Population-Level Cell Trajectory Inference Based on Gaussian Distributions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Data Preprocessing and RNA Velocity Estimating
2.3. Gaussian Mixture Model Clustering at the Cell Levels
2.4. Gaussian Progression Regression Fitting at the Cell-Population Level
2.5. K-Nearest Neighbor Graph Construction at the Cell-Population Level
2.6. Possible Trajectories Detection and Pseudo-Time Analysis
Algorithm 1 Floyd–Warshall Algorithm for shortest path detection |
let G = number of vertices in KNN graph let dist = G*G array of minimum distances initialized to ∞ for each vertex g dist[g][g] ← 0 for each edge (s,q) dist[s][q] ← e(s,q) for o from 1 to G for s from 1 to G for q from 1 to G if dist[s][q] > dist[s][o] + dist[o][q] dist[s][q] ← dist[s][o] + dist[o][q] end if |
2.7. Evaluation Metrics on Simulated Datasets
3. Results
3.1. Performance on Simulated Datasets with Different Structures
3.2. Reconstruction of Cell Cycle and Differentiation Trajectories in Pancreatic Endocrinogenesis
3.3. Multi-Directional Development Trajectory Reconstruction of Mature Neurons in Human Forebrain Dataset
3.4. Reconstruction of Differentiation Trajectories of Multipotent Progenitor Cells in a Mouse Hematopoiesis Dataset
3.5. Reconstruction of the Cell Cycle from Single-Cell Proteomics
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weiler, P.; Van den Berge, K.; Street, K.; Tiberi, S. A Guide to Trajectory Inference and RNA Velocity. Methods Mol. Biol. 2023, 2584, 269–292. [Google Scholar] [CrossRef] [PubMed]
- Pijuan-Sala, B.; Griffiths, J.A.; Guibentif, C.; Hiscock, T.W.; Jawaid, W.; Calero-Nieto, F.J.; Mulas, C.; Ibarra-Soria, X.; Tyser, R.C.V.; Ho, D.L.L.; et al. A Single-Cell Molecular Map of Mouse Gastrulation and Early Organogenesis. Nature 2019, 566, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Bastidas-Ponce, A.; Tritschler, S.; Dony, L.; Scheibner, K.; Tarquis-Medina, M.; Salinno, C.; Schirge, S.; Burtscher, I.; Böttcher, A.; Theis, F.J.; et al. Comprehensive Single Cell mRNA Profiling Reveals a Detailed Roadmap for Pancreatic Endocrinogenesis. Development 2019, 146, dev173849. [Google Scholar] [CrossRef] [PubMed]
- Roux de Bézieux, H.; Van den Berge, K.; Street, K.; Dudoit, S. Trajectory Inference across Multiple Conditions with Condiments. Nat. Commun. 2024, 15, 833. [Google Scholar] [CrossRef]
- Saelens, W.; Cannoodt, R.; Todorov, H.; Saeys, Y. A Comparison of Single-Cell Trajectory Inference Methods. Nat. Biotechnol. 2019, 37, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Cacchiarelli, D.; Grimsby, J.; Pokharel, P.; Li, S.; Morse, M.; Lennon, N.J.; Livak, K.J.; Mikkelsen, T.S.; Rinn, J.L. The Dynamics and Regulators of Cell Fate Decisions Are Revealed by Pseudotemporal Ordering of Single Cells. Nat. Biotechnol. 2014, 32, 381–386. [Google Scholar] [CrossRef]
- Wolf, F.A.; Hamey, F.K.; Plass, M.; Solana, J.; Dahlin, J.S.; Göttgens, B.; Rajewsky, N.; Simon, L.; Theis, F.J. PAGA: Graph Abstraction Reconciles Clustering with Trajectory Inference through a Topology Preserving Map of Single Cells. Genome Biol. 2019, 20, 59. [Google Scholar] [CrossRef]
- Gan, Y.; Li, N.; Guo, C.; Zou, G.; Guan, J.; Zhou, S. TiC2D: Trajectory Inference From Single-Cell RNA-Seq Data Using Consensus Clustering. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 2512–2522. [Google Scholar] [CrossRef]
- Smolander, J.; Junttila, S.; Elo, L.L. Cell-Connectivity-Guided Trajectory Inference from Single-Cell Data. Bioinformatics 2023, 39, btad515. [Google Scholar] [CrossRef]
- Haghverdi, L.; Büttner, M.; Wolf, F.A.; Buettner, F.; Theis, F.J. Diffusion Pseudotime Robustly Reconstructs Lineage Branching. Nat. Methods 2016, 13, 845–848. [Google Scholar] [CrossRef]
- Charrout, M.; Reinders, M.J.T.; Mahfouz, A. Untangling Biological Factors Influencing Trajectory Inference from Single Cell Data. NAR Genom. Bioinform. 2020, 2, lqaa053. [Google Scholar] [CrossRef] [PubMed]
- La Manno, G.; Soldatov, R.; Zeisel, A.; Braun, E.; Hochgerner, H.; Petukhov, V.; Lidschreiber, K.; Kastriti, M.E.; Lönnerberg, P.; Furlan, A.; et al. RNA Velocity of Single Cells. Nature 2018, 560, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Bergen, V.; Lange, M.; Peidli, S.; Wolf, F.A.; Theis, F.J. Generalizing RNA Velocity to Transient Cell States through Dynamical Modeling. Nat. Biotechnol. 2020, 38, 1408–1414. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X. Inference of High-Resolution Trajectories in Single-Cell RNA-Seq Data by Using RNA Velocity. Cell Rep. Methods 2021, 1, 100095. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Bergen, V.; Klein, M.; Setty, M.; Reuter, B.; Bakhti, M.; Lickert, H.; Ansari, M.; Schniering, J.; Schiller, H.B.; et al. CellRank for Directed Single-Cell Fate Mapping. Nat. Methods 2022, 19, 159–170. [Google Scholar] [CrossRef]
- Mao, S.; Liu, J.; Zhao, W.; Zhou, X. LVPT: Lazy Velocity Pseudotime Inference Method. Biomolecules 2023, 13, 1242. [Google Scholar] [CrossRef]
- Kharchenko, P.V. The Triumphs and Limitations of Computational Methods for scRNA-Seq. Nat. Methods 2021, 18, 723–732. [Google Scholar] [CrossRef]
- Goldberg, P.W.; Williams, C.K.I.; Bishop, C.M. Regression with Input-Dependent Noise: A Gaussian Process Treatment. In Proceedings of the 10th International Conference on Neural Information Processing Systems, Denver, CO, USA, 1 December 1997; pp. 493–499. [Google Scholar]
- Toroslu, I.H. The Floyd-Warshall All-Pairs Shortest Paths Algorithm for Disconnected and Very Sparse Graphs. Softw. Pract. Exp. 2023, 53, 1287–1303. [Google Scholar] [CrossRef]
- Weinreb, C.; Rodriguez-Fraticelli, A.; Camargo, F.D.; Klein, A.M. Lineage Tracing on Transcriptional Landscapes Links State to Fate during Differentiation. Science 2020, 367, eaaw3381. [Google Scholar] [CrossRef]
- Mahdessian, D.; Cesnik, A.J.; Gnann, C.; Danielsson, F.; Stenström, L.; Arif, M.; Zhang, C.; Le, T.; Johansson, F.; Schutten, R.; et al. Spatiotemporal Dissection of the Cell Cycle with Single-Cell Proteogenomics. Nature 2021, 590, 649–654. [Google Scholar] [CrossRef]
- Jia, C. Kinetic Foundation of the Zero-Inflated Negative Binomial Model for Single-Cell RNA Sequencing Data. SIAM J. Appl. Math. 2020, 80, 1336–1355. [Google Scholar] [CrossRef]
- Ahlmann-Eltze, C.; Huber, W. Comparison of Transformations for Single-Cell RNA-Seq Data. Nat. Methods 2023, 20, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Svensson, V. Droplet scRNA-Seq Is Not Zero-Inflated. Nat. Biotechnol. 2020, 38, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wong, C.-W.; Ching, W.-K.; Cheng, X. NG-SEM: An Effective Non-Gaussian Structural Equation Modeling Framework for Gene Regulatory Network Inference from Single-Cell RNA-Seq Data. Brief. Bioinform. 2023, 24, bbad369. [Google Scholar] [CrossRef] [PubMed]
- Hout, M.C.; Papesh, M.H.; Goldinger, S.D. Multidimensional Scaling. Wiley Interdiscip. Rev. Cogn. Sci. 2013, 4, 93–103. [Google Scholar] [CrossRef]
- Maaten, L.V.D.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2625. [Google Scholar]
- Weng, G.; Kim, J.; Won, K.J. VeTra: A Tool for Trajectory Inference Based on RNA Velocity. Bioinformatics 2021, 37, 3509–3513. [Google Scholar] [CrossRef]
- Kendall, M.G. A New Measure of Rank Correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Cannoodt, R.; Saelens, W.; Deconinck, L.; Saeys, Y. Spearheading Future Omics Analyses Using Dyngen, a Multi-Modal Simulator of Single Cells. Nat. Commun. 2021, 12, 3942. [Google Scholar] [CrossRef]
- Sakata, N.; Yoshimatsu, G.; Kodama, S. Development and Characteristics of Pancreatic Epsilon Cells. Int. J. Mol. Sci. 2019, 20, 1867. [Google Scholar] [CrossRef]
- Bonior, J.; Ceranowicz, P.; Gajdosz, R.; Kuśnierz-Cabala, B.; Pierzchalski, P.; Warzecha, Z.; Dembiński, A.; Pędziwiatr, M.; Kot, M.; Leja-Szpak, A.; et al. Molecular Ghrelin System in the Pancreatic Acinar Cells: The Role of the Polypeptide, Caerulein and Sensory Nerves. Int. J. Mol. Sci. 2017, 18, 929. [Google Scholar] [CrossRef] [PubMed]
- Braun, E.; Danan-Gotthold, M.; Borm, L.E.; Lee, K.W.; Vinsland, E.; Lönnerberg, P.; Hu, L.; Li, X.; He, X.; Andrusivová, Ž.; et al. Comprehensive Cell Atlas of the First-Trimester Developing Human Brain. Science 2023, 382, eadf1226. [Google Scholar] [CrossRef] [PubMed]
- Malatesta, P.; Hartfuss, E.; Götz, M. Isolation of Radial Glial Cells by Fluorescent-Activated Cell Sorting Reveals a Neuronal Lineage. Development 2000, 127, 5253–5263. [Google Scholar] [CrossRef]
- Fishell, G.; Kriegstein, A.R. Neurons from Radial Glia: The Consequences of Asymmetric Inheritance. Curr. Opin. Neurobiol. 2003, 13, 34–41. [Google Scholar] [CrossRef]
- Hernández-Ortega, K.; Quiroz-Baez, R.; Arias, C. Cell Cycle Reactivation in Mature Neurons: A Link with Brain Plasticity, Neuronal Injury and Neurodegenerative Diseases? Neurosci. Bull. 2011, 27, 185–196. [Google Scholar] [CrossRef]
- Poplawski, G.H.D.; Kawaguchi, R.; Van Niekerk, E.; Lu, P.; Mehta, N.; Canete, P.; Lie, R.; Dragatsis, I.; Meves, J.M.; Zheng, B.; et al. Injured Adult Neurons Regress to an Embryonic Transcriptional Growth State. Nature 2020, 581, 77–82. [Google Scholar] [CrossRef]
- Gupta, R.; Cerletti, D.; Gut, G.; Oxenius, A.; Claassen, M. Simulation-Based Inference of Differentiation Trajectories from RNA Velocity Fields. Cell Rep. Methods 2022, 2, 100359. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Fan, J.; Emanuel, G.; Hao, J.; Zhuang, X. Spatial Transcriptome Profiling by MERFISH Reveals Subcellular RNA Compartmentalization and Cell Cycle-Dependent Gene Expression. Proc. Natl. Acad. Sci. USA 2019, 116, 19490–19499. [Google Scholar] [CrossRef] [PubMed]
- Cho, R.J.; Huang, M.; Campbell, M.J.; Dong, H.; Steinmetz, L.; Sapinoso, L.; Hampton, G.; Elledge, S.J.; Davis, R.W.; Lockhart, D.J. Transcriptional Regulation and Function during the Human Cell Cycle. Nat. Genet. 2001, 27, 48–54. [Google Scholar] [CrossRef]
- Gardner, R.S.; Kyle, M.; Hughes, K.; Zhao, L.-R. Single-Cell RNA Sequencing Reveals Immunomodulatory Effects of Stem Cell Factor and Granulocyte Colony-Stimulating Factor Treatment in the Brains of Aged APP/PS1 Mice. Biomolecules 2024, 14, 827. [Google Scholar] [CrossRef]
- Laisné, M.; Lupien, M.; Vallot, C. Epigenomic Heterogeneity as a Source of Tumour Evolution. Nat. Rev. Cancer 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wu, H.; Wang, Y.; Xuan, C.; Gao, J. scGAMNN: Graph Antoencoder-Based Single-Cell RNA Sequencing Data Integration Algorithm Using Mutual Nearest Neighbors. IEEE J. Biomed. Health Inform. 2023, 27, 5665–5674. [Google Scholar] [CrossRef] [PubMed]
- Xuan, C.; Wang, Y.; Zhang, B.; Wu, H.; Ding, T.; Gao, J. scBPGRN: Integrating Single-Cell Multi-Omics Data to Construct Gene Regulatory Networks Based on BP Neural Network. Comput. Biol. Med. 2022, 151, 106249. [Google Scholar] [CrossRef] [PubMed]
Metrics | Structures | CPvGTI | LVPT | CellPath | scVelo | DPT |
---|---|---|---|---|---|---|
Kendall | Linear | 0.928784 | 0.659118 | 0.854334 | 0.914235 | 0.556036 |
Bifurcating | 0.944409 | 0.262516 | 0.809100 | 0.789165 | 0.150742 | |
Trifurcating | 0.937211 | 0.452521 | 0.854667 | 0.847968 | 0.630946 | |
Cycletree | 0.988250 | 0.548864 | 0.936341 | 0.729273 | 0.686827 | |
Spearman | Linear | 0.988360 | 0.629686 | 0.899774 | 0.984890 | 0.589317 |
Bifurcating | 0.994725 | 0.319819 | 0.933391 | 0.893939 | 0.367037 | |
Trifurcating | 0.993466 | 0.554871 | 0.959936 | 0.955595 | 0.800530 | |
Cycletree | 0.999361 | 0.780334 | 0.927419 | 0.894422 | 0.880985 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Ma, Y.; Shi, Y.; Fu, Y.; Nan, M.; Ren, Q.; Gao, J. Population-Level Cell Trajectory Inference Based on Gaussian Distributions. Biomolecules 2024, 14, 1396. https://doi.org/10.3390/biom14111396
Chen X, Ma Y, Shi Y, Fu Y, Nan M, Ren Q, Gao J. Population-Level Cell Trajectory Inference Based on Gaussian Distributions. Biomolecules. 2024; 14(11):1396. https://doi.org/10.3390/biom14111396
Chicago/Turabian StyleChen, Xiang, Yibing Ma, Yongle Shi, Yuhan Fu, Mengdi Nan, Qing Ren, and Jie Gao. 2024. "Population-Level Cell Trajectory Inference Based on Gaussian Distributions" Biomolecules 14, no. 11: 1396. https://doi.org/10.3390/biom14111396
APA StyleChen, X., Ma, Y., Shi, Y., Fu, Y., Nan, M., Ren, Q., & Gao, J. (2024). Population-Level Cell Trajectory Inference Based on Gaussian Distributions. Biomolecules, 14(11), 1396. https://doi.org/10.3390/biom14111396