Xanthine–Dopamine Hybrid Molecules as Multitarget Drugs with Potential for the Treatment of Neurodegenerative Diseases
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. Monoamine Oxidase Inhibition
2.2.2. Adenosine Receptors
2.2.3. Affinity at Dopamine Receptors
2.2.4. Phosphodiesterase Inhibition
2.3. Determination of Antioxidant Activity
2.4. Neuroprotective Effects of Hybrid Compounds in a Cellular Model
3. Conclusions
4. Experimental Protocols
4.1. Chemistry
4.1.1. Materials and Methods
4.1.2. General Procedure for the Synthesis of 1,3-Dialkyl-8-(3′,4′-dimethoxyphenylethyl)-amino-7-alkyl- (or phenylalkyl- or phenoxyethyl-) Xanthines
4.1.3. General Procedure for the Synthesis of 1,3-Dialkyl-8-3′,4′-dihydroxyphenylaminoethyl-7-alkyl- (or phenylalkyl- or phenoxyalkyl-) Xanthines (11a–l, 12, 13)
8-((3,4-Dihydroxyphenethyl)amino)-1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione (11a)
8-((3,4-Dihydroxyphenethyl)amino)-7-ethyl-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (11b)
8-((3,4-Dihydroxyphenethyl)amino)-1,3-dimethyl-7-propyl-3,7-dihydro-1H-purine-2,6-dione (11c)
8-((3,4-Dihydroxyphenethyl)amino)-7-isopropyl-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (11d)
7-Butyl-8-((3,4-dihydroxyphenethyl)amino)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (11e)
8-((3,4-Dihydroxyphenethyl)amino)-7-isobutyl-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (11f)
7-(Sec-butyl)-8-((3,4-dihydroxyphenethyl)amino)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (11g)
8-((3,4-Dihydroxyphenethyl)amino)-1,3-dimethyl-7-pentyl-3,7-dihydro-1H-purine-2,6-dione (11h)
8-((3,4-Dihydroxyphenethyl)amino)-7-hexyl-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (11i)
7-Benzyl-8-((3,4-dihydroxyphenethyl)amino)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (11j)
8-((3,4-Dihydroxyphenethyl)amino)-1,3-dimethyl-7-phenethyl-3,7-dihydro-1H-purine-2,6-dione (11k)
8-((3,4-Dihydroxyphenethyl)amino)-1,3-dimethyl-7-(2-phenoxyethyl)-3,7-dihydro-1H-purine-2,6-dione (11l)
8-((3,4-Dihydroxyphenethyl)amino)-1,3,7-tripropyl-3,7-dihydro-1H-purine-2,6-dione (12)
1,3-Dibutyl-8-((3,4-dihydroxyphenethyl)amino)-7-propyl-3,7-dihydro-1H-purine-2,6-dione (13)
4.1.4. General Procedure for the Synthesis of N-9,10-3′,4′-dihydroxyphenylethyl- Substituted 1,3-dialkyl-6,7,8,9-tetrahydropyrimido-/-6,7,8,9-tetrahydro(10H)-1,3-diazepino [2,1-f]purine-2,4(1H,3H)-diones (20a–b, 21, 22)
9-(3,4-Dihydroxyphenethyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[2,1-f]purine-2,4(1H,3H)-dione (20a)
10-(3,4-Dihydroxyphenethyl)-1,3-dimethyl-7,8,9,10-tetrahydro-1H-[1,3]diazepino[2,1-f]purine-2,4(3H,6H)-dione (20b)
9-(3,4-Dihydroxyphenethyl)-1,3-dipropyl-6,7,8,9-tetrahydropyrimido[2,1-f]purine-2,4(1H,3H)-dione (21)
1,3-Dibutyl-9-(3,4-dihydroxyphenethyl)-6,7,8,9-tetrahydropyrimido[2,1-f]purine-2,4(1H,3H)-dione (22)
4.2. Biological Experiments
4.2.1. Monoamine Oxidase Assays
4.2.2. Phosphodiesterase Inhibition
4.2.3. Radioligand Binding Assays at Adenosine Receptors
4.2.4. Radioligand Binding Assays at Dopamine Receptors
- Dopamine D1 receptors
- Dopamine D2 receptors
4.2.5. cAMP Accumulation Assay in Cells Expressing hD2R
4.2.6. Determination of the Antioxidant Activity
4.2.7. Neuroprotection Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khanam, H.; Ali, A.; Asif, M.; Shamsuzzaman. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur. J. Med. Chem. 2016, 124, 1121–1141. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.H.; Karri, V.; Tay, N.W.R.; Chang, K.H.; Ah, H.Y.; Ng, P.Q.; Ho, H.S.; Keh, H.W.; Candasamy, M. Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomed. Pharmacother. 2019, 111, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, R.R.; Majekova, M.; Medina, M.; Valoti, M. Key targets for multi-target ligands designed to combat neurodegeneration. Front. Neurosci. 2016, 10, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2017, 9, a028035. [Google Scholar] [CrossRef] [Green Version]
- Lou, G.; Palikaras, K.; Lautrup, S.; Scheibye-Knudsen, M.; Tavernarakis, N.; Fang, E.F. Mitophagy and neuroprotection. Trends Mol. Med. 2019, 26, 8–20. [Google Scholar] [CrossRef]
- Ciccocioppo, F.; Bologna, G.; Ercolino, E.; Pierdomenico, L.; Simeone, P.; Lanuti, P.; Pieragostino, D.; del Boccio, P.; Marchisio, M.; Miscia, M. Neurodegenerative diseases as proteinopathies-driven immune disorders. Neural Regen. Res. 2020, 15, 850–856. [Google Scholar]
- Guzman-Martinez, L.; Maccioni, R.B.; Andrade, V.; Navarrete, L.P.; Pastor, M.G.; Ramos-Escobar, N. Neuroinflammation as a common feature of neurodegenerative disorders. Front. Pharmacol. 2019, 10, 1008. [Google Scholar] [CrossRef] [Green Version]
- Katsnelson, A.; De Strooper, B.; Zoghbi, H.Y. Neurodegeneration: From cellular concepts to clinical applications. Sci. Transl. Med. 2016, 8, 364ps18. [Google Scholar] [CrossRef]
- Zindo, F.T.; Barber, Q.R.; Joubert, J.; Bergh, J.J.; Petzer, J.P.; Malan, S.F. Polycyclic propargylamine and acetylene derivatives as multifunctional neuroprotective agents. Eur. J. Med. Chem. 2014, 80, 122–134. [Google Scholar] [CrossRef]
- Raevsky, O.A.; Mukhametov, A.; Grigorev, V.Y.; Ustyugov, A.; Tsay, S.-C.; Jih-Ru Hwu, R.; Yarla, N.S.; Tarasov, V.T.; Aliev, G.; Bachuri, S.O. Applications of multi-target computer-aided methodologies in molecular design of CNS drugs. Curr. Med. Chem. 2018, 25, 5293–5314. [Google Scholar] [CrossRef]
- Kakkar, A.K.; Dahiya, N. Management of Parkinson’s disease: Current and future pharmacotherapy. Eur. J. Pharmacol. 2015, 750, 74–81. [Google Scholar] [CrossRef]
- Anand, R.; Gill, K.D.; Mahdi, A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology 2014, 76 Part A, 27–50. [Google Scholar] [CrossRef]
- Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 2005, 48, 6523–6543. [Google Scholar] [CrossRef] [PubMed]
- Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today 2004, 9, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Pedrosa, M.; Duarte da Cruz, R.; Oliveira Viana, J.; de Moura, R.; Ishiki, H.; Barbosa Filho, J.; Diniz, M.F.F.M.; Scotti, M.T.; Scotti, L.; Bezerra Mendonca, F.J. Hybrid compounds as direct multitarget ligands: A review. Curr. Top. Med. Chem. 2016, 17, 1044–1079. [Google Scholar] [CrossRef] [PubMed]
- Palakkathondi, A.; Oh, J.M.; Dev, S.; Rangarajan, T.M.; Kaipakasseri, S.; Kavully, F.S.; Gambacorta, N.; Nicolotti, O.; Kim, H.; Mathew, B. (Hetero-)(arylidene)arylhydrazides as multitarget-directed monoamine oxidase inhibitors. ACS Comb. Sci. 2020, 22, 592–599. [Google Scholar] [CrossRef]
- Iraji, A.; Khoshneviszadeh, M.M.; Firuzi, O.; Khoshneviszadeh, M.M.; Edraki, N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg. Chem. 2020, 97, 103649. [Google Scholar] [CrossRef]
- John, P.M. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: Focus on modulation of CNS monoamine neurotransmitter release. Pharmacol. Ther. 2014, 143, 133–152. [Google Scholar]
- Naoi, M.; Maruyama, W.; Shamoto-Nagai, M. Rasagiline and selegiline modulate mitochondrial homeostasis, intervene apoptosis system and mitigate α-synuclein cytotoxicity in disease-modifying therapy for Parkinson’s disease. J. Neural Transm. 2020, 127, 131–147. [Google Scholar] [CrossRef]
- Manzoor, S.; Hoda, N. A comprehensive review of monoamine oxidase inhibitors as anti-Alzheimer’s disease agents: A review. Eur. J. Med. Chem. 2020, 206, 112787. [Google Scholar] [CrossRef]
- Naoi, M.; Maruyama, W.; Shamoto-Nagai, M. Neuroprotective function of rasagiline and selegiline, inhibitors of type B monoamine oxidase, and role of monoamine oxidases in synucleinopathies. Int. J. Mol. Sci. 2022, 23, 11059. [Google Scholar] [CrossRef] [PubMed]
- Affini, A.; Hagenow, S.; Zivkovic, A.; Marco-Contelles, J.; Stark, H. Novel indanone derivatives as MAO B/H3R dual-targeting ligands for treatment of Parkinson’s disease. Eur. J. Med. Chem. 2018, 148, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Valencia, M.; Herrera-Arozamena, C.; Pérez, C.; Viña, D.; Morales-García, J.A.; Pérez-Castillo, A.; Ramos, E.; Romero, A.; Laurini, E.; Pricl, S.; et al. New flavonoid–N,N-dibenzyl(N-methyl)amine hybrids: Multi-target-directed agents for Alzheimer’s disease endowed with neurogenic properties. J. Enzym. Inhib. Med. Chem. 2019, 34, 712–727. [Google Scholar] [CrossRef] [Green Version]
- Koch, P.; Brunschweiger, A.; Namasivayam, V.; Ullrich, S.; Maruca, A.; Lazzaretto, B.; Küppers, P.; Hinz, S.; Hockemeyer, J.; Wiese, M.; et al. Probing substituents in the 1- and 3-position: Tetrahydropyrazino-annelated water-soluble xanthine derivatives as multi-target drugs with potent adenosine receptor antagonistic activity. Front. Chem. 2018, 6, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dungo, R.; Deeks, E.D. Istradefylline: First global approval. Drugs 2013, 73, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, K.A.; Gao, Z.G.; Matricon, P.; Eddy, M.T.; Carlsson, J. Adenosine A2A receptor antagonists: From caffeine to selective non-xanthines. Br. J. Pharmacol. 2022, 179, 3496–3511. [Google Scholar] [CrossRef]
- Tang, M.L.; Wen, Z.H.; Wang, J.H.; Wang, M.L.; Zhang, H.; Liu, X.H.; Jin, L.; Chang, J. Discovery of pyridone-substituted triazolopyrimidine aual A2A/A1 AR antagonists for the treatment of ischemic stroke. ACS Med. Chem. Lett. 2022, 13, 436–442. [Google Scholar] [CrossRef]
- Aires, I.D.; Boia, R.; Rodrigues-Neves, A.C.; Madeira, M.H.; Marques, C.; Ambrósio, A.F.; Santiago, A.R. Blockade of microglial adenosine A2A receptor suppresses elevated pressure-induced inflammation, oxidative stress, and cell death in retinal cells. Glia 2019, 67, 896–914. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.C.; Lemos, C.; Gonçalves, F.Q.; Pliássova, A.V.; Machado, N.J.; Silva, H.B.; Canas, P.M.; Cunha, R.A.; Lopes, J.P.; Agostinho, P. Blockade of adenosine A2A receptors recovers early deficits of memory and plasticity in the triple transgenic mouse model of Alzheimer’s disease. Neurobiol. Dis. 2018, 117, 72–81. [Google Scholar] [CrossRef]
- Mihara, T.; Mihara, K.; Yarimizu, J.; Mitani, Y.; Matsuda, R.; Yamamoto, H.; Aoki, S.; Akahane, A.; Iwashita, A.; Matsuoka, N. Pharmacological characterization of a novel, potent adenosine A1 and A2A receptor dual antagonist, 5-[5-amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in models of Parkinson’s disease and cognition. J. Pharmacol. Exp. Ther. 2007, 323, 708–719. [Google Scholar] [CrossRef] [Green Version]
- Mihara, T.; Iwashita, A.; Matsuoka, N. A novel adenosine A1 and A2A receptor antagonist ASP5854 ameliorates motor impairment in MPTP-treated marmosets: Comparison with existing anti-Parkinson’s disease drugs. Behav. Brain Res. 2008, 194, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Faivre, E.; Coelho, J.E.; Zornbach, K.; Malik, E.; Baqi, Y.; Schneider, M.; Cellai, L.; Carvalho, K.; Sebda, S.; Figeac, M.; et al. Beneficial effect of a selective adenosine A2A receptor antagonist in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Front. Mol. Neurosci. 2018, 11, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, C.; Burnouf, S.; Ferry, B.; Batalha, V.L.; Coelho, J.E.; Baqi, Y.; Malik, E.; Mariciniak, E.; Parrot, S.; Van der Jeugd, A.; et al. A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Mol. Psychiatry 2016, 21, 97–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paiva, I.; Cellai, L.; Meriaux, C.; Poncelet, L.; Nebie, O.; Saliou, J.M.; Lacoste, A.S.; Papegaey, A.; Drobecq, H.; Le Gras, S.; et al. Caffeine intake exerts dual genome-wide effects on hippocampal metabolism and learning-dependent transcription. J. Clin. Investig. 2022, 132, e149371. [Google Scholar] [CrossRef]
- Ribaudo, G.; Ongaro, A.; Zagotto, G.; Memo, M.; Gianoncelli, A. Therapeutic potential of phosphodiesterase inhibitors against neurodegeneration: The perspective of the medicinal chemist. ACS Chem. Neurosci. 2020, 11, 1726–1739. [Google Scholar] [CrossRef] [PubMed]
- Nthenge-Ngumbau, D.N.; Mohanakumar, K.P. Can cyclic nucleotide phosphodiesterase inhibitors be drugs for Parkinson’s disease? Mol. Neurobiol. 2018, 55, 822–834. [Google Scholar] [CrossRef]
- Bhat, A.; Ray, B.; Mahalakshmi, A.M.; Tuladhar, S.; Nandakumar, D.N.; Srinivasan, M.; Essa, M.M.; Chidambaram, S.B.; Guillemin, G.J.; Sakharkar, M.K. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol. Res. 2020, 160, 105078. [Google Scholar] [CrossRef]
- Heckman, P.R.A.; Blokland, A.; Van Goethem, N.P.; Van Hagen, B.T.J.; Prickaerts, J. The mediating role of phosphodiesterase type 4 in the dopaminergic modulation of motor impulsivity. Behav. Brain Res. 2018, 350, 16–22. [Google Scholar] [CrossRef]
- Zagórska, A.; Partyka, A.; Bucki, A.; Gawalska, A.; Czopek, A.; Pawłowski, M. Phosphodiesterase 10 inhibitors: Novel perspectives for psychiatric and neurodegenerative drug discovery. Curr. Med. Chem. 2018, 25, 3455–3481. [Google Scholar] [CrossRef]
- Geerts, H.; Spiros, A.; Roberts, P. Phosphodiesterase 10 inhibitors in clinical development for CNS disorders. Expert Rev. Neurother. 2017, 17, 553–560. [Google Scholar] [CrossRef]
- Reich, S.G.; Savitt, J.M. Parkinson’s disease. Med. Clin. N. Am. 2019, 103, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.I.; Jo, M.G.; Park, T.J.; Ullah, R.; Ahmad, S.; Rehman, S.U.; Kim, M.O. Quinpirole-mediated regulation of dopamine D2 receptors inhibits glial cell-induced neuroinflammation in cortex and striatum after brain injury. Biomedicines 2021, 9, 47. [Google Scholar] [CrossRef]
- Ziu, I.; Rettig, I.; Luo, D.; Dutta, A.; McCormick, T.M.; Wu, C.; Martic, S. The multifunctional dopamine D2/D3 receptor agonists also possess inhibitory activity against the full-length tau441 protein aggregation. Bioorg. Med. Chem. 2020, 28, 115667. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhai, X.R.; Du, Z.S.; Xu, F.F.; Huang, Y.; Wang, X.Q.; Qiu, Y.H.; Peng, Y.P. Dopamine receptor D2 on CD4+ T cells is protective against neuroinflammation and neurodegeneration in a mouse model of Parkinson’s disease. Brain Behav. Immun. 2021, 98, 110–121. [Google Scholar] [CrossRef]
- Jodko-Piórecka, K.; Litwinienko, G. Antioxidant activity of dopamine and L-DOPA in lipid micelles and their cooperation with an analogue of α-tocopherol. Free Radic. Biol. Med. 2015, 83, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.J.S.C.; Gaspar, E.M.; Santos, P.M.P. Mechanisms of potential antioxidant activity of caffeine. Radiat. Phys. Chem. 2020, 174, 108968. [Google Scholar] [CrossRef]
- Załuski, M.; Stanuch, K.; Karcz, T.; Hinz, S.; Latacz, G.; Szymańska, E.; Schabikowski, J.; Doroż-Płonka, A.; Handzlik, J.; Drabczyńska, A.; et al. Tricyclic xanthine derivatives containing a basic substituent: Adenosine receptor affinity and drug-related properties. MedChemComm 2018, 9, 951–962. [Google Scholar] [CrossRef]
- Drabczyńska, A.; Müller, C.E.; Karolak-Wojciechowska, J.; Schumacher, B.; Schiedel, A.; Yuzlenko, O.; Kieć-Kononowicz, K. N9-Benzyl-substituted 1,3-dimethyl- and 1,3-dipropyl-pyrimido[2,1-f]purinediones: Synthesis and structure-activity relationships at adenosine A1 and A2A receptors. Bioorg. Med. Chem. 2007, 15, 5003–5017. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, F.; Dikstein, S. The relationship between spectral shifts and structural changes in uric acids and related compounds. J. Am. Chem. Soc. 1955, 77, 691–696. [Google Scholar] [CrossRef]
- Rybár, A.; Antoš, K. 1,3,7-Trisubstituted 8-isothiocyanatomethylxanthines. Collect. Czechoslov. Chem. Commun. 1970, 35, 1415–1433. [Google Scholar] [CrossRef]
- Stößel, A.; Schlenk, M.; Hinz, S.; Küppers, P.; Heer, J.; Gütschow, M.; Müller, C.E. Dual targeting of adenosine A2A receptors and monoamine oxidase B by 4H-3,1-benzothiazin-4-ones. J. Med. Chem. 2013, 56, 4580–4596. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, E.; Drabczyńska, A.; Karcz, T.; Müller, C.E.; Köse, M.; Karolak-Wojciechowska, J.; Fruziński, A.; Schabikowski, J.; Doroz-Płonka, A.; Handzlik, J.; et al. Similarities and differences in affinity and binding modes of tricyclic pyrimido- and pyrazinoxanthines at human and rat adenosine receptors. Bioorg. Med. Chem. 2016, 24, 4347–4362. [Google Scholar] [CrossRef] [PubMed]
- Ručilová, V.; Świerczek, A.; Vanda, D.; Funk, P.; Lemrová, B.; Gawalska, A.; Bucki, A.; Nowak, N.; Zadrożna, M.; Pociecha, K.; et al. New imidazopyridines with phosphodiesterase 4 and 7 inhibitory activity and their efficacy in animal models of inflammatory and autoimmune diseases. Eur. J. Med. Chem. 2021, 209, 112854. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, J.Y.; Deng, Y.L.; Zhou, Q.; Wu, Y.; Wu, D.; Luo, H.B. Structure-based design, synthesis, biological evaluation, and molecular docking of novel PDE10 inhibitors with antioxidant activities. Front. Chem. 2018, 6, 167. [Google Scholar] [CrossRef] [Green Version]
- Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Park. Dis. 2013, 3, 461–491. [Google Scholar] [CrossRef]
- Mor, C.; Mary, R.; Giraldo, D.M.; Uff, C. Antioxidant therapeutic strategies in neurodegenerative diseases. Int. J. Mol. Sci. 2022, 23, 9328. [Google Scholar]
- Tabakman, R.; Lecht, S.; Lazarovici, P. Neuroprotection by monoamine oxidase B inhibitors: A therapeutic strategy for Parkinson’s disease? Bioessays 2004, 26, 80–90. [Google Scholar] [CrossRef]
- Drabczyńska, A.; Yuzlenko, O.; Köse, M.; Paskaleva, M.; Schiedel, A.C.; Karolak-Wojciechowska, J.; Handzlik, J.; Karcz, T.; Kuder, K.; Müller, C.E.; et al. Synthesis and biological activity of tricyclic cycloalkylimidazo-, pyrimido- and diazepinopurinediones. Eur. J. Med. Chem. 2011, 46, 3590–3607. [Google Scholar] [CrossRef]
- Drabczyńska, A.; Müller, C.E.; Lacher, S.K.; Schumacher, B.; Karolak-Wojciechowska, J.; Nasal, A.; Kawczak, P.; Yuzlenko, O.; Pękala, E.; Kieć-Kononowicz, K. Synthesis and biological activity of tricyclic aryloimidazo-, pyrimido-, and diazepinopurinediones. Bioorg. Med. Chem. 2006, 14, 7258–7281. [Google Scholar] [CrossRef]
- Drabczyńska, A.; Müller, C.E.; Schiedel, A.; Schumacher, B.; Karolak-Wojciechowska, J.; Fruziński, A.; Zobnina, W.; Yuzlenko, O.; Kieć-Kononowicz, K. Phenylethyl-substituted pyrimido[2,1-f]purinediones and related compounds: Structure–activity relationships as adenosine A1 and A2A receptor ligands. Bioorg. Med. Chem. 2007, 15, 6956–6974. [Google Scholar] [CrossRef]
- Drabczyńska, A.; Karcz, T.; Szymańska, E.; Köse, M.; Müller, C.E.; Paskaleva, M.; Karolak-Wojciechowska, J.; Handzlik, J.; Yuzlenko, O.; Kieć-Kononowicz, K. Synthesis, biological activity and molecular modelling studies of tricyclic alkylimidazo-, pyrimido- and diazepinopurinediones. Purinergic Signal. 2013, 9, 395–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klotz, K.-N.; Lohse, M.J.; Schwabe, U.; Cristalli, G.; Vittori, S.; Grifantini, M. 2-Chloro-N6-[3H]cyclopentyladenosine ([3HCCPA) —A high affinity agonist radioligand for A1 adenosine receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1989, 340, 679–683. [Google Scholar] [CrossRef]
- Müller, C.E.; Maurinsh, J.; Sauer, R. Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes—A new, selective antagonist radioligand for A2A adenosine receptors. Eur. J. Pharm. Sci. 2000, 10, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Borrmann, T.; Hinz, S.; Bertarelli, D.C.G.; Li, W.; Florin, N.C.; Scheiff, A.B.; Müller, C.E. 1-Alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: Development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J. Med. Chem. 2009, 52, 3994–4006. [Google Scholar] [CrossRef]
- Müller, C.E.; Diekmann, M.; Thorand, M.; Ozola, V. [3H]8-Ethyl-4-methyl-2-phenyl-(8R)-%4,5,7,8-tetrahydro-1H-imidazo [2,1-i]-purin-5-one ([3H]PSB-11), a novel high-affinity antagonist radioligand for human A3 adenosine receptors. Bioorg. Med. Chem. Lett. 2002, 12, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Yung-Chi, C.; Prusoff, W.H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099–3108. [Google Scholar] [CrossRef]
Compd | R2 | MAO-B IC50 ± SEM (nM) | MAO-A IC50 ± SEM (nM) (or % Inhibition ± SEM at 1 µM) |
---|---|---|---|
Rasagiline | - | 0.019 | - |
11a | methyl | 50.7 ± 10.0 | >1000 (44 ± 1) |
11b | ethyl | 47.9 ± 8.4 | 891 ± 63 |
11c | n-propyl | 165 ± 30 | >1000 (33 ± 10) |
11d | iso-propyl | 126 ± 49 | ≥1000 (47 ± 1) |
11e | n-butyl | 43.8 ± 16.2 | >1000 (38 ± 1) |
11f | iso-butyl | 205 ± 23 | >1000 (42 ± 1) |
11g | sec-butyl | 197 ± 57 | >1000 (44 ± 1) |
11h | n-pentyl | 58.3 ± 6.2 | 692 ± 7 |
11i | n-hexyl | 76.4 ± 0.7 | 246 ± 72 |
11j | benzyl | 45.6 ± 12.9 | 576 ± 68 |
11k | phenethyl | 73.5 ± 7.5 | 256 ± 93 |
11l | phenoxyethyl | 53.5 ± 18.2 | >1000 (41 ± 3) |
12 | n-propyl | 105 ± 23 | ca. 1000 (57 ± 0) |
13 | n-butyl | 81.8 ± 19.7 | >1000 (36 ± 1) |
20a | - | 121 ± 23 | >1000 (29 ± 1) |
20b | - | 101 ± 21 | >1000 (44 ± 4) |
21 | - | 157 ± 39 | ca. 1000 (61 ± 1) |
22 | - | 170 ± 30 | >1000 (43 ± 1) |
Compd | rA1 [3H]CCPA | rA2A [3H]MSX-2 | hA2B [3H]PSB-603 | hA3 [3H]PSB-11 | rD1 [3H]SCH23390 | hD2 [3H]-Raclopride |
---|---|---|---|---|---|---|
Ki ± SEM (µM) a (or % inhibition ± SEM at 1 µM for A2B, A3 and D1 or at 10 µM for A1 and A2A) | ||||||
11a | 1.98 ± 0.29 | 0.370 ± 0.063 | >1.0 (20 ± 4) | >1.0 (−1 ± 3) | >1.0 (13 ± 2) | 25.2 ± 5.97 |
11b | 0.479 ± 0.095 | 0.672 ± 0.083 | >1.0 (−2 ± 3) | >1.0 (−5 ± 3) | >1.0 (15 ± 2) | 16.2 ± 1.23 |
11c | 0.730 ± 0.093 | 4.72 ± 0.93 | >1.0 (6 ± 1) | >1.0 (5 ± 3) | >1.0 (9 ± 2) | 9.37 ± 1.15 |
11d | 0.857 ± 0.043 | 1.15 ± 0.14 | >1.0 (13 ± 8) | >1.0 (12 ± 2) | >1.0 (15 ± 4) | 17.7 ± 3.99 |
11e | 0.304 ± 0.066 | 1.70 ± 0.26 | >1.0 (14 ± 4) | >1.0 (0 ± 2) | >1.0 (13 ± 2) | 12.7 ± 1.86 |
11f | 1.13 ± 0.18 | 6.86 ± 0.77 | >1.0 (1 ± 0) | >1.0 (−6 ± 2) | >1.0 (15 ± 6) | 27.6 ± 4.0 |
11g | 1.17 ± 0.38 | 8.98 ± 0.15 | >1.0 (−5 ± 1) | >1.0 (−4 ± 12) | >1.0 (11 ± 3) | 39.2 ± 8.43 |
11h | 0.191 ± 0.030 | 2.22 ± 0.26 | >1.0 (12 ± 8) | >1.0 (0 ± 2) | >1.0 (12 ± 5) | 8.26 ± 0.48 |
11i | >10.0 (43 ± 3) | >10.0 (14 ± 0) | >1.0 (31 ± 7) | >1.0 (3 ± 0) | >1.0 (9 ± 4) | 6.68 ± 0.95 |
11j | 0.455 ± 0.077 | 3.60 ± 0.29 | >1.0 (31 ± 1) | >1.0 (7 ± 1) | >1.0 (3 ± 2) | 9.10 ± 1.65 |
11k | ≥10.0 (46 ± 1) | ≥10.0 (44 ± 1) | >1.0 (−9 ± 0) | >1.0 (−1 ± 2) | >1.0 (6 ± 2) | 9.95 ± 1.95 |
11l | 0.124 ± 0.022 | 1.38 ± 0.12 | >1.0 (22 ± 4) | >1.0 (−2 ± 1) | >1.0 (3 ± 2) | 8.87 ± 0.94 |
12 | 0.130 ± 0.031 | 0.833 ± 0.081 | >1.0 (34 ± 3) | >1.0 (25 ± 2) | >1.0 (9 ± 2) | 13.3 ± 2.2 |
13 | 0.100 ± 0.015 | 1.32 ± 0.25 | >1.0 (31 ± 7) | >1.0 (17 ± 1) | >1.0 (2 ± 4) | 4.39 ± 0.43 |
20a | ≥10.0 (43 ± 5) | 0.507 ± 0.109 | >1.0 (13 ± 1) | >1.0 (−6 ± 2) | >1.0 (15 ± 1) | 6.68 ± 0.87 |
20b | 1.05 ± 0.17 | 0.234 ± 0.055 | >1.0 (6 ± 2) | >1.0 (−2 ± 5) | >1.0 (15 ± 1) | 10.7 ± 1.40 |
21 | 0.070 ± 0.005 | 0.274 ± 0.081 | 0.371 ± 0.023 | >1.0 (26 ± 3) | >1.0 (12 ± 2) | 12.7 ± 2.8 |
22 | 0.053 ± 0.008 | 0.334 ± 0.052 | 0.175 ± 0.021 | 0.676 ± 0.143 | >1.0 (11 ± 5) | 16.6 ± 2.3 |
Compd | PDE 4B1 IC50 ± SEM (µM) (or % Inhibition ± SEM at 10 µM) | PDE 10A1 IC50 ± SEM (µM) (or % Inhibition ± SEM at 10 µM) |
---|---|---|
rolipram | 0.17 [53] | |
papaverine | - | 0.1 [54] |
11a | 7.85 ± 1.85 | 15.1 ± 3.1 |
11b | 2.52 ± 0.14 | 4.63 ± 1.25 |
11c | 3.32 ± 0.80 | 3.45 ± 0.27 |
11d | 2.44 ± 0.80 | 2.30 ± 0.64 |
11e | 3.16 ± 0.53 | 3.77 ± 1.29 |
11f | 3.76 ± 0.16 | ≥10.0 (59 ± 3) |
11g | 4.41 ± 0.23 | 10.2 ± 0.9 |
11h | 4.43 ± 0.25 | ≥10.0 (51 ± 6) |
11i | >10.0 (42 ± 1) | >10.0 (14 ± 6) |
11j | 3.29 ± 0.54 | ≥10.0 (36 ± 3) |
11k | 4.40 ± 0.54 | 2.41 ± 0.07 |
11l | >10.0 (20 ± 1) | >10.0 (17 ± 2) |
12 | 14.5 ± 0.48 | 2.73 ± 0.03 |
13 | >10.0 (28 ± 1) | >10.0 (26 ± 5) |
20a | >10.0 (44 ± 1) | >10.0 (35 ± 3) |
20b | >10.0 (45 ± 1) | 30.7 ± 0.2 |
21 | 16.5 ± 0.32 | 31.0 ± 0.1 |
22 | >10.0 (24 ± 2) | >10.0 (25 ± 4) |
Studied Compound [50 µM] | Antioxidative Activity [% of Quercetin Response a at 50 µM ± SD] |
---|---|
11a | 79 ± 1 |
11b | 75 ± 1 |
11c | 69 ± 1 |
11d | 87 ± 1 |
11e | 75 ± 1 |
11f | 57 ± 1 |
11g | 71 ± 1 |
11h | 79 ± 1 |
11i | 26 ± 1 |
11j | 82 ± 1 |
11k | 73 ± 3 |
11l | 26 ± 3 |
12 | 86 ± 3 |
13 | 61 ± 1 |
20a | 68 ± 2 |
20b | 79 ± 1 |
21 | 13 ± 1 |
22 | 26 ± 2 |
Ascorbic acid | 78 ± 1 |
Trolox | 73 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Załuski, M.; Karcz, T.; Drabczyńska, A.; Vielmuth, C.; Olejarz-Maciej, A.; Głuch-Lutwin, M.; Mordyl, B.; Siwek, A.; Satała, G.; Müller, C.E.; et al. Xanthine–Dopamine Hybrid Molecules as Multitarget Drugs with Potential for the Treatment of Neurodegenerative Diseases. Biomolecules 2023, 13, 1079. https://doi.org/10.3390/biom13071079
Załuski M, Karcz T, Drabczyńska A, Vielmuth C, Olejarz-Maciej A, Głuch-Lutwin M, Mordyl B, Siwek A, Satała G, Müller CE, et al. Xanthine–Dopamine Hybrid Molecules as Multitarget Drugs with Potential for the Treatment of Neurodegenerative Diseases. Biomolecules. 2023; 13(7):1079. https://doi.org/10.3390/biom13071079
Chicago/Turabian StyleZałuski, Michał, Tadeusz Karcz, Anna Drabczyńska, Christin Vielmuth, Agnieszka Olejarz-Maciej, Monika Głuch-Lutwin, Barbara Mordyl, Agata Siwek, Grzegorz Satała, Christa E. Müller, and et al. 2023. "Xanthine–Dopamine Hybrid Molecules as Multitarget Drugs with Potential for the Treatment of Neurodegenerative Diseases" Biomolecules 13, no. 7: 1079. https://doi.org/10.3390/biom13071079