109/L b | 205.59 ± 84.69 | 231.12 ± 61.92 | 199.73 ± 88.40 | 0.169 |
Urine protein, g/24 h b | 0.99 ± 1.24 | 2.00 ± 2.53 | 0.79 ± 0.83 | 0.493 |
Aspartate aminotransferase, μ/L a | 24 (20, 31) | 24 (21.5, 31.5) | 24 (20, 31) | 0.569 |
Alanine aminotransferase, μ/L a | 22 (15.5, 32) | 21 (13.5, 33) | 22.5 (17.25, 32) | 0.507 |
Albumin, g/L b | 40.97 ± 5.83 | 41.27 ± 5.35 | 40.91 ± 5.97 | 0.821 |
Globulin, g/L b | 30.47 ± 5.69 | 29.62 ± 5.72 | 30.68 ± 5.71 | 0.499 |
Creatinine, μmol/L a | 52 (47, 66) | 53 (43, 67.75) | 52 (47, 67) | 0.877 |
C-reactive protein, mg/L a | 2.04 (1.47, 3.15) | 2.34 (1.69, 3.21) | 1.91 (1.39, 3.02) | 0.287 |
Erythrocyte sedimentation rate, mm/h a | 12 (6, 22) | 15.5 (4.25, 34.75) | 12 (6, 21) | 0.354 |
Complement 3, g/L b | 0.62 ± 0.19 | 0.62 ± 0.16 | 0.62 ± 0.19 | 0.916 |
Complement 4, g/L b | 0.13 ± 0.06 | 0.13 ± 0.07 | 0.13 ± 0.06 | 0.820 |
SLE Patients | Depression | Non-Depression | p | |
---|---|---|---|---|
ASC%PBMC | 0.26 (0.12, 0.50) | 0.71 (0.24, 1.17) | 0.24 (0.12, 0.45) | 0.002 * |
ASC%CD19+ | 3.88 (1.83, 8.35) | 7.42 (4.22, 14.45) | 3.43 (1.53, 7.32) | 0.011 * |
B+%PBMC | 5.48 (3.34, 10.01) | 6.60 (4.59, 9.45) | 5.18 (3.04, 10.65) | 0.390 |
IgA+%ASC | 33 (15.88, 46.18) | 33.40 (13.83, 55.70) | 33 (14.83, 45.95) | 0.405 |
IgAM-%ASC | 9.56 (1.52, 18.18) | 8.17 (0.57, 15.55) | 10.25 (1.65, 18.33) | 0.476 |
IgM+%ASC | 39.45 (25.98, 61.85) | 35.10 (26.98, 57.03) | 42.45 (25.33, 62.55) | 0.806 |
CD138+%ASC | 10.8 (6.94, 16.03) | 9.84 (6.27, 13.53) | 11.85 (7.21, 16.93) | 0.332 |
Bn%B | 36.4 (21.23, 49.15) | 36.95 (24.08, 51.98) | 36.40 (19.88, 47.65) | 0.652 |
Bim%B | 7.20 (2.29, 13.20) | 11.13 (4.54, 20.40) | 6.15 (1.79, 11.75) | 0.084 |
IgM+%B | 4.21 (2.33, 6.96) | 3.82 (2.91, 5.05) | 4.29 (2.24, 7.40) | 0.740 |
IgM+D-%B | 0.51 (0.12, 1.08) | 0.49 (0.10, 0.73) | 0.52 (0.17, 1.16) | 0.584 |
SwBm%B | 25.75 (15.48, 43.30) | 22.45 (15.55, 41.23) | 25.90 (15.23, 46.53) | 0.726 |
IgA+%SwBm | 42.95 (19.03, 75.03) | 60.05 (22.18, 75.48) | 37.95 (18.48, 75.08) | 0.631 |
IgA-%SwBm | 49.6 (20.35, 76.25) | 30.80 (15.35, 74.18) | 54.80 (21.33, 78.43) | 0.665 |
AtM%B | 5.10 (2.55, 9.77) | 6.34 (3.45, 10.50) | 4.81 (2.36, 9.56) | 0.607 |
9G4%Bn | 3.67 (2.46, 5.24) | 4.41 (3.23, 6.13) | 3.55 (2.28, 4.90) | 0.149 |
9G4%Bim | 2.72 (1.17, 4.48) | 3.69 (1.57, 4.60) | 2.69 (1.08, 4.57) | 0.284 |
9G4%IgM+Bm | 2.84 (1.95, 4.35) | 3.96 (2.39, 4.74) | 2.80 (1.73, 4.10) | 0.121 |
9G4%IgM+alone | 0 (0, 1.72) | 0 (0, 3.48) | 0 (0, 1.63) | 0.277 |
9G4%SwBm | 2.02 (1.12, 3.37) | 2.37 (1.66, 3.46) | 1.84 (1.08, 3.33) | 0.196 |
9G4%IgA+ | 1.73 (0.67, 2.57) | 1.92 (0.65, 2.58) | 1.68 (0.65, 2.54) | 0.784 |
9G4%IgA- | 1.79 (1.03, 2.77) | 1.80 (0.86, 2.86) | 1.79 (1.04, 2.73) | 0.973 |
SLE Patients | Depression | Non-Depression | p | |
---|---|---|---|---|
MAIT | 0.20 (0.05, 0.75) | 0.55 (0.19, 1.62) | 0.15 (0.05, 0.62) | 0.009 * |
TEM%Th | 11.65 (3.90, 21.98) | 20.15 (11.78, 31.25) | 9.15 (3.38, 19.55) | 0.004 * |
TEMRA%Th | 0.37 (0.08, 1.17) | 1.02 (0.53, 1.91) | 0.26 (0.06, 0.94) | 0.003 * |
CD45RA+CD27-Th | 0.45 (0.20, 1.49) | 1.12 (0.43, 2.54) | 0.40 (0.19, 1.33) | 0.014 * |
TEMRA%CD8 | 17.45 (10.10, 27.03) | 22.60 (17.20, 29.38) | 14.80 (7.28, 26.35) | 0.014 * |
γδ1T | 1.00 (0.35, 2.19) | 1.04 (0.45, 2.02) | 0.95 (0.29, 2.20) | 0.655 |
γδ2T | 1.10 (0.43, 2.73) | 0.82 (0.30, 2.35) | 1.11 (0.49, 2.76) | 0.420 |
γδ1-2-T | 0.42 (0.21, 0.84) | 0.54 (0.39, 1.02) | 0.39 (0.20, 0.83) | 0.180 |
iNKT | 0.10 (0.04, 0.20) | 0.16 (0.10, 0.22) | 0.09 (0.03, 0.20) | 0.111 |
αβT | 89.95 (85.48, 92.62) | 90.10 (85.60, 92.45) | 89.85 (85.43, 92.98) | 0.939 |
CD4+T | 47.10 (39.70, 56.18) | 48.00 (43.30, 57.20) | 46.00 (39.63, 56.05) | 0.445 |
CD8+T | 47.65 (37.93, 56.28) | 47.80 (37.90, 54.18) | 47.45 (37.93, 57.25) | 0.697 |
DPT | 0.19 (0.10, 0.38) | 0.16 (0.08, 0.26) | 0.20 (0.10, 0.40) | 0.188 |
DNT | 1.15 (0.61, 1.66) | 1.06 (0.73, 1.23) | 1.32 (0.59, 1.77) | 0.320 |
Th | 96.60 (94.60, 98.00) | 96.40 (95.2, 97.50) | 96.60 (94.53, 98.15) | 0.792 |
Treg | 2.41 (1.26, 3.95) | 2.74 (1.63, 3.47) | 2.21 (1.22, 4.04) | 0.539 |
Tn%Th | 30.60 (20.98, 44.23) | 28.05 (19.45, 39.78) | 33.80 (21.08, 46.28) | 0.286 |
TCM%Th | 51.60 (38.40, 60.80) | 50.60 (37.48, 57.78) | 51.60 (38.50, 62.38) | 0.697 |
CD27-CD28+Th | 10.45 (6.84, 14.85) | 11.40 (8.62, 16.55) | 10.03 (6.45, 14.28) | 0.125 |
CD27+CD28+Th | 81.20 (69.00, 89.05) | 78.75 (61.30, 84.63) | 82.85 (73.68, 90.20) | 0.090 |
CD27+CD28-Th | 0.04 (0.01, 0.13) | 0.07 (0.02, 0.15) | 0.04 (0.01, 0.13) | 0.509 |
CD27-CD28-Th | 5.02 (0.75, 15.25) | 7.62 (0.26, 23.63) | 5.02 (0.79, 11.78) | 0.299 |
PD1-CD28+Th | 71.65 (51.05, 85.53) | 64.30 (48.60, 81.48) | 76.60 (50.15, 86.20) | 0.253 |
PD1+CD28+Th | 14.90 (6.63, 29.50) | 15.30 (6.81, 37.33) | 14.90 (6.28, 28.68) | 0.788 |
PD1+CD28-Th | 1.01 (0.08, 4.32) | 1.57 (0.10, 5.74) | 0.74 (0.07, 4.29) | 0.498 |
PD1-CD28-Th | 1.57 (0.06, 8.92) | 2.97 (0.08, 17.93) | 1.43 (0.04, 8.13) | 0.321 |
CD45RA-CD27+Th | 46.00 (36.03, 52.90) | 44.50 (36.25, 54.50) | 46.20 (35.88, 52.60) | 0.814 |
CD45RA+CD27+Th | 33.90 (20.28, 40.58) | 29.75 (19.23, 38.13) | 34.50 (20.35, 42.28) | 0.334 |
CD45RA-CD27-Th | 17.60 (9.97, 27.60) | 23.30 (15.13, 35.68) | 16.60 (9.26, 24.88) | 0.075 |
CD45RA-HLADR+Th | 20.85 (4.31, 60.95) | 12.80 (4.09, 64.23) | 23.55 (4.33, 60.48) | 0.897 |
CD45RA+HLADR+Th | 1.50 (0.20, 29.98) | 0.86 (0.28, 18.75) | 4.71 (0.18, 33.30) | 0.687 |
CD45RA+HLADR-Th | 10.27 (0.51, 36.78) | 19.30 (2.73, 38.85) | 7.09 (0.41, 36.48) | 0.382 |
CD45RA-HLADR-Th | 31.00 (1.50, 61.55) | 48.30 (2.91, 61.55) | 18.95 (1.31, 61.73) | 0.425 |
Act%Th | 2.84 (0.93, 5.42) | 3.64 (2.12, 7.30) | 2.59 (0.91, 5.29) | 0.205 |
Tn%Treg | 9.37 (3.65, 17.25) | 7.34 (3.64, 9.30) | 10.55 (3.58, 20.18) | 0.071 |
TCM%Treg | 68.30 (51.73, 82.85) | 69.40 (52.30, 78.43) | 68.30 (51.38, 83.30) | 0.855 |
TEM%Treg | 17.40 (7.17, 27.08) | 22.05 (16.03, 35.90) | 15.30 (5.77, 26.20) | 0.055 |
TEMRA%Treg | 0.29 (0.00, 1.06) | 0.51 (0.00, 1.47) | 0.21 (0.00, 0.96) | 0.140 |
CD27-CD28+Treg | 4.91 (2.68, 9.01) | 5.22 (2.54, 12.93) | 4.49 (2.69, 8.74) | 0.676 |
CD27+CD28+Treg | 92.55 (85.20, 96.43) | 91.00 (81.85, 97.13) | 92.85 (86.63, 96.40) | 0.492 |
CD27+CD28Treg | 0.00 (0.00, 0.17) | 0.05 (0.00, 0.42) | 0.00 (0.00, 0.11) | 0.052 |
CD27-CD28-Treg | 0.77 (0.00, 4.48) | 1.51 (0.00, 4.79) | 0.53 (0.00, 4.16) | 0.474 |
PD1-CD28+Treg | 70.70 (48.45, 85.03) | 69.15 (47.65, 84.65) | 71.40 (48.35, 85.15) | 0.817 |
PD1+CD28+Treg | 21.70 (12.08, 48.05) | 18.10 (12.08, 47.00) | 22.05 (12.03, 50.63) | 0.863 |
PD1+CD28-Treg | 0.07 (0.00, 1.79) | 0.37 (0.00, 1.79) | 0.00 (0.00, 1.86) | 0.555 |
PD1-CD28-Treg | 0.00 (0.00, 3.17) | 0.67 (0.00, 4.12) | 0.00 (0.00, 2.99) | 0.146 |
CD45RA-CD27+Treg | 79.80 (63.73, 88.00) | 79.60 (69.20, 89.58) | 79.85 (59.03, 87.60) | 0.498 |
CD45RA+CD27+Treg | 9.13 (3.31, 17.30) | 6.24 (4.92, 10.32) | 9.77 (2.44, 22.88) | 0.178 |
CD45RA+CD27-Treg | 0.00 (0.00, 0.50) | 0.00 (0.00, 1.04) | 0.00 (0.00, 0.48) | 0.652 |
CD45RA-CD27-Treg | 7.62 (3.84, 14.13) | 10.14 (4.88, 16.63) | 7.46 (3.34, 13.25) | 0.206 |
CD45RA-HLADR+Treg | 53.75 (31.25, 81.23) | 47.85 (32.90, 76.35) | 58.40 (28.95, 82.28) | 0.931 |
CD45RA+HLADR+Treg | 1.13 (0.14, 12.33) | 1.05 (0.28, 6.33) | 1.21 (0.12, 12.78) | 0.912 |
CD45RA+HLADR-Treg | 2.23 (0.19, 6.72) | 3.89 (1.79, 7.62) | 1.87 (0.00, 6.59) | 0.264 |
CD45RA-HLADR-Treg | 22.35 (1.83, 58.00) | 44.35 (2.79, 58.18) | 16.50 (1.50, 57.83) | 0.550 |
Act%Treg | 7.67 (3.12, 14.20) | 9.81 (4.34, 15.18) | 6.68 (2.74, 14.10) | 0.507 |
Act%CD8 | 2.01 (1.09, 5.49) | 4.51 (1.50, 6.92) | 1.91 (1.07, 4.68) | 0.051 |
Tn%CD8 | 39.40 (16.20, 57.93) | 31.60 (20.50, 48.55) | 40.85 (16.20, 60.63) | 0.507 |
TCM%CD8 | 4.58 (2.34, 7.05) | 3.57 (2.32, 5.23) | 4.71 (2.21, 7.86) | 0.237 |
TEM%CD8 | 31.85 (22.00, 50.58) | 35.50 (24.48, 46.73) | 30.40 (21.73, 51.18) | 0.617 |
CD27-CD28+CD8 | 2.43 (1.20, 4.51) | 2.52 (1.40, 3.49) | 2.43 (1.17, 4.74) | 0.878 |
CD27+CD28+CD8 | 46.70 (28.80, 65.98) | 40.40 (31.10, 58.60) | 48.05 (25.10, 66.50) | 0.683 |
CD27+CD28-CD8 | 5.98 (3.37, 11.05) | 8.20 (5.03, 10.93) | 5.55 (3.09, 11.20) | 0.220 |
CD27-CD28-CD8 | 39.35 (24.05, 55.85) | 43.45 (31.73, 55.65) | 38.30 (23.60, 56.35) | 0.474 |
PD1-CD28+CD8 | 36.40 (16.28, 60.40) | 37.65 (20.90, 55.83) | 35.80 (15.23, 62.58) | 0.996 |
PD1+CD28+CD8 | 4.06 (2.07, 10.75) | 3.97 (2.04, 13.33) | 4.13 (2.05, 11.05) | 0.988 |
PD1+CD28-CD8 | 3.71 (1.09, 17.23) | 3.57 (1.28, 21.50) | 3.71 (0.88, 16.88) | 0.504 |
PD1-CD28-CD8 | 35.15 (11.48, 57.20) | 38.55 (18.33, 55.38) | 31.15 (6.86, 58.20) | 0.471 |
CD45RA-CD27+CD8 | 13.15 (7.50, 18.98) | 14.10 (8.14, 18.85) | 13.05 (7.44, 19.13) | 0.733 |
CD45RA+CD27+CD8 | 41.50 (20.70, 56.98) | 34.60 (24.88, 50.05) | 43.75 (19.58, 60.50) | 0.855 |
CD45RA+CD27-CD8 | 15.95 (8.13, 24.78) | 18.70 (15.30, 25.48) | 14.65 (6.92, 24.68) | 0.062 |
CD45RA-CD27-CD8 | 24.25 (14.88, 37.90) | 27.35 (15.50, 32.50) | 23.80 (11.60, 38.35) | 0.762 |
CD45RA-HLADR+CD8 | 5.65 (2.31, 14.45) | 7.23 (2.68, 15.60) | 5.43 (2.20, 14.00) | 0.715 |
CD45RA+HLADR+CD8 | 2.23 (0.70, 5.87) | 3.28 (0.52, 7.21) | 1.96 (0.75, 5.32) | 0.669 |
CD45RA+HLADR-CD8 | 59.90 (43.08, 70.50) | 53.85 (44.83, 67.13) | 61.05 (40.83, 71.40) | 0.874 |
CD45RA-HLADR-CD8 | 28.90 (18.98, 39.55) | 28.90 (18.15, 41.03) | 29.95 (19.13, 40.23) | 0.939 |
B | SE | p | Exp (B) | 95%CI | |
---|---|---|---|---|---|
Objective support | −0.603 | 0.144 | <0.001 * | 0.547 | 0.412, 0.726 |
Fatigue | 0.049 | 0.018 | 0.005 * | 1.051 | 1.015, 1.088 |
ASC%CD19+ | 0.067 | 0.028 | 0.016 * | 1.07 | 1.013, 1.129 |
Weight | Weight | ||
---|---|---|---|
Sex | 0.077 | ASC%PBMC | 0.085 |
Fatigue | 0.137 | ASC%CD19+ | 0.100 |
Sleep quality | 0.004 | MAIT | 0.073 |
Objective support | 0.125 | TEM%Th | 0.170 |
TEMRA%Th | 0.063 | ||
CD45RA+CD27-Th | 0.071 | ||
TEMRA%CD8 | 0.114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.; Yang, N.; Zhao, R.; Yang, Y.; Gu, X.; Fu, T.; Sun, C.; Gu, Z. SVM-Based Model Combining Patients’ Reported Outcomes and Lymphocyte Phenotypes of Depression in Systemic Lupus Erythematosus. Biomolecules 2023, 13, 723. https://doi.org/10.3390/biom13050723
Dong C, Yang N, Zhao R, Yang Y, Gu X, Fu T, Sun C, Gu Z. SVM-Based Model Combining Patients’ Reported Outcomes and Lymphocyte Phenotypes of Depression in Systemic Lupus Erythematosus. Biomolecules. 2023; 13(5):723. https://doi.org/10.3390/biom13050723
Chicago/Turabian StyleDong, Chen, Nengjie Yang, Rui Zhao, Ying Yang, Xixi Gu, Ting Fu, Chi Sun, and Zhifeng Gu. 2023. "SVM-Based Model Combining Patients’ Reported Outcomes and Lymphocyte Phenotypes of Depression in Systemic Lupus Erythematosus" Biomolecules 13, no. 5: 723. https://doi.org/10.3390/biom13050723
APA StyleDong, C., Yang, N., Zhao, R., Yang, Y., Gu, X., Fu, T., Sun, C., & Gu, Z. (2023). SVM-Based Model Combining Patients’ Reported Outcomes and Lymphocyte Phenotypes of Depression in Systemic Lupus Erythematosus. Biomolecules, 13(5), 723. https://doi.org/10.3390/biom13050723