Not-So-Sweet Dreams: Plasma and IgG N-Glycome in the Severe Form of the Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting and Patients
2.2. Measurements
2.3. Plasma Glycan Measurements
2.4. IgG Glycan Measurements
2.5. Statistics
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varki, A.; Cummings, R.D.; Esko, J.D.; Freeze, H.H.; Stanley, P.; Bertozzi, C.R.; Hart, G.W.; Etzler, M.E. (Eds.) Essentials of Glycobiology; Cold Spring Harbor: New York, NY, USA, 2009. [Google Scholar]
- Ohtsubo, K.; Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Klarić, L.; Tsepilov, Y.A.; Stanton, C.M.; Mangino, M.; Sikka, T.T.; Esko, T.; Pakhomov, E.; Salo, P.; Deelen, J.; McGurnaghan, S.J.; et al. Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. Sci. Adv. 2020, 6, eaax0301. [Google Scholar] [CrossRef] [PubMed]
- Lauc, G.; Essafi, A.; Huffman, J.E.; Hayward, C.; Knežević, A.; Kattla, J.J.; Polašek, O.; Gornik, O.; Vitart, V.; Abrahams, J.L.; et al. Genomics meets glycomics-the first GWAS study of human N-Glycome identifies HNF1α as a master regulator of plasma protein fucosylation. PLoS Genet. 2010, 6, e1001256. [Google Scholar] [CrossRef]
- Cummings, R.D.; Pierce, J.M. The challenge and promise of glycomics. Chem. Biol. 2014, 21, 1–15. [Google Scholar] [CrossRef]
- Apweiler, R.; Hermjakob, H.; Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1999, 1473, 4–8. [Google Scholar] [CrossRef]
- Knezević, A.; Polasek, O.; Gornik, O.; Rudan, I.; Campbell, H.; Hayward, C.; Wright, A.; Kolcic, I.; O’Donoghue, N.; Bones, J.; et al. Variability, heritability and environmental determinants of human plasma N-glycome. J. Proteome Res. 2009, 8, 694–701. [Google Scholar] [CrossRef]
- Krištić, J.; Vučković, F.; Menni, C.; Klarić, L.; Keser, T.; Beceheli, I.; Pučić-Baković, M.; Novokmet, M.; Mangino, M.; Thaqi, K.; et al. Glycans are a novel biomarker of chronological and biological ages. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 779–789. [Google Scholar] [CrossRef]
- Bućan, I.; Škunca Herman, J.; Jerončić Tomić, I.; Gornik, O.; Vatavuk, Z.; Bućan, K.; Lauc, G.; Polašek, O. N-Glycosylation Patterns across the Age-Related Macular Degeneration Spectrum. Molecules 2022, 27, 1774. [Google Scholar] [CrossRef]
- Lauc, G. Precision medicine that transcends genomics: Glycans as integrators of genes and environment. Biochim. Biophys. Acta 2016, 1860, 1571–1573. [Google Scholar] [CrossRef] [PubMed]
- Theodoratou, E.; Thaçi, K.; Agakov, F.; Timofeeva, M.N.; Štambuk, J.; Pučić-Baković, M.; Vučković, F.; Orchard, P.; Agakova, A.; Din, F.V.; et al. Glycosylation of plasma IgG in colorectal cancer prognosis. Sci. Rep. 2016, 6, 28098. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Lan, Y.; Lu, A.; Ma, X.; Zhang, L. Glycan-based biomarkers for diagnosis of cancers and other diseases: Past, present, and future. Prog. Mol. Biol. Transl. Sci. 2019, 162, 1–24. [Google Scholar] [CrossRef]
- Vergroesen, R.D.; Slot, L.M.; van Schaik, B.D.C.; Koning, M.T.; Rispens, T.; van Kampen, A.H.C.; Toes, R.E.M.; Scherer, H.U. N-Glycosylation Site Analysis of Citrullinated Antigen-Specific B-Cell Receptors Indicates Alternative Selection Pathways During Autoreactive B-Cell Development. Front. Immunol. 2019, 10, 2092. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.D.; de Graaf, E.L.; Sonneveld, M.E.; Plomp, H.R.; Nouta, J.; Hoepel, W.; Chen, H.J.; Linty, F.; Visser, R.; Brinkhaus, M.; et al. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science 2021, 371, eabc8378. [Google Scholar] [CrossRef]
- Lauc, G.; Krištić, J.; Zoldoš, V. Glycans—the third revolution in evolution. Front. Genet. 2014, 5, 145. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.M.; Bradley, T.D. Pathogenesis of obstructive sleep apnea. J. Appl. Physiol. 2005, 99, 2440–2450. [Google Scholar] [CrossRef]
- Gunta, S.P.; Jakulla, R.S.; Ubaid, A.; Mohamed, K.; Bhat, A.; López-Candales, A.; Norgard, N. Obstructive Sleep Apnea and Cardiovascular Diseases: Sad Realities and Untold Truths regarding Care of Patients in 2022. Cardiovasc. Ther. 2022, 2022, 6006127. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Kryger, M.H.; Zorick, F.J.; Conway, W.; Roth, T. Mortality and apnea index in obstructive sleep apnea. Experience in 385 male patients. Chest 1988, 94, 9–14. [Google Scholar] [CrossRef]
- Stazić, P.; Roguljić, M.; Đogaš, Z.; Lušić Kalcina, L.; Pavlinac Dodig, I.; Valić, M.; Božić, D.; Pecotić, R. Periodontitis severity in obstructive sleep apnea patients. Clin. Oral Investig. 2022, 26, 407–415. [Google Scholar] [CrossRef]
- Lusic Kalcina, L.; Pavlinac Dodig, I.; Pecotic, R.; Valic, M.; Dogas, Z. Psychomotor Performance in Patients with Obstructive Sleep Apnea Syndrome. Nat. Sci. Sleep 2020, 12, 183–195. [Google Scholar] [CrossRef]
- Pecotic, R.; Dodig, I.P.; Valic, M.; Galic, T.; Kalcina, L.L.; Ivkovic, N.; Dogas, Z. Effects of CPAP therapy on cognitive and psychomotor performances in patients with severe obstructive sleep apnea: A prospective 1-year study. Sleep Breath. 2019, 23, 41–48. [Google Scholar] [CrossRef]
- Marshall, N.S.; Wong, K.K.; Cullen, S.R.; Knuiman, M.W.; Grunstein, R.R. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2014, 10, 355–362. [Google Scholar] [CrossRef]
- Young, T.; Finn, L.; Peppard, P.E.; Szklo-Coxe, M.; Austin, D.; Nieto, F.J.; Stubbs, R.; Hla, K.M. Sleep disordered breathing and mortality: Eighteen-year follow-up of the Wisconsin sleep cohort. Sleep 2008, 31, 1071–1078. [Google Scholar] [PubMed]
- Börgel, J.; Sanner, B.M.; Bittlinsky, A.; Keskin, F.; Bartels, N.K.; Buechner, N.; Huesing, A.; Rump, L.C.; Mügge, A. Obstructive sleep apnoea and its therapy influence high-density lipoprotein cholesterol serum levels. Eur. Respir. J. 2006, 27, 121–127. [Google Scholar] [CrossRef]
- Kono, M.; Tatsumi, K.; Saibara, T.; Nakamura, A.; Tanabe, N.; Takiguchi, Y.; Kuriyama, T. Obstructive sleep apnea syndrome is associated with some components of metabolic syndrome. Chest 2007, 131, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Mattei, A.; Tabbia, G.; Baldi, S. Diagnosis of sleep apnea. Minerva Med. 2004, 95, 213–231. [Google Scholar]
- Qaseem, A.; Dallas, P.; Owens, D.K.; Starkey, M.; Holty, J.E.; Shekelle, P. Diagnosis of obstructive sleep apnea in adults: A clinical practice guideline from theAmerican College of Physicians. Ann. Intern. Med. 2014, 161, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Maeder, M.T.; Mueller, C.; Schoch, O.D.; Ammann, P.; Rickli, H. Biomarkers of cardiovascular stress in obstructive sleep apnea. Clin. Chim. Acta. 2016, 460, 152–163. [Google Scholar] [CrossRef]
- De Luca, G.; Pachêco-Pereira, C.; Aydinoz, S.; Major, P.W.; Flores-Mir, C.; Gozal, D. Biomarkers associated with obstructive sleep apnea: A scoping review. Sleep Med. Rev. 2015, 23, 28–45. [Google Scholar] [CrossRef]
- Punjabi, N.M.; Beamer, B.A. C-reactive protein is associated with sleep disordered breathing independent of adiposity. Sleep 2007, 30, 29–34. [Google Scholar] [CrossRef]
- Jurado-Gamez, B.; Gomez-Chaparro, J.L.; Muñoz-Calero, M.; Serna Sanz, A.; Muñoz-Cabrera, L.; Lopez-Barea, J.; Gozal, D. Serum proteomic changes in adults with obstructive sleep apnoea. J. Sleep Res. 2012, 21, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, A.; Ayappa, I.; Ayas, N.; Collop, N.; Kirsch, D.; McArdle, N.; Mehra, R.; Pack, A.I.; Punjabi, N.; White, D.P.; et al. Metrics of sleep apnea severity: Beyond the apnea-hypopnea index. Sleep 2021, 44, zsab030. [Google Scholar] [CrossRef] [PubMed]
- Papanas, N.; Steiropoulos, P.; Nena, E.; Tzouvelekis, A.; Maltezos, E.; Trakada, G.; Bouros, D. HbA1c is associated with severity of obstructive sleep apnea hypopnea syndrome in nondiabetic men. Vasc. Health Risk Manag. 2009, 5, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Winnicki, M.; Shamsuzzaman, A.; Lanfranchi, P.; Accurso, V.; Olson, E.; Davison, D.; Somers, V.K. Erythropoietin and obstructive sleep apnea. Am. J. Hypertens. 2004, 17, 783–786. [Google Scholar] [CrossRef]
- Montesi, S.B.; Bajwa, E.K.; Malhotra, A. Biomarkers of sleep apnea. Chest 2012, 142, 239–245. [Google Scholar] [CrossRef]
- Baril, A.A.; Carrier, J.; Lafrenière, A.; Warby, S.; Poirier, J.; Osorio, R.S.; Ayas, N.; Dubé, M.P.; Petit, D.; Gosselin, N. Biomarkers of dementia in obstructive sleep apnea. Sleep Med. Rev. 2018, 42, 139–148. [Google Scholar] [CrossRef]
- Kanbay, A.; Ceylan, E.; Köseoğlu, H.; Çalışkan, M.; Takir, M.; Tulu, S.; Telci Çaklılı, O.; Köstek, O.; Erek, A.; Afsar, B. Endocan: A novel predictor of endothelial dysfunction in obstructive sleep apnea syndrome. Clin. Respir. J. 2018, 12, 84–90. [Google Scholar] [CrossRef]
- Selcuk, O.T.; Eyigor, M.; Renda, L.; Osma, U.; Eyigor, H.; Selcuk, N.T.; Yılmaz, M.D.; Demirkıran, C.; Unlu, H.; Gültekin, M. Can we use serum copeptin levels as a biomarker in obstructive sleep apnea syndrome? J. Cranio-Maxillo-Facial Surg. 2015, 43, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Fleming, W.E.; Holty, J.C.; Bogan, R.K.; Hwang, D.; Ferouz-Colborn, A.S.; Budhiraja, R.; Redline, S.; Mensah-Osman, E.; Osman, N.I.; Li, Q.; et al. Use of blood biomarkers to screen for obstructive sleep apnea. Nat. Sci. Sleep 2018, 10, 159–167. [Google Scholar] [CrossRef]
- Fleming, W.E.; Ferouz-Colborn, A.; Samoszuk, M.K.; Azad, A.; Lu, J.; Riley, J.S.; Cruz, A.B.; Podolak, S.; Clark, D.J.; Bray, K.R.; et al. Blood biomarkers of endocrine, immune, inflammatory, and metabolic systems in obstructive sleep apnea. Clin. Biochem. 2016, 49, 854–861. [Google Scholar] [CrossRef] [PubMed]
- AASM. International Classification of Sleep Disorders—Third Edition (ICSD-3). Available online: https://learn.aasm.org/Listing/a1341000002XmRvAAK (accessed on 25 March 2023).
- Pavić, T.; Dilber, D.; Kifer, D.; Selak, N.; Keser, T.; Ljubičić, Đ.; Vukić Dugac, A.; Lauc, G.; Rumora, L.; Gornik, O. N-glycosylation patterns of plasma proteins and immunoglobulin G in chronic obstructive pulmonary disease. J. Transl. Med. 2018, 16, 323. [Google Scholar] [CrossRef]
- Wittenbecher, C.; Štambuk, T.; Kuxhaus, O.; Rudman, N.; Vučković, F.; Štambuk, J.; Schiborn, C.; Rahelić, D.; Dietrich, S.; Gornik, O.; et al. Plasma N-Glycans as Emerging Biomarkers of Cardiometabolic Risk: A Prospective Investigation in the EPIC-Potsdam Cohort Study. Diabetes Care 2020, 43, 661–668. [Google Scholar] [CrossRef]
- Akmačić, I.T.; Ugrina, I.; Štambuk, J.; Gudelj, I.; Vučković, F.; Lauc, G.; Pučić-Baković, M. High-throughput glycomics: Optimization of sample preparation. Biochemistry 2015, 80, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Agakova, A.; Vučković, F.; Klarić, L.; Lauc, G.; Agakov, F. Automated Integration of a UPLC Glycomic Profile. Methods Mol. Biol. 2017, 1503, 217–233. [Google Scholar] [CrossRef]
- Hanić, M.; Lauc, G.; Trbojević-Akmačić, I. N-Glycan Analysis by Ultra-Performance Liquid Chromatography and Capillary Gel Electrophoresis with Fluorescent Labeling. Curr. Protoc. Protein Sci. 2019, 97, e95. [Google Scholar] [CrossRef]
- Ruhaak, L.R.; Hennig, R.; Huhn, C.; Borowiak, M.; Dolhain, R.J.; Deelder, A.M.; Rapp, E.; Wuhrer, M. Optimized workflow for preparation of APTS-labeled N-glycans allowing high-throughput analysis of human plasma glycomes using 48-channel multiplexed CGE-LIF. J. Proteome Res. 2010, 9, 6655–6664. [Google Scholar] [CrossRef]
- Colombo, M.; Asadi Shehni, A.; Thoma, I.; McGurnaghan, S.J.; Blackbourn, L.A.K.; Wilkinson, H.; Collier, A.; Patrick, A.W.; Petrie, J.R.; McKeigue, P.M.; et al. Quantitative levels of serum N-glycans in type 1 diabetes and their association with kidney disease. Glycobiology 2021, 31, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Adua, E.; Afrifa-Yamoah, E.; Peprah-Yamoah, E.; Anto, E.O.; Acheampong, E.; Awuah-Mensah, K.A.; Wang, W. Multi-block data integration analysis for identifying and validating targeted N-glycans as biomarkers for type II diabetes mellitus. Sci. Rep. 2022, 12, 10974. [Google Scholar] [CrossRef] [PubMed]
- Cvetko, A.; Mangino, M.; Tijardović, M.; Kifer, D.; Falchi, M.; Keser, T.; Perola, M.; Spector, T.D.; Lauc, G.; Menni, C.; et al. Plasma N-glycome shows continuous deterioration as the diagnosis of insulin resistance approaches. BMJ Open Diabetes Res. Care 2021, 9, e002263. [Google Scholar] [CrossRef]
- Testa, R.; Vanhooren, V.; Bonfigli, A.R.; Boemi, M.; Olivieri, F.; Ceriello, A.; Genovese, S.; Spazzafumo, L.; Borelli, V.; Bacalini, M.G.; et al. N-glycomic changes in serum proteins in type 2 diabetes mellitus correlate with complications and with metabolic syndrome parameters. PLoS ONE 2015, 10, e0119983. [Google Scholar] [CrossRef]
- Verhelst, X.; Dias, A.M.; Colombel, J.F.; Vermeire, S.; Van Vlierberghe, H.; Callewaert, N.; Pinho, S.S. Protein Glycosylation as a Diagnostic and Prognostic Marker of Chronic Inflammatory Gastrointestinal and Liver Diseases. Gastroenterology 2020, 158, 95–110. [Google Scholar] [CrossRef]
- Suhre, K.; Trbojević-Akmačić, I.; Ugrina, I.; Mook-Kanamori, D.O.; Spector, T.; Graumann, J.; Lauc, G.; Falchi, M. Fine-Mapping of the Human Blood Plasma N-Glycome onto Its Proteome. Metabolites 2019, 9, 122. [Google Scholar] [CrossRef] [PubMed]
- Haakensen, V.D.; Steinfeld, I.; Saldova, R.; Shehni, A.A.; Kifer, I.; Naume, B.; Rudd, P.M.; Børresen-Dale, A.L.; Yakhini, Z. Serum N-glycan analysis in breast cancer patients—Relation to tumour biology and clinical outcome. Mol. Oncol. 2016, 10, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, A.; Gornik, O.; Polasek, O.; Pucic, M.; Redzic, I.; Novokmet, M.; Rudd, P.M.; Wright, A.F.; Campbell, H.; Rudan, I.; et al. Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans. Glycobiology 2010, 20, 959–969. [Google Scholar] [CrossRef]
- Lu, J.P.; Knežević, A.; Wang, Y.X.; Rudan, I.; Campbell, H.; Zou, Z.K.; Lan, J.; Lai, Q.X.; Wu, J.J.; He, Y.; et al. Screening novel biomarkers for metabolic syndrome by profiling human plasma N-glycans in Chinese Han and Croatian populations. J. Proteome Res. 2011, 10, 4959–4969. [Google Scholar] [CrossRef] [PubMed]
- Yaggi, H.K.; Concato, J.; Kernan, W.N.; Lichtman, J.H.; Brass, L.M.; Mohsenin, V. Obstructive sleep apnea as a risk factor for stroke and death. N. Engl. J. Med. 2005, 353, 2034–2041. [Google Scholar] [CrossRef] [PubMed]
- Rich, J.; Raviv, A.; Raviv, N.; Brietzke, S.E. All-cause mortality and obstructive sleep apnea severity revisited. Otolaryngol. Head Neck Surg. 2012, 147, 583–587. [Google Scholar] [CrossRef]
- Marrone, O.; Lo Bue, A.; Salvaggio, A.; Dardanoni, G.; Insalaco, G. Comorbidities and survival in obstructive sleep apnoea beyond the age of 50. Eur. J. Clin. Investig. 2013, 43, 27–33. [Google Scholar] [CrossRef]
- Veerman, J.L. Unexpected survival of people with sleep apnoea: Parallels in obesity research. J. Sleep Res. 2010, 19, 255. [Google Scholar] [CrossRef]
Variable | Cases (n = 70) | Controls (n = 23) | p |
---|---|---|---|
Sex; n (%) | |||
Men | 59 (84.3) | 20 (87.0) | 0.756 |
Women | 11 (15.7) | 3 (13.0) | |
Age (years); mean ± SD | 57.2 ± 12.4 | 48.7 ± 13.7 | 0.006 |
AHI; mean ± SD | 46.39 ± 20.10 | 2.71 ± 1.20 | <0.001 |
BMI; mean ± SD | 32.40 ± 6.00 | 25.70 ± 3.18 | <0.001 |
Medical history | |||
Hypertension; n (%) | 38 (57.6) | 5 (22.7) | 0.005 |
Type 2 diabetes mellitus; n (%) | 10 (15.4) | 2 (9.1) | 0.459 |
Depression; n (%) | 2 (3.1) | 0 (0) | 0.405 |
Asthma; n (%) | 4 (6.2) | 0 (0) | 0.234 |
GERD; n (%) | 14 (23.7) | 2 (9.5) | 0.162 |
Plasma Glycan Peaks; Mean ± SD | Cases (n = 70) | Controls (n = 23) | p |
---|---|---|---|
GP1 | 5.67 ± 2.06 | 4.64 ± 1.14 | 0.003 |
GP2 | 2.20 ± 0.56 | 2.02 ± 0.29 | 0.049 |
GP3 | 0.09 ± 0.03 | 0.09 ± 0.02 | 0.412 |
GP4 | 3.75 ± 0.80 | 3.92 ± 0.74 | 0.387 |
GP5 | 2.21 ± 0.57 | 2.30 ± 0.51 | 0.522 |
GP6 | 1.34 ± 0.48 | 1.31 ± 0.27 | 0.781 |
GP7 | 1.17 ± 0.51 | 1.15 ± 0.23 | 0.896 |
GP8 | 1.44 ± 0.20 | 1.54 ± 0.21 | 0.036 |
GP9 | 0.17 ± 0.53 | 0.12 ± 0.02 | 0.613 |
GP10 | 3.27 ± 0.89 | 3.90 ± 0.69 | 0.002 |
GP11 | 0.85 ± 0.53 | 0.89 ± 0.21 | 0.699 |
GP12 | 0.91 ± 0.18 | 0.97 ± 0.17 | 0.155 |
GP13 | 1.13 ± 1.55 | 0.90 ± 0.18 | 0.494 |
GP14 | 13.01 ± 1.9 | 13.47 ± 1.12 | 0.276 |
GP15 | 0.49 ± 0.60 | 0.42 ± 0.07 | 0.566 |
GP16 | 4.90 ± 1.16 | 5.15 ± 0.59 | 0.320 |
GP17 | 1.91 ± 1.25 | 1.97 ± 0.74 | 0.838 |
GP18 | 2.82 ± 0.49 | 3.37 ± 0.38 | <0.001 |
GP19 | 1.10 ± 0.14 | 1.08 ± 0.10 | 0.528 |
GP20 | 26.46 ± 2.95 | 25.94 ± 1.50 | 0.268 |
GP21 | 0.46 ± 0.42 | 0.42 ± 0.04 | 0.598 |
GP22 | 3.89 ± 0.85 | 3.75 ± 0.64 | 0.449 |
GP23 | 1.98 ± 0.71 | 1.80 ± 0.44 | 0.263 |
GP24 | 1.55 ± 0.42 | 1.80 ± 0.53 | 0.025 |
GP25 | 0.29 ± 0.29 | 0.27 ± 0.03 | 0.736 |
GP26 | 1.83 ± 0.38 | 1.74 ± 0.38 | 0.318 |
GP27 | 1.07 ± 0.31 | 1.12 ± 0.41 | 0.640 |
GP28 | 0.58 ± 0.17 | 0.66 ± 0.18 | 0.047 |
GP29 | 0.27 ± 0.73 | 0.17 ± 0.04 | 0.525 |
GP30 | 4.15 ± 1.29 | 4.44 ± 1.17 | 0.342 |
GP31 | 0.39 ± 0.23 | 0.36 ± 0.11 | 0.594 |
GP32 | 1.70 ± 0.44 | 1.33 ± 0.22 | <0.001 |
GP33 | 3.25 ± 0.95 | 3.29 ± 1.09 | 0.881 |
GP34 | 0.36 ± 0.08 | 0.33 ± 0.06 | 0.069 |
GP35 | 0.42 ± 0.12 | 0.42 ± 0.15 | 0.826 |
GP36 | 0.57 ± 0.10 | 0.58 ± 0.08 | 0.636 |
GP37 | 0.42 ± 0.14 | 0.46 ± 0.09 | 0.208 |
GP38 | 0.96 ± 0.19 | 0.98 ± 0.13 | 0.609 |
GP39 | 0.95 ± 0.31 | 0.96 ± 0.33 | 0.984 |
IgG Glycan Peaks; Mean ± SD | Cases (n = 70) | Controls (n = 23) | p |
---|---|---|---|
P1 | 0.30 ± 0.08 | 0.33 ± 0.20 | 0.461 |
P2 | 0.25 ± 0.05 | 0.26 ± 0.09 | 0.569 |
P3 | 1.49 ± 0.37 | 1.40 ± 0.39 | 0.323 |
P4 | 1.88 ± 0.34 | 1.78 ± 0.36 | 0.241 |
P5 | 0.16 ± 0.02 | 0.15 ± 0.03 | 0.182 |
P6 | 0.05 ± 0.02 | 0.06 ± 0.03 | 0.170 |
P7 | 0.24 ± 0.03 | 0.26 ± 0.05 | 0.167 |
P8 | 2.22 ± 0.33 | 2.33 ± 0.42 | 0.284 |
P9 | 0.32 ± 0.04 | 0.38 ± 0.09 | <0.001 |
P10 | 0.65 ± 0.15 | 0.69 ± 0.15 | 0.272 |
P11 | 0.29 ± 0.05 | 0.27 ± 0.06 | 0.367 |
P12 | 8.54 ± 1.65 | 7.92 ± 1.79 | 0.149 |
P13 | 2.60 ± 0.55 | 2.37 ± 0.47 | 0.054 |
P14 | 0.55 ± 0.11 | 0.63 ± 0.16 | 0.034 |
P15 | 18.65 ± 2.8 | 25.38 ± 5.84 | <0.001 |
P16 | 0.62 ± 0.26 | 0.64 ± 0.34 | 0.831 |
P17 | 0.43 ± 0.14 | 0.43 ± 0.16 | 0.952 |
P18 | 3.99 ± 1.07 | 4.83 ± 1.60 | 0.021 |
P19 | 0.39 ± 0.09 | 0.43 ± 0.12 | 0.089 |
P20 | 0.45 ± 0.08 | 0.45 ± 0.08 | 0.742 |
P21 | 18.46 ± 1.47 | 17.66 ± 1.73 | 0.051 |
P22 | 12.0 ± 1.24 | 11.36 ± 1.49 | 0.066 |
P23 | 6.01 ± 1.11 | 5.82 ± 1.02 | 0.452 |
P24 | 0.76 ± 0.13 | 0.78 ± 0.11 | 0.453 |
P25 | 0.18 ± 0.04 | 0.17 ± 0.04 | 0.098 |
P26 | 16.84 ± 2.51 | 11.71 ± 3.46 | <0.001 |
P27 | 1.69 ± 0.27 | 1.49 ± 0.34 | 0.013 |
Full Model (n = 88) | BMI under 25 kg/m2 (n = 13) | BMI over 25 kg/m2 (n = 75) | |||||||
---|---|---|---|---|---|---|---|---|---|
Beta | t | p | Beta | t | p | Beta | t | p | |
Gender | 0.07 | 0.67 | 0.503 | 3.05 | 0.69 | 0.614 | 0.04 | 0.37 | 0.711 |
Age | 0.15 | 1.62 | 0.109 | 0.42 | 0.31 | 0.809 | 0.14 | 1.20 | 0.236 |
BMI | 0.44 | 3.68 | <0.001 | * | * | * | * | * | * |
Hypertension | −0.19 | −2.02 | 0.047 | 1.11 | 0.47 | 0.719 | −0.15 | −1.30 | 0.200 |
GP1 | −0.05 | −0.41 | 0.680 | 1.52 | 0.79 | 0.574 | 0.29 | 2.00 | 0.050 |
GP2 | 0.15 | 1.17 | 0.246 | −2.28 | −0.71 | 0.607 | −0.08 | −0.53 | 0.595 |
GP8 | 0.00 | 0.04 | 0.965 | 3.97 | 0.57 | 0.669 | 0.15 | 1.23 | 0.225 |
GP10 | 0.06 | 0.56 | 0.580 | 0.69 | 1.38 | 0.399 | 0.08 | 0.59 | 0.556 |
GP18 | −0.10 | −0.74 | 0.461 | −5.09 | −0.72 | 0.601 | 0.01 | 0.04 | 0.967 |
GP24 | −0.60 | −2.21 | 0.030 | −5.01 | −0.59 | 0.662 | −0.83 | −2.34 | 0.022 |
GP28 | 0.48 | 2.09 | 0.040 | 4.95 | 0.64 | 0.638 | 0.55 | 1.92 | 0.060 |
GP32 | 0.50 | 3.28 | 0.002 | 1.64 | 0.55 | 0.682 | 0.79 | 3.85 | <0.001 |
Full Model (n = 88) | BMI under 25 kg/m2 (n = 13) | BMI over 25 kg/m2 (n = 75) | |||||||
---|---|---|---|---|---|---|---|---|---|
Beta | t | p | Beta | t | p | Beta | t | p | |
Gender | −0.10 | −1.07 | 0.286 | 0.16 | 0.51 | 0.644 | −0.17 | −1.40 | 0.166 |
Age | 0.03 | 0.25 | 0.802 | 0.44 | 1.24 | 0.303 | 0.03 | 0.18 | 0.858 |
BMI | 0.53 | 4.94 | <0.001 | * | * | * | * | * | * |
Hypertension | −0.03 | −0.28 | 0.782 | −0.25 | −1.11 | 0.350 | 0.09 | 0.77 | 0.445 |
P9 | 0.12 | 1.01 | 0.316 | 0.96 | 1.97 | 0.143 | 0.19 | 1.19 | 0.239 |
P14 | −0.08 | −0.77 | 0.443 | −0.90 | −3.11 | 0.053 | −0.08 | −0.66 | 0.512 |
P15 | −0.18 | −0.64 | 0.527 | −1.84 | −0.97 | 0.403 | 0.42 | 1.33 | 0.187 |
P18 | −0.02 | −0.16 | 0.877 | −0.36 | −0.81 | 0.477 | −0.21 | −1.06 | 0.295 |
P26 | −0.48 | −2.37 | 0.020 | −1.93 | −1.69 | 0.189 | −0.16 | −0.67 | 0.506 |
P27 | −0.02 | −0.18 | 0.862 | −1.28 | −1.32 | 0.280 | 0.05 | 0.28 | 0.783 |
Variable | Cases (n = 70) | Controls (n = 23) |
---|---|---|
Chronological age (years); mean ± SD | 57.2 ± 12.4 | 48.7 ± 13.7 |
Glycan age (years estimation); mean ± SD | 66.5 ± 16.5 | 48.7 ± 9.6 * |
Difference (years); mean ± SD | 9.2 ± 17.7 (median 6.9, interquartile range 27.6) | * |
p (chronological vs. biological age; Wilcoxon signed rank test) | p < 0.001 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plećaš, D.; Mraz, N.; Patanaude, A.M.; Pribić, T.; Pavlinac Dodig, I.; Pecotić, R.; Lauc, G.; Polašek, O.; Đogaš, Z. Not-So-Sweet Dreams: Plasma and IgG N-Glycome in the Severe Form of the Obstructive Sleep Apnea. Biomolecules 2023, 13, 880. https://doi.org/10.3390/biom13060880
Plećaš D, Mraz N, Patanaude AM, Pribić T, Pavlinac Dodig I, Pecotić R, Lauc G, Polašek O, Đogaš Z. Not-So-Sweet Dreams: Plasma and IgG N-Glycome in the Severe Form of the Obstructive Sleep Apnea. Biomolecules. 2023; 13(6):880. https://doi.org/10.3390/biom13060880
Chicago/Turabian StylePlećaš, Doris, Nikol Mraz, Anne Marie Patanaude, Tea Pribić, Ivana Pavlinac Dodig, Renata Pecotić, Gordan Lauc, Ozren Polašek, and Zoran Đogaš. 2023. "Not-So-Sweet Dreams: Plasma and IgG N-Glycome in the Severe Form of the Obstructive Sleep Apnea" Biomolecules 13, no. 6: 880. https://doi.org/10.3390/biom13060880