Per Aspera ad Chaos: Vladimir Uversky’s Odyssey through the Strange World of Intrinsically Disordered Proteins
1. Introduction
2. A Special Issue in Honour of Vladimir Uversky
3. The Different Areas and the Distribution of Articles within Them
4. The Impact of Vladimir Uversky on the Scientific Community and Our Careers
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Uversky, V.N.; Kulkarni, P. Intrinsically disordered proteins: Chronology of a discovery. Biophys. Chem. 2021, 279, 106694. [Google Scholar] [CrossRef] [PubMed]
- Mészáros, A.; Muwonge, K.; Janvier, S.; Ahmed, J.; Tompa, P. A Novel Tandem-Tag Purification Strategy for Challenging Disordered Proteins. Biomolecules 2022, 12, 1566. [Google Scholar] [CrossRef]
- Evans, R.; Ramisetty, S.; Kulkarni, P.; Weninger, K. Illuminating Intrinsically Disordered Proteins with Integrative Structural Biology. Biomolecules 2023, 13, 124. [Google Scholar] [CrossRef]
- Bianchi, G.; Mangiagalli, M.; Barbiroli, A.; Longhi, S.; Grandori, R.; Santambrogio, C.; Brocca, S. Distribution of Charged Residues Affects the Average Size and Shape of Intrinsically Disordered Proteins. Biomolecules 2022, 12, 561. [Google Scholar] [CrossRef]
- Avramov, M.; Schád, É.; Révész, Á.; Turiák, L.; Uzelac, I.; Tantos, Á.; Drahos, L.; Popović, Ž.D. Identification of Intrinsically Disordered Proteins and Regions in a Non-Model Insect Species Ostrinia nubilalis (Hbn.). Biomolecules 2022, 12, 592. [Google Scholar] [CrossRef]
- Pontoriero, L.; Schiavina, M.; Korn, S.M.; Schlundt, A.; Pierattelli, R.; Felli, I.C. NMR Reveals Specific Tracts within the Intrinsically Disordered Regions of the SARS-CoV-2 Nucleocapsid Protein Involved in RNA Encountering. Biomolecules 2022, 12, 929. [Google Scholar] [CrossRef]
- Beniamino, Y.; Cenni, V.; Piccioli, M.; Ciurli, S.; Zambelli, B. The Ni(II)-Binding Activity of the Intrinsically Disordered Region of Human NDRG1, a Protein Involved in Cancer Development. Biomolecules 2022, 12, 1272. [Google Scholar] [CrossRef]
- Roesgaard, M.A.; Lundsgaard, J.E.; Newcombe, E.A.; Jacobsen, N.L.; Pesce, F.; Tranchant, E.E.; Lindemose, S.; Prestel, A.; Hartmann-Petersen, R.; Lindorff-Larsen, K.; et al. Deciphering the Alphabet of Disorder—Glu and Asp Act Differently on Local but Not Global Properties. Biomolecules 2022, 12, 1426. [Google Scholar]
- Cai, H.; Vernon, R.M.; Forman-Kay, J.D. An Interpretable Machine-Learning Algorithm to Predict Disordered Protein Phase Separation Based on Biophysical Interactions. Biomolecules 2022, 12, 1131. [Google Scholar] [CrossRef] [PubMed]
- Bremer, A.; Posey, A.E.; Borgia, M.B.; Borcherds, W.M.; Farag, M.; Pappu, R.V.; Mittag, T. Quantifying Coexistence Concentrations in Multi-Component Phase-Separating Systems Using Analytical HPLC. Biomolecules 2022, 12, 1480. [Google Scholar] [CrossRef] [PubMed]
- Pintado-Grima, C.; Bárcenas, O.; Ventura, S. In-Silico Analysis of pH-Dependent Liquid-Liquid Phase Separation in Intrinsically Disordered Proteins. Biomolecules 2022, 12, 974. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Saikia, N.; Kwun, D.; Choi, U.B.; Ding, F.; Bowen, M.E. Different Forms of Disorder in NMDA-Sensitive Glutamate Receptor Cytoplasmic Domains Are Associated with Differences in Condensate Formation. Biomolecules 2023, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Tang, C.; Chu, W.-T.; Wang, E.; Wang, J. Effects of Mass Change on Liquid–Liquid Phase Separation of the RNA-Binding Protein Fused in Sarcoma. Biomolecules 2023, 13, 625. [Google Scholar] [PubMed]
- Das, D.; Deniz, A.A. Topological Considerations in Biomolecular Condensation. Biomolecules 2023, 13, 151. [Google Scholar] [CrossRef]
- Fefilova, A.S.; Antifeeva, I.A.; Gavrilova, A.A.; Turoverov, K.K.; Kuznetsova, I.M.; Fonin, A.V. Reorganization of Cell Compartmentalization Induced by Stress. Biomolecules 2022, 12, 1441. [Google Scholar] [CrossRef]
- Tarczewska, A.; Bielak, K.; Zoglowek, A.; Sołtys, K.; Dobryszycki, P.; Ożyhar, A.; Różycka, M. The Role of Intrinsically Disordered Proteins in Liquid–Liquid Phase Separation during Calcium Carbonate Biomineralization. Biomolecules 2022, 12, 1266. [Google Scholar]
- Jaiprashad, R.; De Silva, S.R.; Fred Lucena, L.M.; Meyer, E.; Metallo, S.J. Portability of a Small-Molecule Binding Site between Disordered Proteins. Biomolecules 2022, 12, 1887. [Google Scholar] [CrossRef]
- Das, T.; Ramezani, M.; Snead, D.; Follmer, C.; Chung, P.; Lee, K.Y.; Holowka, D.A.; Baird, B.A.; Eliezer, D. The Role of Membrane Affinity and Binding Modes in Alpha-Synuclein Regulation of Vesicle Release and Trafficking. Biomolecules 2022, 12, 1816. [Google Scholar] [CrossRef]
- Gregory, E.; Daughdrill, G.W. Sequence Properties of an Intramolecular Interaction that Inhibits p53 DNA Binding. Biomolecules 2022, 12, 1558. [Google Scholar] [CrossRef]
- Nardella, C.; Toto, A.; Santorelli, D.; Pagano, L.; Diop, A.; Pennacchietti, V.; Pietrangeli, P.; Marcocci, L.; Malagrinò, F.; Gianni, S. Folding and Binding Mechanisms of the SH2 Domain from Crkl. Biomolecules 2022, 12, 1014. [Google Scholar] [CrossRef]
- Walker, D.R.; Jara, K.A.; Rolland, A.D.; Brooks, C.; Hare, W.; Swansiger, A.K.; Reardon, P.N.; Prell, J.S.; Barbar, E.J. Linker Length Drives Heterogeneity of Multivalent Complexes of Hub Protein LC8 and Transcription Factor ASCIZ. Biomolecules 2023, 13, 404. [Google Scholar] [CrossRef]
- Gérard, C.; Carrière, F.; Receveur-Bréchot, V.; Launay, H.; Gontero, B. A Trajectory of Discovery: Metabolic Regulation by the Conditionally Disordered Chloroplast Protein, CP12. Biomolecules 2022, 12, 1047. [Google Scholar] [CrossRef]
- Bruley, A.; Mornon, J.-P.; Duprat, E.; Callebaut, I. Digging into the 3D Structure Predictions of AlphaFold2 with Low Confidence: Disorder and Beyond. Biomolecules 2022, 12, 1467. [Google Scholar] [CrossRef] [PubMed]
- Osmanli, Z.; Falgarone, T.; Samadova, T.; Aldrian, G.; Leclercq, J.; Shahmuradov, I.; Kajava, A.V. The Difference in Structural States between Canonical Proteins and Their Isoforms Established by Proteome-Wide Bioinformatics Analysis. Biomolecules 2022, 12, 1610. [Google Scholar] [CrossRef]
- Bigman, L.S.; Levy, Y. Conformational Analysis of Charged Homo-Polypeptides. Biomolecules 2023, 13, 363. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Kurgan, L. Compositional Bias of Intrinsically Disordered Proteins and Regions and Their Predictions. Biomolecules 2022, 12, 888. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudabadi, G.; Rajagopalan, K.; Getzenberg, R.H.; Hannenhalli, S.; Rangarajan, G.; Kulkarni, P. Intrinsically disordered proteins and conformational noise: Implications in cancer. Cell Cycle 2013, 12, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Uversky, V.N. Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta 2013, 1834, 932–951. [Google Scholar] [CrossRef]
- Kulkarni, P.; Bhattacharya, S.; Achuthan, S.; Behal, A.; Jolly, M.K.; Kotnala, S.; Mohanty, A.; Rangarajan, G.; Salgia, R.; Uversky, V. Intrinsically Disordered Proteins: Critical Components of the Wetware. Chem. Rev. 2022, 122, 6614–6633. [Google Scholar] [CrossRef]
- Kulkarni, P.; Mohanty, A.; Salgia, R.; Uversky, V.N. Intrinsically disordered BMP4 morphogen and the beak of the finch: Co-option of an ancient axial patterning system. Int. J. Biol. Macromol. 2022, 219, 366–373. [Google Scholar] [CrossRef]
- Kulkarni, P.; Behal, A.; Mohanty, A.; Salgia, R.; Nedelcu, A.M.; Uversky, V.N. Co-opting disorder into order: Intrinsically disordered proteins and the early evolution of complex multicellularity. Int. J. Biol. Macromol. 2022, 201, 29–36. [Google Scholar] [CrossRef]
- Brocca, S.; Samalíková, M.; Uversky, V.N.; Lotti, M.; Vanoni, M.; Alberghina, L.; Grandori, R. Order propensity of an intrinsically disordered protein, the cyclin-dependent-kinase inhibitor Sic1. Proteins 2009, 76, 731–746. [Google Scholar] [CrossRef] [Green Version]
- Uversky, V.N.; Santambrogio, C.; Brocca, S.; Grandori, R. Length-dependent compaction of intrinsically disordered proteins. FEBS Lett. 2012, 586, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Testa, L.; Brocca, S.; Santambrogio, C.; D’Urzo, A.; Habchi, J.; Longhi, S.; Uversky, V.N.; Grandori, R. Extracting structural information from charge-state distributions of intrinsically disordered proteins by non-denaturing electrospray-ionization mass spectrometry. Intrinsically Disord Proteins 2013, 1, e25068. [Google Scholar] [CrossRef] [Green Version]
- Daniels, M.J.; Nourse, J.B., Jr.; Kim, H.; Sainati, V.; Schiavina, M.; Murrali, M.G.; Pan, B.; Ferrie, J.J.; Haney, C.M.; Moons, R.; et al. Cyclized NDGA modifies dynamic α-synuclein monomers preventing aggregation and toxicity. Sci. Rep. 2019, 9, 2937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brocca, S.; Grandori, R.; Longhi, S.; Uversky, V. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions. Int. J. Mol. Sci. 2020, 21, 9045. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, G.; Brocca, S.; Longhi, S.; Uversky, V.N. Liaisons dangereuses: Intrinsic Disorder in Cellular Proteins Recruited to Viral Infection-Related Biocondensates. Int. J. Mol. Sci. 2023, 24, 2151. [Google Scholar] [CrossRef]
- Uversky, V. Fundamentals of Protein Folding. In Protein Aggregation in Bacteria: Functional and Structural Properties of Inclusion Bodies in Bacterial Cells; Doglia, S., Lotti, M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Natalello, A.; Ami, D.; Doglia, S. Protein aggregation studied in intact cells by Fourier transform infrared spectroscopy. In Methods in Protein Structure and Stability Analysis; Uversky, V., Permyakov, E.A., Eds.; Nova Science Publishers: New York, NY, USA, 2007. [Google Scholar]
- Uversky, V.N.; Gillespie, J.R.; Fink, A.L. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 2000, 41, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Oldfield, C.J.; Xue, B.; Hsu, W.L.; Meng, J.; Liu, X.; Shen, L.; Romero, P.; Uversky, V.N.; Dunker, A. Improving protein order-disorder classification using charge-hydropathy plots. BMC Bioinform. 2014, 15 (Suppl. 17), S4. [Google Scholar] [CrossRef] [Green Version]
- Bondos, S.E.; Dunker, A.K.; Uversky, V.N. Intrinsically disordered proteins play diverse roles in cell signaling. Cell Commun. Signal 2022, 20, 20. [Google Scholar] [CrossRef]
- Piersimoni, L.; Abd El Malek, M.; Bhatia, T.; Bender, J.; Brankatschk, C.; Calvo Sánchez, J.; Dayhoff, G.W.; Di Ianni, A.; Figueroa Parra, J.O.; Garcia-Martinez, D.; et al. Lighting up Nobel Prize-winning studies with protein intrinsic disorder. Cell Mol. Life Sci. 2022, 79, 449. [Google Scholar] [CrossRef] [PubMed]
- Karlin, D.; Longhi, S.; Receveur, V.; Canard, B. The N-terminal domain of the phosphoprotein of morbilliviruses belongs to the natively unfolded class of proteins. Virology 2002, 296, 251–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Receveur-Bréchot, V.; Bourhis, J.M.; Uversky, V.N.; Canard, B.; Longhi, S. Assessing protein disorder and induced folding. Proteins Struct. Funct. Bioinform. 2006, 62, 24–45. [Google Scholar] [CrossRef] [PubMed]
- Habchi, J.; Tompa, P.; Longhi, S.; Uversky, V.N. Introducing Protein Intrinsic Disorder. Chem. Rev. 2014, 114, 6561–6588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uversky, V.N.; Longhi, S. Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation; John Wiley and Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Uversky, V.N.; Longhi, S. Flexible Viruses: Structural Disorder in Viral Proteins; Joh Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
Intrinsic Disorder Characterization & Methodological Development | |
---|---|
A Novel Tandem-Tag Purification Strategy for Challenging Disordered Proteins | Mészáros et al., 2022 [2] |
Illuminating Intrinsically Disordered Proteins with Integrative Structural Biology | Evans et al., 2023 [3] |
Distribution of Charged Residues Affects the Average Size and Shape of Intrinsically Disordered Proteins | Bianchi et al., 2022 [4] |
Identification of Intrinsically Disordered Proteins and Regions in a Non-Model Insect Species Ostrinia nubilalis (Hbn.) | Avramov et al., 2022 [5] |
NMR Reveals Specific Tracts within the Intrinsically Disordered Regions of the SARS-CoV-2 Nucleocapsid Protein Involved in RNA Encountering | Pontoriero et al., 2022 [6] |
The Ni(II)-Binding Activity of the Intrinsically Disordered Region of Human NDRG1, a Protein Involved in Cancer Development | Beniamino et al., 2022 [7] |
Deciphering the Alphabet of Disorder—Glu and Asp Act Differently on Local but Not Global Properties | Roesgaard et al., 2022 [8] |
Phase Separation | |
An Interpretable Machine-Learning Algorithm to Predict Disordered Protein Phase Separation Based on Biophysical Interactions | Cai et al., 2022 [9] |
Quantifying Coexistence Concentrations in Multi-Component Phase-Separating Systems Using Analytical HPLC | Bremer et al., 2022 [10] |
In-Silico Analysis of pH-Dependent Liquid-Liquid Phase Separation in Intrinsically Disordered Proteins | Pintado-Grima et al., 2022 [11] |
Different Forms of Disorder in NMDA-Sensitive Glutamate Receptor Cytoplasmic Domains Are Associated with Differences in Condensate Formation | Basak et al., 2022 [12] |
Effects of Mass Change on Liquid–Liquid Phase Separation of the RNA-Binding Protein Fused in Sarcoma | Dong et al., 2023 [13] |
Topological Considerations in Biomolecular Condensation | Das and Deniz, 2023 [14] |
Reorganization of Cell Compartmentalization Induced by Stress | Fefilova et al., 2022 [15] |
The Role of Intrinsically Disordered Proteins in Liquid–Liquid Phase Separation during Calcium Carbonate Biomineralization | Tarczewska et al., 2022 [16] |
Binding Mode and Properties of IDPs/IDRs | |
Portability of a Small-Molecule Binding Site between Disordered Proteins | Jaiprashad et al., 2022 [17] |
The Role of Membrane Affinity and Binding Modes in Alpha-Synuclein Regulation of Vesicle Release and Trafficking | Das et al., 2022 [18] |
Sequence Properties of an Intramolecular Interaction that Inhibits p53 DNA Binding | Gregory & Daughdrill, 2022 [19] |
Folding and Binding Mechanisms of the SH2 Domain from Crkl | Nardella et al., 2022 [20] |
Linker Length Drives Heterogeneity of Multivalent Complexes of Hub Protein LC8 and Transcription Factor ASCIZ | Walker et al., 2023 [21] |
A Trajectory of Discovery: Metabolic Regulation by the Conditionally Disordered Chloroplast Protein, CP12 | Gérard et al., 2022 [22] |
Modeling of IDPs by Conventional and Advanced Bioinformatic Tools | |
Digging into the 3D Structure Predictions of AlphaFold2 with Low Confidence: Disorder and Beyond | Bruley et al., 2022 [23] |
The Difference in Structural States between Canonical Proteins and Their Isoforms Established by Proteome-Wide Bioinformatics Analysis | Osmanli et al., 2022 [24] |
Conformational Analysis of Charged Homo-Polypeptides | Bigman and Levy, 2023 [25] |
Compositional Bias of Intrinsically Disordered Proteins and Regions and Their Predictions | Zhao and Kurgan, 2022 [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulkarni, P.; Brocca, S.; Dunker, A.K.; Longhi, S. Per Aspera ad Chaos: Vladimir Uversky’s Odyssey through the Strange World of Intrinsically Disordered Proteins. Biomolecules 2023, 13, 1015. https://doi.org/10.3390/biom13061015
Kulkarni P, Brocca S, Dunker AK, Longhi S. Per Aspera ad Chaos: Vladimir Uversky’s Odyssey through the Strange World of Intrinsically Disordered Proteins. Biomolecules. 2023; 13(6):1015. https://doi.org/10.3390/biom13061015
Chicago/Turabian StyleKulkarni, Prakash, Stefania Brocca, A. Keith Dunker, and Sonia Longhi. 2023. "Per Aspera ad Chaos: Vladimir Uversky’s Odyssey through the Strange World of Intrinsically Disordered Proteins" Biomolecules 13, no. 6: 1015. https://doi.org/10.3390/biom13061015
APA StyleKulkarni, P., Brocca, S., Dunker, A. K., & Longhi, S. (2023). Per Aspera ad Chaos: Vladimir Uversky’s Odyssey through the Strange World of Intrinsically Disordered Proteins. Biomolecules, 13(6), 1015. https://doi.org/10.3390/biom13061015