Platinum Palladium Bimetallic Nanozymes Stabilized with Vancomycin for the Sensitive Colorimetric Determination of L-cysteine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Van-Ptm/Pdn Nanoparticles
- (a)
- A total of 73 μL of Van solution (10 mM) was added to a 2 mL polyethylene (PE) tube, and then 98 μL of K2PtCl4 solution (10 mM) was added. The solution was incubated at 25 °C at 600 rpm for 12 h. Then, 10 μL of NaBH4 solution (1 M, dissolved in 0.3 M NaOH solution) was added, and hydrochloric acid (1 M) was added to adjust the pH of the solution to approximately 7 after 3 h. Then, 48 μL of Na2PdCl4 solution (10 mM) was added, and 10 μL of NaBH4 solution (1 M) was added after 12 h. After 24 h of dialysis, the product obtained was Van-Pt2-Pd1 NPs (Pt:Pd = 2:1).
- (b)
- The Van-Pd1-Pt2 NPs (Pt:Pd = 2:1) were prepared in a similar manner to the synthesis of Van-Pt2-Pd1 NPs. The order of the K2PtCl4 and Na2PdCl4 solutions was reversed.
- (c)
- One-pot method: Van (73 μL, 10 mM), K2PtCl4 (98 μL, 10 mM) and Na2PdCl4 (48 μL, 10 mM) solutions were mixed in PE tubes and kept at 25 °C for 12 h. Then, 20 µL of NaBH4 solution (1 M, dissolved in 0.3 M NaOH solution) was added and kept at 25 °C for 12 h. The solution was dialyzed for 24 h to obtain Van-Pt2/Pd1 NPs (Pt:Pd = 2:1). We prepared Van-Pt1/Pd1 NPs in the same way (Pt: Pd = 1:1). The Pt1/Pd1 NPs were prepared in water, and the other conditions were the same as those for the Van-Pt1/Pd1 NPs.
2.3. Characterization of Van-Ptm/Pdn Nanoparticles
2.4. Activity of Van-Pt1/Pd1 Nanoparticles
2.5. Catalytic Kinetics of Van-Pt1/Pd1 Nanoparticles
2.6. The Mechanism of Oxidase-Like Activity
2.7. Detection of L-cysteine Using Van-Pt1/Pd1 Nanoparticles
2.8. Biocompatibility Test
3. Results and Discussion
3.1. Characterization of Van-Ptm/Pdn Nanoparticles
3.2. Catalytic Activity of Van-Pt1/Pd1 NPs
3.3. Mechanism of the Oxidase-Like Activity of Van- Pt1/Pd1 NPs
3.4. L-cysteine Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ge, C.; Shen, F.; Yin, Y.; Zhou, P.; Lu, C. A novel near-infrared and naked-eye fluorescence probe with a large stokes shift for specific detection of cysteine and its application in living cells. Tetrahedron Lett. 2020, 61, 151963. [Google Scholar] [CrossRef]
- Prasetia, R.; Fuangswasdi, S.; Unob, F. Silver nanoparticle-supported hydroxyapatite as a material for visual detection of urinary cysteine. Anal. Methods 2019, 11, 2888–2894. [Google Scholar] [CrossRef]
- Dizman, H.M.; Kazancioglu, E.O.; Shigemune, T.; Takahara, S.; Arsu, N. High sensitivity colorimetric determination of L-cysteine using gold nanoparticles functionalized graphene oxide prepared by photochemical reduction method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 264, 120294. [Google Scholar] [CrossRef]
- Feng, S.; Wen, F.; He, L.; Su, J.; Jiang, P.; He, D. Facile synthesis of ultrathin MnO2 nanobelts anchoring on porous carbon with high oxidase mimetic activity for L-cysteine colorimetric detection. Sensor. Actuat. B-Chem. 2022, 361, 131745. [Google Scholar] [CrossRef]
- Zhang, H.; Yue, X.; Li, W.; Chen, W.; Wang, Y.; Li, X.; Ye, Y.; Song, X. Selective and discriminative fluorescence sensing of Cys, Hcy, GSH and H2S with concise and distinct signals. Sensor. Actuat. B-Chem. 2021, 331, 129394. [Google Scholar] [CrossRef]
- Zhuge, W.; Liu, Y.; Huang, W.; Zhang, C.; Wei, L.; Peng, J. Conductive 2D phthalocyanine-based metal-organic framework as a photoelectrochemical sensor for N-acetyl-L-cysteine detection. Sensor. Actuat. B-Chem. 2022, 367, 132028. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Y.; Xu, D.; Zheng, X.; Huang, Q. A green and facile approach to a graphene-based peroxidase-like nanozyme and its application in sensitive colorimetric detection of l-cysteine. Anal. Bioanal. Chem. 2021, 413, 4013–4022. [Google Scholar] [CrossRef]
- Huang, Z.; Yang, Y.; Long, Y.; Zheng, H. A colorimetric method for cysteine determination based on the peroxidase-like activity of ficin. Anal. Methods 2018, 10, 2676–2680. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, Y.; Zhang, L.; He, M.; Lin, W.; Sun, H.; Liu, Z.; Hu, J.; Wang, L. Biocompatible Platinum nanoclusters prepared using bitter gourd polysaccharide for colorimetric detection of ascorbic acid. Biomolecules 2021, 11, 647. [Google Scholar] [CrossRef]
- Magesa, F.; Wu, Y.; Dong, S.; Tian, Y.; Li, G.; Vianney, J.M.; Buza, J.; Liu, J.; He, Q. Electrochemical sensing fabricated with Ta2O5 nanoparticle-electrochemically reduced graphene oxide nanocomposite for the detection of oxytetracycline. Biomolecules 2020, 10, 110. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Ranjan Dahiya, U.; Yadav, S.; Sharma, P.; Ghosh, D.; Rao, G.K.; Rawat, V.; Kumar, G.; Kumar, A.; Srivastava, C.M. Zinc oxide nanoparticles functionalized on hydrogel grafted silk fibroin fabrics as efficient composite dressing. Biomolecules 2020, 10, 1117. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Lan, Y.; Sun, Z.; Zhou, L.; Li, Y.; Liang, X.; Qin, X. Synthesis of carbon quantum dots with iron and nitrogen fromPassiflora edulisand their peroxidase-mimicking activity for colorimetric determination of uric acid. Microchim. Acta 2020, 187, 405. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Wang, N.; Zhou, X.; Sheng, Y.; Su, X. Co, N co-doped porous carbon-based nanozyme as an oxidase mimic for fluorescence and colorimetric biosensing of butyrylcholinesterase activity. Microchim. Acta 2022, 189, 363. [Google Scholar] [CrossRef]
- Gao, L.-Z.; Yan, X.-Y. Discovery and Current Application of Nanozyme. Prog. Biochem. Biophys. 2013, 40, 892–902. [Google Scholar] [CrossRef]
- Lai, X.; Shen, Y.; Gao, S.; Chen, Y.; Cui, Y.; Ning, D.; Ji, X.; Liu, Z.; Wang, L. The Mn-modified porphyrin metal-organic framework with enhanced oxidase-like activity for sensitively colorimetric detection of glutathione. Biosens. Bioelectron. 2022, 213, 114446. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, M.; Nanda, S.S.; Lee, J.-H.; Lee, J. Construction of alizarin conjugated graphene oxide composites for inhibition of candida albicans biofilms. Biomolecules 2020, 10, 565. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Rodriguez, C.; Palao-Suay, R.; Rodriganez, L.; Rosa Aguilar, M.; Martin-Saldana, S.; San Roman, J.; Sanz-Fernandez, R. alpha-Tocopheryl succinate-based polymeric nanoparticles for the treatment of head and neck squamous cell carcinoma. Biomolecules 2018, 8, 97. [Google Scholar] [CrossRef]
- Pandey, P.C.; Mitra, M.D.; Shukla, S.; Narayan, R.J. Organotrialkoxysilane-functionalized noble metal monometallic, bimetallic, and trimetallic nanoparticle mediated non-enzymatic sensing of glucose by resonance rayleigh scattering. Biosens.-Basel 2021, 11, 122. [Google Scholar] [CrossRef]
- Maksimchuk, P.O.; Hubenko, K.O.; Seminko, V.V.; Karbivskii, V.L.; Tkachenko, A.S.; Onishchenko, A.I.; Prokopyuk, V.Y.; Yefimova, S.L. High antioxidant activity of gadolinium-yttrium orthovanadate nanoparticles in cell-free and biological milieu. Nanotechnology 2022, 33, 055701. [Google Scholar] [CrossRef]
- Li, R.; Fan, L.; Chen, S.; Wang, L.; Cui, Y.; Ma, G.; Zhang, X.; Liu, Z. Zwitterionic sulfhydryl sulfobetaine sabilized platinum nanoparticles for enhanced dopamine detection and antitumor ability. ACS Appl. Mater. 2022, 14, 55201–55216. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; Xie, X.; Xu, A.; Deng, K.; Zeng, Y.; Yang, X.; Huang, H. Fabricating and regulating peroxidase-like activity of eggshell membrane-templated gold nanoclusters for colorimetric detection of staphylococcal enterotoxin B. Talanta 2019, 194, 634–642. [Google Scholar] [CrossRef]
- Sun, H.; Lv, Y.; Zhang, J.; Zhou, C.; Su, X. A dual-signal fluorometric and colorimetric sensing platform based on gold-platinum bimetallic nanoclusters for the determination of β-galactosidase activity. Anal. Chim. Acta 2023, 1252, 341010. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhang, Q.; Wu, C.; Zhang, Y.; Zeng, L. PtNi bimetallic nanoparticles loaded MoS2 nanosheets: Preparation and electrochemical sensing application for the detection of dopamine and uric acid. Anal. Chim. Acta 2019, 1055, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.-H.; Kizilkaya, O.; Kropf, A.J.; Kurtz, R.L.; Elam, J.W.; Lei, Y. Synergetic effect on catalytic activity and charge transfer in Pt-Pd bimetallic model catalysts prepared by atomic layer deposition. J. Chem. Phys. 2020, 152, 024710. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Sun, Y.; Shi, L.; Li, C.; Shen, Y. PdPt bimetallic nanowires with efficient oxidase mimic activity for the colorimetric detection of acid phosphatase in acidic media. J. Mater. Chem. B. 2019, 7, 4561–4567. [Google Scholar] [CrossRef]
- Li, R.; Zhao, Y.; Zhang, T.; Ju, Z.; Ji, X.; Cui, Y.; Wang, L.; Xiao, H. Pd nanoparticles stabilized by bitter gourd polysaccharide with peroxidase properties for H2O2 detection. Int. J. Biol. Macromol. 2023, 233, 123513. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, M.; Ghosh, T.; Liu, Y.; Zhang, J.; Zou, J.; Lei, C.; Yu, C. Highly thiolated dendritic mesoporous silica nanoparticles with high-content gold as nanozymes: The nano-gold size matters. ACS Appl. Mater. 2019, 11, 13264–13272. [Google Scholar] [CrossRef]
- Zha, J.; Wu, W.; Xie, P.; Han, H.; Fang, Z.; Chen, Y.; Jia, Z. Polymeric nanocapsule enhances the peroxidase-like activity of Fe3O4 nanozyme for removing organic dyes. Catalysts 2022, 12, 614. [Google Scholar] [CrossRef]
- Dong, L.; Li, R.; Wang, L.; Lan, X.; Sun, H.; Zhao, Y.; Wang, L. Green synthesis of platinum nanoclusters using lentinan for sensitively colorimetric detection of glucose. Int. J. Biol. Macromol. 2021, 172, 289–298. [Google Scholar] [CrossRef]
- Retout, M.; Gosselin, B.; Mattiuzzi, A.; Ternad, I.; Jabin, I.; Bruylants, G. Peptide-conjugated silver nanoparticles for the colorimetric detection of the oncoprotein Mdm2 in human serum. Chempluschem 2022, 87, e202100450. [Google Scholar] [CrossRef] [PubMed]
- Dong, J. On catalytic kinetics of enzymes. Processes 2021, 9, 271. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.; Yan, F.; Wu, Y.; Huang, D.; Weng, Z. A fluorescent biosensor based on catalytic activity of platinum nanoparticles for freshness evaluation of aquatic products. Food Chem. 2020, 310, 125922. [Google Scholar] [CrossRef] [PubMed]
- Velidandi, A.; Sarvepalli, M.; Pabbathi, N.P.P.; Baadhe, R.R. Biogenic synthesis of novel platinum-palladium bimetallic nanoparticles from aqueous Annona muricata leaf extract for catalytic activity. 3 Biotech 2021, 11, 385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, Q.; Zheng, R.; Yu, Q.; Liang, Y.; Ma, G.; Li, Q.; Zhang, X.; Xiao, H.; Wang, L. Zwitterionic targeting doxorubicin-loaded micelles assembled by amphiphilic dendrimers with enhanced antitumor performance. Langmuir 2023, 39, 4766–4776. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Feng, J.-J.; Xue, Y.; Wu, L.; Wang, A.-J. A label-free electrochemical immunosensor based on AgPt nanorings supported on reduced graphene oxide for ultrasensitive analysis of tumor marker. Sensor. Actuat. B-Chem. 2018, 254, 1174–1181. [Google Scholar] [CrossRef]
- Geng, W.; Kumabe, Y.; Nakajima, T.; Takanashi, H.; Ohki, A. Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy (XPS). Fuel 2009, 88, 644–649. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, J.; Su, G.; Zheng, Z.; Zhou, T. Locally controllable surface foaming of polymers induced by graphene via near-infrared pulsed laser. ACS Sustain. Chem. Eng. 2020, 8, 2498–2511. [Google Scholar] [CrossRef]
- Rocky, B.P.; Thompson, A.J. Analyses of the chemical compositions and structures of four bamboo species and their natural fibers by infrared, laser, and X-ray spectroscopies. Fiber Polym. 2021, 22, 916–927. [Google Scholar] [CrossRef]
- Dong, F.; Yamazaki, K. The Pt-Pd alloy catalyst and enhanced catalytic activity for diesel oxidation. Catal. Today 2021, 376, 47–54. [Google Scholar] [CrossRef]
- Deng, L.; Xu, Q.; Rao, L.; Yue, R.; Xu, J.; Duan, X. Preparation of hierarchical Pt/Pd-PEDOT/NGE nanocomposites for high caffeic acid electrochemical sensing performance. J. Electron. Mater. 2021, 50, 543–553. [Google Scholar] [CrossRef]
- Alam, N.; Ravikumar, C.H.; Sreeramareddygari, M.; Somasundrum, M.; Surareungchai, W. Label-free ultra-sensitive colorimetric detection of hepatitis E virus based on oxidase-like activity of MnO2 nanosheets. Anal. Bioanal. Chem. 2022, 415, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Cao, J.; Bao, X.; Peng, Y.; Liu, L.; Fu, W. Co nanoparticles decorated with N-doped carbon nanotubes as high-efficiency catalysts with intrinsic oxidase-like property for colorimetric sensing. RSC Adv. 2021, 11, 39966–39977. [Google Scholar] [CrossRef] [PubMed]
- Nayak, J.; Chilivery, R.; Kumar, A.K.; Begum, G.; Rana, R.K. A bioinspired assembly to simultaneously heterogenize polyoxometalates as nanozymes and encapsulate enzymes in a microstructure endowing efficient peroxidase-mimicking activity. ACS Sustain. Chem. Eng. 2021, 9, 15819–15829. [Google Scholar] [CrossRef]
- Ma, Z.; Dong, L.; Zhang, B.; Liang, B.; Wang, L.; Ma, G.; Wang, L. Lentinan stabilized bimetallic PdPt3 dendritic nanoparticles with enhanced oxidase-like property for L-cysteine detection. Int. J. Biol. Macromol. 2022, 216, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yuan, C.; Yang, X.; Cheng, X.; Elzatahry, A.A.; Alghamdi, A.; Su, J.; He, X.; Deng, Y. Hollow mesoporous carbon nanospheres loaded with Pt nanoparticles for colorimetric detection of ascorbic acid and dlucose. ACS Appl. Nano Mater. 2020, 3, 4586–4598. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y.; Ji, F.; Zheng, R.; Ji, X.; Liu, Z.; Wang, L. Biocompatible pericarpium citri reticulatae polysaccharide templated Pd nanoparticles for effectively colorimetric detection of glutathione. Colloid. Surface. A 2022, 650, 129617. [Google Scholar] [CrossRef]
- Yadav, P.K.; Singh, V.K.; Chandra, S.; Bano, D.; Kumar, V.; Talat, M.; Hasan, S.H. Green synthesis of fluorescent carbon quantum dots from azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H2O2 and ascorbic acid in common fresh fruits. ACS Biomater. Sci. Eng. 2019, 5, 623–632. [Google Scholar] [CrossRef]
- Singh, G.; Kushwaha, A.; Sharma, M. Persistent peroxidase mimics of graphene oxide anchored cerium molybdate sensor: An effective colorimetric detection of S2- and Sn2+ ions. Microchem. J. 2020, 153, 104290. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, C.; Song, J.; Ji, X.; Wang, W. Cytidine-gold nanoclusters as peroxidase mimetic for colorimetric detection of glutathione (GSH), glutathione disulfide (GSSG) and glutathione reductase (GR). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 250, 119316. [Google Scholar] [CrossRef]
- Wang, S.; Xu, D.; Ma, L.; Qiu, J.; Wang, X.; Dong, Q.; Zhang, Q.; Pan, J.; Liu, Q. Ultrathin ZIF-67 nanosheets as a colorimetric biosensing platform for peroxidase-like catalysis. Anal. Bioanal. Chem. 2018, 410, 7145–7152. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Wang, S.; Yan, X.; Zhou, H.; Zhan, J.; Liu, S.; Sharma, V.K.; Jiang, G.; Zhu, H.; Yan, B. Regulation of cell uptake and cytotoxicity by nanoparticle core under the controlled shape, size, and surface chemistries. ACS Nano 2020, 14, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Wu, L.; Su, S.; Zhu, D.; Chao, J.; Wang, L. High peroxidase-mimicking activity of gold@platinum bimetallic nanoparticle-supported molybdenum disulfide nanohybrids for the selective colorimetric analysis of cysteine. Chem. Commun. 2020, 56, 12351–12354. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Fu, Z.; Ma, E.; Guo, J.; Zhang, Z.; Li, W.; Li, L.; Liu, Z.; Guo, X. Ultrasmall Pt nanozymes immobilized on spherical polyelectrolyte brushes with robust peroxidase-like activity for highly sensitive detection of cysteine. Langmuir 2022, 38, 12915–12923. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wei, X.; Bao, S.; Tu, H.; Wang, W. Cu@Au(Ag)/Pt nanocomposite as peroxidase mimic and application of Cu@Au/Pt in colorimetric detection of glucose and l-cysteine. RSC Adv. 2019, 9, 41561–41568. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, Y.; Zhang, D. Peroxidase-like activity of vanadium tetrasulfide submicrospheres and its application to the colorimetric detection of hydrogen peroxide and L-cysteine. Microchim. Acta 2019, 186, 784. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, T.; Wu, X.; Yang, G. CuMnO2 nanoflakes as pH-switchable catalysts with multiple enzyme-like activities for cysteine detection. Sensor. Actuat. B-Chem. 2019, 279, 374–384. [Google Scholar] [CrossRef]
- Lu, W.; Chen, J.; Kong, L.; Zhu, F.; Feng, Z.; Zhan, J. Oxygen vacancies modulation Mn3O4 nanozyme with enhanced oxidase-mimicking performance for L-cysteine detection. Sensor. Actuat. B-Chem. 2021, 333, 129560. [Google Scholar] [CrossRef]
- Ravindran, A.; Mani, V.; Chandrasekaran, N.; Mukherjee, A. Selective colorimetric sensing of cysteine in aqueous solutions using silver nanoparticles in the presence of Cr3+. Talanta 2011, 85, 533–540. [Google Scholar] [CrossRef]
- Chen, S.; Gao, H.; Shen, W.; Lu, C.; Yuan, Q. Colorimetric detection of cysteine using noncrosslinking aggregation of fluorosurfactant-capped silver nanoparticles. Sensor. Actuat. B-Chem. 2014, 190, 673–678. [Google Scholar] [CrossRef]
- Neri, J.M.; Latocheski, E.; de Araujo, J.G.L.; de Lima, R.P.; Cavalcanti, L.N.; Neves, A.C.O.; Gasparotto, L.H.S.; Domingos, J.B.; Menezes, F.G. Quinoxaline-functionalized silver nanoparticles as chromogenic probe for the multiple selective detection of cysteine, Mg2+ and Sn2+ in aqueous solution. Sensor. Actuat. B-Chem. 2021, 349, 130743. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Xu, H.; Wang, R.; Dong, L.; Gao, S.; Tang, B.; Fang, W.; Hou, F.; Zhong, L.; et al. Nitrogen-doped carbon quantum dots from poly(ethyleneimine) for optical dual-mode determination of Cu2+ and L-Cysteine and their logic gate operation. ACS Appl. Mater. 2020, 12, 47245–47255. [Google Scholar] [CrossRef]
- Qu, X.; Zou, J.; Shen, Y.; Zhao, B.; Liang, J.; Wang, Z.; Zhang, Y.; Niu, L. High-efficiency peroxidase mimics for fluorescence detection of H2O2 and l-cysteine. Analyst 2022, 147, 1808–1814. [Google Scholar] [CrossRef]
- Khamcharoen, W.; Henry, C.S.; Siangproh, W. A novel L-cysteine sensor using in-situ electropolymerization of L-cysteine: Potential to simple and selective detection. Talanta 2022, 237, 122983. [Google Scholar] [CrossRef]
Materials | Substrate | Km (mM) | Vmax ( × 10−8 Ms−1) | Reference |
---|---|---|---|---|
Van-Pt1/Pd1 NPs | TMB | 0.218 | 24.337 | this work |
PdPt3-LNT NDs | TMB | 0.263 | 2.88 | [45] |
Pt-HMCN | TMB | 0.124 | 15.4 | [46] |
Pd150-PCRP NPs | TMB | 0.2 | 15.58 | [47] |
N-CQDs | TMB | 0.515 | 4.49 | [48] |
CeM | TMB | 0.66 | 1.71 | [49] |
Cy-AuNCs | TMB | 1.925 | 212.3 | [50] |
ZIF-67 | TMB | 13.69 | 31.96 | [51] |
Materials | Detection Method | Linear Range (μM) | LOD (μM) | Reference |
---|---|---|---|---|
Van-Pt1/Pd1 NPs | Colorimetry | 6–100 | 0.07 | this work |
PdPt3-LNT NDs | Colorimetry | 0–200 | 3.10 | [45] |
MoS2-Au@Pt | Colorimetry | 0.8–54.4 | 0.50 | [53] |
SPB@Pt NPs | Colorimetry | 0.4–3.5 | 0.11 | [54] |
Cu@Au/Pt | Colorimetry | 0–400 | 4.00 | [55] |
VS4 NPs | Colorimetry | 5–100 | 2.50 | [56] |
CuMnO2 NFs | Colorimetry | 20–300 | 11.26 | [57] |
OV-Mn3O4 NFs | Colorimetry | 5–800 | 1.31 | [58] |
Ag NPs | Colorimetry | 0.001–1 | 0.001 | [59] |
silver NPs | Colorimetry | 1.5–6 | 0.05 | [60] |
QX-AgNPs | Colorimetry | 10–60 | 0.0027 | [61] |
PQDs | Fluorescence | 0–800 | 28.11 | [62] |
Au-Ag | Fluorescence | 0.075–2 | 0.04 | [63] |
oPAD | Electrochemical | 10–800 | 5.50 | [64] |
Sample | Added L-cysteine Concentration (μM) | Found L-cysteine Concentration (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Mouse serum | 50 | 52.1 | 100.2 | 0.57 |
90 | 90.1 | 102.8 | 1.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Liu, K.; Zhou, L.; Zhang, T.; Han, Z.; Wang, L.; Ji, X.; Cui, Y.; Hu, J.; Ma, G. Platinum Palladium Bimetallic Nanozymes Stabilized with Vancomycin for the Sensitive Colorimetric Determination of L-cysteine. Biomolecules 2023, 13, 1254. https://doi.org/10.3390/biom13081254
Zhao H, Liu K, Zhou L, Zhang T, Han Z, Wang L, Ji X, Cui Y, Hu J, Ma G. Platinum Palladium Bimetallic Nanozymes Stabilized with Vancomycin for the Sensitive Colorimetric Determination of L-cysteine. Biomolecules. 2023; 13(8):1254. https://doi.org/10.3390/biom13081254
Chicago/Turabian StyleZhao, Han, Kai Liu, Lijie Zhou, Tingting Zhang, Zengsheng Han, Longgang Wang, Xianbing Ji, Yanshuai Cui, Jie Hu, and Guanglong Ma. 2023. "Platinum Palladium Bimetallic Nanozymes Stabilized with Vancomycin for the Sensitive Colorimetric Determination of L-cysteine" Biomolecules 13, no. 8: 1254. https://doi.org/10.3390/biom13081254
APA StyleZhao, H., Liu, K., Zhou, L., Zhang, T., Han, Z., Wang, L., Ji, X., Cui, Y., Hu, J., & Ma, G. (2023). Platinum Palladium Bimetallic Nanozymes Stabilized with Vancomycin for the Sensitive Colorimetric Determination of L-cysteine. Biomolecules, 13(8), 1254. https://doi.org/10.3390/biom13081254