Caenorhabditis elegans as a Model to Study Aging and Photoaging
Abstract
:1. Introduction
2. Chronological Aging in Caenorhabditis elegans
2.1. Molecular Mechanism Insights into Chronological Aging in C. elegans
2.2. Impaired DNA Repair Mechanisms and Genomic Instability during Aging in Caenorhabditis elegans
3. Photoaging in Caenorhabditis elegans
3.1. Molecular Mechanism of UV-Induced Aging in Caenorhabditis elegans
3.2. Impaired DNA Repair in Photoaging and UV-Induced Damage in Caenorhabditis elegans
4. Summary and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Tissenbaum, H.A. Using C. elegans for aging research. Invertebr. Reprod. Dev. 2015, 59 (Suppl. S1), 59–63. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.Z.; Tissenbaum, H.A.; Ruvkun, G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 1996, 382, 536–539. [Google Scholar] [CrossRef]
- Kimura, K.D.; Tissenbaum, H.A.; Liu, Y.; Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997, 277, 942–946. [Google Scholar] [CrossRef]
- Papadopoli, D.; Boulay, K.; Kazak, L.; Pollak, M.; Mallette, F.A.; Topisirovic, I.; Hulea, L. mTOR as a central regulator of lifespan and aging. F1000Res 2019, 8, F1000 Faculty Rev-998. [Google Scholar] [CrossRef]
- Cho, J.; Park, Y. Development of aging research in Caenorhabditis elegans: From molecular insights to therapeutic application for healthy aging. Curr. Res. Food Sci. 2024, 9, 100809. [Google Scholar] [CrossRef]
- Fisher, G.J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J.J. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 2002, 138, 1462–1470. [Google Scholar] [CrossRef]
- Moriwaki, S.; Takahashi, Y. Photoaging and DNA repair. J. Dermatol. Sci. 2008, 50, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Prasanth, M.I.; Venkatesh, D.; Murali, D.; Bhaskar, J.P.; Krishnan, V.; Balamurugan, K. Understanding the role of DAF-16 mediated pathway in Caenorhabditis elegans during UV-A mediated photoaging process. Arch. Gerontol. Geriatr. 2019, 82, 279–285. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, X.; Yarui, A.; Danli, J.; Xiaodie, Y.; Zhang, J.; Xu, A. Ultraviolet light activates PMK-1/p38 MAPK signaling via MOM-4 and JKK-1 in Caenorhabditis elegans. Toxicol. Res. 2020, 9, 461–466. [Google Scholar] [CrossRef]
- Nigon, V.M.; Félix, M.A. History of research on C. elegans and other free-living nematodes as model organisms. WormBook 2017, 2017, 1–84. [Google Scholar]
- Olsen, A.; Vantipalli, M.C.; Lithgow, G.J. Using Caenorhabditis elegans as a model for aging and age-related diseases. Ann. N. Y. Acad. Sci. 2006, 1067, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Ji, H.; Le, M.; Li, H.; Wieland, A.; Bauer, S.; Liu, L.; Wink, M.; Herr, I. Sulforaphane promotes C. elegans longevity and healthspan via DAF-16/DAF-2 insulin/IGF-1 signaling. Aging 2021, 13, 1649–1670. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; Zelmanovich, V.; Shukla, V.; Abergel, R.; Cohen, I.; Ben-Sasson, S.A.; Gross, E. Distinct designer diamines promote mitophagy, and thereby enhance healthspan in C. elegans and protect human cells against oxidative damage. Autophagy 2023, 19, 474–504. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qiao, P.; Ouyang, Z.; Li, D.; Zheng, J.; Wang, G.; Wang, F. Ginseng volatile oil prolongs the lifespan and healthspan of Caenorhabditis elegans. Biogerontology 2022, 23, 485–497. [Google Scholar] [CrossRef] [PubMed]
- Barsyte, D.; Lovejoy, D.A.; Lithgow, G.J. Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J. 2001, 15, 627–634. [Google Scholar] [CrossRef]
- Zečić, A.; Braeckman, B.P. DAF-16/FoxO in Caenorhabditis elegans and Its Role in Metabolic Remodeling. Cells 2020, 9, 109. [Google Scholar] [CrossRef]
- Li, J.; Ebata, A.; Dong, Y.; Rizki, G.; Iwata, T.; Lee, S.S. Caenorhabditis elegans HCF-1 functions in longevity maintenance as a DAF-16 regulator. PLoS Biol. 2008, 6, e233. [Google Scholar] [CrossRef]
- Baumeister, R.; Schaffitzel, E.; Hertweck, M. Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J. Endocrinol. 2006, 190, 191–202. [Google Scholar] [CrossRef]
- Maures, T.J.; Greer, E.L.; Hauswirth, A.G.; Brunet, A. The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 2011, 10, 980–990. [Google Scholar] [CrossRef]
- Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 2000, 14, 1021–1026. [Google Scholar] [CrossRef]
- North, B.J.; Verdin, E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 2004, 5, 224. [Google Scholar] [CrossRef] [PubMed]
- Toiber, D.; Sebastian, C.; Mostoslavsky, R. Characterization of nuclear sirtuins: Molecular mechanisms and physiological relevance. Handb. Exp. Pharmacol. 2011, 206, 189–224. [Google Scholar] [PubMed]
- Shen, P.; Yue, Y.; Park, Y. A living model for obesity and aging research: Caenorhabditis elegans. Crit. Rev. Food Sci. Nutr. 2018, 58, 741–754. [Google Scholar] [CrossRef]
- Apfeld, J.; O’Connor, G.; McDonagh, T.; DiStefano, P.S.; Curtis, R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 2004, 18, 3004–3009. [Google Scholar] [CrossRef]
- Blackwell, T.K.; Sewell, A.K.; Wu, Z.; Han, M. TOR Signaling in Caenorhabditis elegans Development, Metabolism, and Aging. Genetics 2019, 213, 329–360. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, M.; Impey, S.; Kang, H.; di Ronza, A.; Pelz, C.; Sardiello, M.; Ballabio, A. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 2011, 20, 3852–3866. [Google Scholar] [CrossRef]
- Antikainen, H.; Driscoll, M.; Haspel, G.; Dobrowolski, R. TOR-mediated regulation of metabolism in aging. Aging Cell 2017, 16, 1219–1233. [Google Scholar] [CrossRef]
- Matheny, C.J.; Qadota, H.; Bailey, A.O.; Valdebenito-Silva, S.; Oberhauser, A.F.; Benian, G.M. The myosin chaperone UNC-45 has an important role in maintaining the structure and function of muscle sarcomeres during adult aging. Mol. Biol. Cell 2024, 35, ar98. [Google Scholar] [CrossRef]
- Sheaffer, K.L.; Updike, D.L.; Mango, S.E. The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging. Curr. Biol. 2008, 18, 1355–1364. [Google Scholar] [CrossRef]
- Hansen, M.; Chandra, A.; Mitic, L.L.; Onken, B.; Driscoll, M.; Kenyon, C. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 2008, 4, e24. [Google Scholar] [CrossRef]
- Tullet, J.M.; Hertweck, M.; An, J.H.; Baker, J.; Hwang, J.Y.; Liu, S.; Oliveira, R.P.; Baumeister, R.; Blackwell, T.K. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 2008, 132, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- An, J.H.; Blackwell, T.K. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev. 2003, 17, 1882–1893. [Google Scholar] [CrossRef]
- Blackwell, T.K.; Steinbaugh, M.J.; Hourihan, J.M.; Ewald, C.Y.; Isik, M. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic. Biol. Med. 2015, 88 Pt B, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Hoeven, R.; McCallum, K.C.; Cruz, M.R.; Garsin, D.A. Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans. PLoS Pathog. 2011, 7, e1002453. [Google Scholar]
- Lin, K.; Dorman, J.B.; Rodan, A.; Kenyon, C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997, 278, 1319–1322. [Google Scholar] [CrossRef] [PubMed]
- Ogg, S.; Paradis, S.; Gottlieb, S.; Patterson, G.I.; Lee, L.; Tissenbaum, H.A.; Ruvkun, G. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997, 389, 994–999. [Google Scholar] [CrossRef]
- Alper, S.; McBride, S.J.; Lackford, B.; Freedman, J.H.; Schwartz, D.A. Specificity and complexity of the Caenorhabditis elegans innate immune response. Mol. Cell Biol. 2007, 27, 5544–5553. [Google Scholar] [CrossRef]
- Tullet, J.M.A.; Green, J.W.; Au, C.; Benedetto, A.; Thompson, M.A.; Clark, E.; Gilliat, A.F.; Young, A.; Schmeisser, K.; Gems, D. The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms. Aging Cell 2017, 16, 1191–1194. [Google Scholar] [CrossRef]
- Yanase, S.; Yasuda, K.; Ishii, N. Interaction between the ins/IGF-1 and p38 MAPK signaling pathways in molecular compensation of sod genes and modulation related to intracellular ROS levels in C. elegans. Biochem. Biophys. Rep. 2020, 23, 100796. [Google Scholar] [CrossRef]
- Wolf, M.; Nunes, F.; Henkel, A.; Heinick, A.; Paul, R.J. The MAP kinase JNK-1 of Caenorhabditis elegans: Location, activation, and influences over temperature-dependent insulin-like signaling, stress responses, and fitness. J. Cell Physiol. 2008, 214, 721–729. [Google Scholar] [CrossRef]
- Burnett, C.; Valentini, S.; Cabreiro, F.; Goss, M.; Somogyvári, M.; Piper, M.D.; Hoddinott, M.; Sutphin, G.L.; Leko, V.; McElwee, J.J.; et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011, 477, 482–485. [Google Scholar] [CrossRef]
- Morley, J.F.; Morimoto, R.I. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 2004, 15, 657–664. [Google Scholar] [CrossRef]
- Paradis, S.; Ailion, M.; Toker, A.; Thomas, J.H.; Ruvkun, G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev. 1999, 13, 1438–1452. [Google Scholar] [CrossRef] [PubMed]
- Vellai, T.; Takacs-Vellai, K.; Zhang, Y.; Kovacs, A.L.; Orosz, L.; Müller, F. Genetics: Influence of TOR kinase on lifespan in C. elegans. Nature 2003, 426, 620. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- Rieckher, M.; Garinis, G.A.; Schumacher, B. Molecular pathology of rare progeroid diseases. Trends Mol. Med. 2021, 27, 907–922. [Google Scholar] [CrossRef] [PubMed]
- Keijzers, G.; Bakula, D.; Scheibye-Knudsen, M. Monogenic Diseases of DNA Repair. N. Engl. J. Med. 2017, 377, 1868–1876. [Google Scholar] [CrossRef]
- van der Rijt, S.; Molenaars, M.; McIntyre, R.L.; Janssens, G.E.; Houtkooper, R.H. Integrating the Hallmarks of Aging Throughout the Tree of Life: A Focus on Mitochondrial Dysfunction. Front. Cell Dev. Biol. 2020, 8, 594416. [Google Scholar] [CrossRef]
- Rieckher, M.; Bujarrabal, A.; Doll, M.A.; Soltanmohammadi, N.; Schumacher, B. A simple answer to complex questions: Caenorhabditis elegans as an experimental model for examining the DNA damage response and disease genes. J. Cell Physiol. 2018, 233, 2781–2790. [Google Scholar] [CrossRef]
- Vermezovic, J.; Stergiou, L.; Hengartner, M.O.; d’Adda di Fagagna, F. Differential regulation of DNA damage response activation between somatic and germline cells in Caenorhabditis elegans. Cell Death Differ. 2012, 19, 1847–1855. [Google Scholar] [CrossRef]
- Craig, A.L.; Moser, S.C.; Bailly, A.P.; Gartner, A. Methods for studying the DNA damage response in the Caenorhabdatis elegans germ line. Methods Cell Biol. 2012, 107, 321–352. [Google Scholar] [PubMed]
- Arczewska, K.D.; Tomazella, G.G.; Lindvall, J.M.; Kassahun, H.; Maglioni, S.; Torgovnick, A.; Henriksson, J.; Matilainen, O.; Marquis, B.J.; Nelson, B.C.; et al. Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1. Nucleic Acids Res. 2013, 41, 5368–5381. [Google Scholar] [CrossRef] [PubMed]
- SenGupta, T.; Palikaras, K.; Esbensen, Y.Q.; Konstantinidis, G.; Galindo, F.J.N.; Achanta, K.; Kassahun, H.; Stavgiannoudaki, I.; Bohr, V.A.; Akbari, M.; et al. Base excision repair causes age-dependent accumulation of single-stranded DNA breaks that contribute to Parkinson disease pathology. Cell Rep. 2021, 36, 109668. [Google Scholar] [CrossRef]
- Park, S.; Choi, S.; Ahn, B. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay. Mol. Cells 2016, 39, 204–210. [Google Scholar] [CrossRef]
- McKinnon, P.J. DNA repair deficiency and neurological disease. Nat. Rev. Neurosci. 2009, 10, 100–112. [Google Scholar] [CrossRef]
- Lans, H.; Vermeulen, W. Nucleotide Excision Repair in Caenorhabditis elegans. Mol. Biol. Int. 2011, 2011, 542795. [Google Scholar] [CrossRef]
- Elsakrmy, N.; Zhang-Akiyama, Q.M.; Ramotar, D. The Base Excision Repair Pathway in the Nematode Caenorhabditis elegans. Front. Cell Dev. Biol. 2020, 8, 598860. [Google Scholar] [CrossRef]
- Nakamura, N.; Morinaga, H.; Kikuchi, M.; Yonekura, S.; Ishii, N.; Yamamoto, K.; Yonei, S.; Zhang, Q.M. Cloning and characterization of uracil-DNA glycosylase and the biological consequences of the loss of its function in the nematode Caenorhabditis elegans. Mutagenesis 2008, 23, 407–413. [Google Scholar] [CrossRef]
- Skjeldam, H.K.; Kassahun, H.; Fensgård, O.; SenGupta, T.; Babaie, E.; Lindvall, J.M.; Arczewska, K.; Nilsen, H. Loss of Caenorhabditis elegans UNG-1 uracil-DNA glycosylase affects apoptosis in response to DNA damaging agents. DNA Repair 2010, 9, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, H.; Yonekura, S.; Nakamura, N.; Sugiyama, H.; Yonei, S.; Zhang-Akiyama, Q.M. Purification and characterization of Caenorhabditis elegans NTH, a homolog of human endonuclease III: Essential role of N-terminal region. DNA Repair 2009, 8, 844–851. [Google Scholar] [CrossRef]
- Hazra, T.K.; Das, A.; Das, S.; Choudhury, S.; Kow, Y.W.; Roy, R. Oxidative DNA damage repair in mammalian cells: A new perspective. DNA Repair 2007, 6, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Fan, J.; Ishchenko, A.A.; Patel, D.; Saparbaev, M.K.; Ramotar, D. Functional characterization of the Caenorhabditis elegans DNA repair enzyme APN-1. DNA Repair 2012, 11, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, B.B.; Tijsterman, M. DNA double-strand break repair in Caenorhabditis elegans. Chromosoma 2011, 120, 1–21. [Google Scholar] [CrossRef]
- Belan, O.; Anand, R.; Boulton, S.J. Mechanism of mitotic recombination: Insights from C. elegans. Curr. Opin. Genet. Dev. 2021, 71, 10–18. [Google Scholar] [CrossRef]
- Flowers, S.; Kothari, R.; Torres Cleuren, Y.N.; Alcorn, M.R.; Ewe, C.K.; Alok, G.; Fiallo, S.L.; Joshi, P.M.; Rothman, J.H. Regulation of defective mitochondrial DNA accumulation and transmission in C. elegans by the programmed cell death and aging pathways. eLife 2023, 12, e79725. [Google Scholar] [CrossRef]
- Sanz, A.; Stefanatos, R.K. The mitochondrial free radical theory of aging: A critical view. Curr. Aging Sci. 2008, 1, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Ham, S.; Kim, S.S.; Park, S.; Kim, E.J.E.; Kwon, S.; Park, H.H.; Jung, Y.; Lee, S.V. Systematic transcriptome analysis associated with physiological and chronological aging in Caenorhabditis elegans. Genome Res. 2022, 32, 2003–2014. [Google Scholar] [CrossRef]
- Espiritu, J.R. Aging-related sleep changes. Clin. Geriatr. Med. 2008, 24, 1–14, v. [Google Scholar] [CrossRef]
- Sliney, D.H.; Wengraitis, S. Is a differentiated advice by season and region necessary? Prog. Biophys. Mol. Biol. 2006, 92, 150–160. [Google Scholar] [CrossRef]
- Cadet, J.; Douki, T.; Ravanat, J.L. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem. Photobiol. 2015, 91, 140–155. [Google Scholar] [CrossRef]
- Prasanth, M.I.; Gayathri, S.; Bhaskar, J.P.; Krishnan, V.; Balamurugan, K. Understanding the role of p38 and JNK mediated MAPK pathway in response to UV-A induced photoaging in Caenorhabditis elegans. J. Photochem. Photobiol. B 2020, 205, 111844. [Google Scholar] [CrossRef] [PubMed]
- Hegedűs, C.; Juhász, T.; Fidrus, E.; Janka, E.A.; Juhász, G.; Boros, G.; Paragh, G.; Uray, K.; Emri, G.; Remenyik, É.; et al. Cyclobutane pyrimidine dimers from UVB exposure induce a hypermetabolic state in keratinocytes via mitochondrial oxidative stress. Redox Biol. 2021, 38, 101808. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Liu, H.; Liu, M.; Wang, N.; Ye, L.; Guo, C.; Zheng, B. Cornus officinalis Extract Enriched with Ursolic Acid Ameliorates UVB-Induced Photoaging in Caenorhabditis elegans. Molecules 2024, 29, 2718. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Shao, C.S.; Elsherbiny, S.M.; Huang, Q. Astaxanthin attenuates UV-irradiation aging process via activating JNK-1/DAF-16 in Caenorhabditis elegans. Photochem. Photobiol. 2024. [Google Scholar] [CrossRef]
- Fu, K.; Zhang, J.; Wang, L.; Zhao, X.; Luo, Y. Xanthotoxin induced photoactivated toxicity, oxidative stress and cellular apoptosis in Caenorhabditis elegans under ultraviolet A. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2022, 251, 109217. [Google Scholar] [CrossRef]
- Prasanth, M.I.; Gayathri, S.; Bhaskar, J.P.; Krishnan, V.; Balamurugan, K. Analyzing the Synergistic Effects of Antioxidants in Combating Photoaging Using Model Nematode, Caenorhabditis elegans. Photochem. Photobiol. 2020, 96, 139–147. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, L.; Zhang, J.; Li, J.; Bai, S.; Ma, J.; Fu, X. Didymin improves UV irradiation resistance in C. elegans. PeerJ 2019, 6, e6218. [Google Scholar] [CrossRef]
- Prasanth, M.I.; Santoshram, G.S.; Bhaskar, J.P.; Balamurugan, K. Ultraviolet-A triggers photoaging in model nematode Caenorhabditis elegans in a DAF-16 dependent pathway. Age 2016, 38, 27. [Google Scholar] [CrossRef]
- Li, A.; Wei, G.; Wang, Y.; Zhou, Y.; Zhang, X.E.; Bi, L.; Chen, R. Identification of intermediate-size non-coding RNAs involved in the UV-induced DNA damage response in C. elegans. PLoS ONE 2012, 7, e48066. [Google Scholar] [CrossRef]
- Stergiou, L.; Doukoumetzidis, K.; Sendoel, A.; Hengartner, M.O. The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans. Cell Death Differ. 2007, 14, 1129–1138. [Google Scholar] [CrossRef]
- Stergiou, L.; Eberhard, R.; Doukoumetzidis, K.; Hengartner, M.O. NER and HR pathways act sequentially to promote UV-C-induced germ cell apoptosis in Caenorhabditis elegans. Cell Death Differ. 2011, 18, 897–906. [Google Scholar] [CrossRef]
- Yoshiyama, K.O.; Okamoto, N.L.; Hidema, J.; Higashitani, A. 222 nm far-UVC efficiently introduces nerve damage in Caenorhabditis elegans. PLoS ONE 2023, 18, e0281162. [Google Scholar] [CrossRef]
- Stewart, H.I.; Rosenbluth, R.E.; Baillie, D.L. Most ultraviolet irradiation induced mutations in the nematode Caenorhabditis elegans are chromosomal rearrangements. Mutat. Res. 1991, 249, 37–54. [Google Scholar] [CrossRef]
- Babu, V.; Schumacher, B. A C. elegans homolog for the UV-hypersensitivity syndrome disease gene UVSSA. DNA Repair 2016, 41, 8–15. [Google Scholar] [CrossRef]
- Keller, C.I.; Calkins, J.; Hartman, P.S.; Rupert, C.S. UV Photobiology of the Nematode Caenorhabditis elegans: Action Spectra, Absence of Photoreactivation and Effects of Caffeine. Photochem. Photobiol. 1987, 46, 483–488. [Google Scholar] [CrossRef]
- Coohill, T.; Marshall, T.; Schubert, W.; Nelson, G. Ultraviolet mutagenesis of radiation-sensitive (rad) mutants of the nematode Caenorhabditis elegans. Mutat. Res. 1988, 209, 99–106. [Google Scholar] [CrossRef]
- Hartman, P.S.; Marshall, A. Inactivation of wild-type and rad mutant Caenorhabditis elegans by 8-methoxypsoralen and near ultraviolet radiation. Photochem. Photobiol. 1992, 55, 103–111. [Google Scholar] [CrossRef]
- Hartman, P.S.; De Wilde, D.; Dwarakanath, V.N. Genetic and molecular analyses of UV radiation-induced mutations in the fem-3 gene of Caenorhabditis elegans. Photochem. Photobiol. 1995, 61, 607–614. [Google Scholar] [CrossRef]
- Jones, C.A.; Hartman, P.S. Replication in UV-irradiated Caenorhabditis elegans embryos. Photochem. Photobiol. 1996, 63, 187–192. [Google Scholar] [CrossRef]
- Murakami, S.; Johnson, T.E. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 1996, 143, 1207–1218. [Google Scholar] [CrossRef]
- Mills, D.K.; Hartman, P.S. Lethal Consequences of Simulated Solar Radiation on the Nematode Caenorhabditis elegans in the Presence and Absence of Photosensitizers. Photochem. Photobiol. 1998, 68, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Ohkumo, T.; Masutani, C.; Eki, T.; Hanaoka, F. Deficiency of the Caenorhabditis elegans DNA polymerase eta homologue increases sensitivity to UV radiation during germ-line development. Cell Struct. Funct. 2006, 31, 29–37. [Google Scholar] [CrossRef]
- Edwards, S.L.; Charlie, N.K.; Milfort, M.C.; Brown, B.S.; Gravlin, C.N.; Knecht, J.E.; Miller, K.G. A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol. 2008, 6, e198. [Google Scholar] [CrossRef] [PubMed]
- Ohkumo, T.; Masutani, C.; Eki, T.; Hanaoka, F. Use of RNAi in C. elegans. Methods Mol. Biol. 2008, 442, 129–137. [Google Scholar] [PubMed]
- Bichai, F.; Barbeau, B.; Payment, P. Protection against UV disinfection of E. coli bacteria and B. subtilis spores ingested by C. elegans nematodes. Water Res. 2009, 43, 3397–3406. [Google Scholar] [CrossRef]
- van Bostelen, I.; Tijsterman, M. Combined loss of three DNA damage response pathways renders C. elegans intolerant to light. DNA Repair 2017, 54, 55–56. [Google Scholar] [CrossRef] [PubMed]
- Hartman, P.; Reddy, J.; Svendsen, B.A. Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C. elegans embryos? Mutat. Res. 1991, 255, 163–173. [Google Scholar] [CrossRef]
- Huang, C.W.; Kung, Z.Y.; Wei, C.C. UV-filter octyl methoxycinnamate causes reproductive toxicity associated with germline apoptosis and vitellogenin decrease in Caenorhabditis elegans. Aquat. Toxicol. 2022, 247, 106149. [Google Scholar] [CrossRef]
- Alexpandi, R.; Prasanth, M.I.; Ravi, A.V.; Balamurugan, K.; Durgadevi, R.; Srinivasan, R.; De Mesquita, J.F.; Pandian, S.K. Protective effect of neglected plant Diplocyclos palmatus on quorum sensing mediated infection of Serratia marcescens and UV-A induced photoaging in model Caenorhabditis elegans. J. Photochem. Photobiol. B 2019, 201, 111637. [Google Scholar] [CrossRef]
- Chen, T.; Li, J.; Xu, L.; Zhang, D.; Wang, Z.; Chen, H. Deactivation of Caenorhabditis elegans nematodes in drinking water by PMS/UV-C: Efficiency and mechanisms. Environ. Sci. Pollut. Res. Int. 2021, 28, 58606–58616. [Google Scholar] [CrossRef]
- De Magalhaes Filho, C.D.; Henriquez, B.; Seah, N.E.; Evans, R.M.; Lapierre, L.R.; Dillin, A. Visible light reduces C. elegans longevity. Nat. Commun. 2018, 9, 927. [Google Scholar] [CrossRef] [PubMed]
C. elegans Gene | Human Ortholog | Function | Reference |
---|---|---|---|
daf-2 | Insulin receptor/IGF-1 receptor | Receptor in the insulin-like signaling (IIS) pathway, negatively regulates lifespan | [27] |
age-1 | PI3K | Downstream of daf-2, negatively regulates lifespan | [27] |
daf-16 | FOXO | Transcription factor, positively regulates lifespan; master regulator of IIS | [35,36] |
utx-1 | UTX | Regulating lifespan through DAF-16-mediated pathway | [19] |
lys-7 | Lysozyme | Encodes lysozyme, important for antimicrobial activity and immunity | [37] |
skn-1 | Nrf2 | Stress-responsive gene | [33,38] |
pmk-1 | p38 MAPKs | The p38 MAPK pathway | [39] |
jnk-1 | JNK | Homolog of JNK, the c-Jun N-terminal kinase (JNK) of the MAP kinase superfamily | [40] |
jkk-1 | JNK kinase | JKK-1 is a member of the MAP kinase kinase superfamily | [40] |
sirt-2.1 | SIRT-1 | Regulates stress response, energy level, and longevity | [41] |
hcf-1 | HCF | host cell factor; a nuclear co-repressor of DAF-16 | [17,42] |
akt-1 | AKT serine/threonine kinase 1 | Regulates longevity, growth, metabolism | [43] |
akt-2 | AKT serine/threonine kinase 2 | Regulates longevity, growth, metabolism | [43] |
let-363 | mTOR | Regulates longevity, growth, metabolism | [44] |
UV Type | Main Biological Responses | Key Findings | Differences | References |
---|---|---|---|---|
UV | DNA damage, mutation rates, lifespan changes, antioxidant response |
|
| [9,56,74,77,79,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98] |
UVA | Collagen damage, behavior changes, apoptosis |
| Collagen and neural damage and apoptosis genes were explored. | [8,75,76,78,99] |
UVB | Antioxidant response, lifespan extension |
| Activates antioxidant pathways, increasing lifespan via SKN-1/Nrf2 pathway. | [73] |
UVC | Germline apoptosis, DNA damage, nervous system damage |
| Non-study-specific oxidative stress pathway and antioxidant protective pathway. | [77,80,81,82,100] |
Visible Light | Photooxidative stress, lifespan reduction |
| Non-UV-specific stress pathways (photooxidative stress, protein unfolding). | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeayeng, S.; Thongsroy, J.; Chuaijit, S. Caenorhabditis elegans as a Model to Study Aging and Photoaging. Biomolecules 2024, 14, 1235. https://doi.org/10.3390/biom14101235
Jeayeng S, Thongsroy J, Chuaijit S. Caenorhabditis elegans as a Model to Study Aging and Photoaging. Biomolecules. 2024; 14(10):1235. https://doi.org/10.3390/biom14101235
Chicago/Turabian StyleJeayeng, Saowanee, Jirapan Thongsroy, and Sirithip Chuaijit. 2024. "Caenorhabditis elegans as a Model to Study Aging and Photoaging" Biomolecules 14, no. 10: 1235. https://doi.org/10.3390/biom14101235