Molecular Pathways Linking High-Fat Diet and PM2.5 Exposure to Metabolically Abnormal Obesity: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
2.6. Biological Pathway Enrichment Analysis
3. Results
3.1. Selected Studies
3.2. Body Weight According to Exposure to HFD and PM2.5
3.3. Metabolic Biomarkers Induced by HFD and PM2.5
3.4. Biological Pathway Induced by HFD and PM2.5
3.4.1. Adipocytokine Signaling Pathway in Brown Adipose Tissue
3.4.2. Adipogenesis Genes in Brown Adipose Tissue
3.4.3. Metabolism of Proteins in White Adipose Tissue
3.4.4. Cellular Responses to Stress, Cellular Responses to Stimuli, and Cellular Response to Chemical Stress in Heart Tissue
3.4.5. Burn-Wound Healing in Cardiac Tissue
3.4.6. PPAR Signaling Pathway in Liver Tissue
3.4.7. AMPK Signaling Pathway in Liver Tissue
3.4.8. Non-Alcoholic Fatty Liver Disease
4. Discussion
5. Prospectives
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5hmC | 5-hydroxymethylcytosine |
5mC | 5-methylcytosine |
ABC | ATP-binding cassette |
AGRP | agouti-related protein |
AMPK | AMP-activated protein kinase |
ApoA | apolipoprotein A |
ApoC | apolipoprotein C |
AXIS | Appraisal Tool for Cross-Sectional Studies |
BAT | brown adipose tissue |
BMI | body mass index |
Cebpα | CCAAT/enhancer-binding protein alpha |
CEJUS | “Justo Sierra” Study Centre (Centro de Estudios “Justo Sierra”) |
CPT1 | carnitine palmitoyltransferase 1 |
DAG | diacylglycerol |
DN | down-regulated |
FC | fold change |
FAT | transcriptional adipogenic signature (firma adipogénica transcripcional) |
FDR | false discovery rate |
FFA | free fatty acids |
FGF21 | fibroblast growth factor 21 |
FoxO1 | forkhead box protein O1 |
FTO | fat-mass and obesity-associated protein gen |
GHRL | ghrelin gen |
GPX1 | glutathione peroxidase 1 |
GSEA | gene set enrichment analysis |
GTT | glucose tolerance test |
H2O2 | hydrogen peroxide |
HCC | hepatocellular carcinoma |
HDL | high-density lipoproteins |
HFD | high-fat diet |
HIF-1 | hypoxia-inducible factor-1 |
HNRNPA1 | heterogeneous nuclear ribonucleoprotein A1 |
HOMA-IR | insulin resistance index |
I2 | index squared inconsistency index |
IGF | insulin-like growth factor |
LDL | low-density lipoproteins |
LEP | leptin gene |
LEP-R | leptin receptor gen |
lncRNAs | long non-coding RNAs |
LPL | enzyme lipoprotein lipase |
MDA | malondialdehyde |
NAFLD | non-alcoholic fatty liver disease |
NASH | non-alcoholic steatohepatitis |
NOS | Newcastle–Ottawa |
NPY | neuropeptide Y |
NRF1 | Nuclear respiratory factor 1 gen |
ORA | over-representation analysis |
PAI-1 | plasminogen activator inhibitor 1 |
PKC | activates protein kinase C |
PM2.5 | fine particulate matter suspended in the air with a diameter ≤ 2.5 μm |
PPAR | peroxisome proliferator-activated receptors |
PRISMA | preferred reporting items for systematic reviews and meta-analyses |
ROS | reactive oxygen species |
RXR | retinoid X receptor |
SOD | superoxide dismutase |
SUMO | small ubiquitin-like modifier |
TET2 | tet methylcytosine dioxygenase 2 |
TF | transcription factors |
TGF-β | transforming growth factor-beta |
TNF | tumor necrosis factor |
TG | triglycerides |
UP | up-regulated |
WAT | white adipose tissue |
WebGestalt | WEB-based GEne SeT AnaLysis Toolkit |
WHO | World Health Organization |
References
- Löffler, M.C.; Betz, M.J.; Blondin, D.P.; Augustin, R.; Sharma, A.K.; Tseng, Y.-H.; Scheele, C.; Zimdahl, H.; Mark, M.; Hennige, A.M.; et al. Challenges in tackling energy expenditure as obesity therapy: From preclinical models to clinical application. Mol. Metab. 2021, 51, 101237. [Google Scholar] [CrossRef] [PubMed]
- Kranjac, A.W.; Kranjac, D. Explaining adult obesity, severe obesity, and BMI: Five decades of change. Heliyon 2023, 9, e16210. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef]
- Mayoral, L.P.-C.; Andrade, G.M.; Mayoral, E.P.-C.; Huerta, T.H.; Canseco, S.P.; Rodal Canales, F.J.; Cabrera-Fuentes, H.A.; Cruz, M.M.; Pérez Santiago, A.D.; Alpuche, J.J.; et al. Obesity subtypes, related biomarkers & heterogeneity. Indian J. Med. Res. 2020, 151, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.-M.; Lee, D.H.; Rezende, L.F.M.; Giovannucci, E.L. Different correlation of body mass index with body fatness and obesity-related biomarker according to age, sex and race-ethnicity. Sci. Rep. 2023, 13, 3472. [Google Scholar] [CrossRef] [PubMed]
- Peila, R.; Xue, X.; Qi, Q.; Dannenberg, A.J.; Allison, M.A.; Johnson, K.C.; LaMonte, M.J.; Wild, R.A.; Haring, B.; Pan, K.; et al. Healthy Lifestyle Index and Risk of Cardiovascular Disease Among Postmenopausal Women with Normal Body Mass Index. J. Am. Heart Assoc. 2023, 12, e029111. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Sun, W.; Kong, X. Relationship between metabolically healthy obesity and the development of hypertension: A nationwide population-based study. Diabetol. Metab. Syndr. 2022, 14, 150. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhou, Y.; Dai, C.; Zhao, G.; Zhu, Y.; Zhang, X. Metabolically Abnormal but Normal-Weight Individuals Had a Higher Risk of Type 2 Diabetes Mellitus in a Cohort Study of a Chinese Population. Front. Endocrinol. 2021, 12, 724873. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, L.; Gualtieri, P.; Frank, G.; Cianci, R.; Caldarelli, M.; Leggeri, G.; Raffaelli, G.; Pizzocaro, E.; Cirillo, M.; De Lorenzo, A. Exploring the Exposome Spectrum: Unveiling Endogenous and Exogenous Factors in Non-Communicable Chronic Diseases. Diseases 2024, 12, 176. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Bonorden, M.J.L.; Pandit, R.; Nkhata, K.J.; Bishayee, A. Infections and immunity: Associations with obesity and related metabolic disorders. J. Pathol. Transl. Med. 2023, 57, 28–42. [Google Scholar] [CrossRef]
- Khalil, W.J.; Akeblersane, M.; Khan, A.S.; Moin, A.S.M.; Butler, A.E. Environmental Pollution and the Risk of Developing Metabolic Disorders: Obesity and Diabetes. Int. J. Mol. Sci. 2023, 24, 8870. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Lin, B.; Ren, Y. Does Air Pollution Cause Obesity? New Evidence from China. Green Low-Carbon Econ. 2023, 1–9. [Google Scholar] [CrossRef]
- Aslam, I.; Roeffaers, M.B.J. Carbonaceous Nanoparticle Air Pollution: Toxicity and Detection in Biological Samples. Nanomaterials 2022, 12, 3948. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, P.; Raizada, P.; Hussain, C.M. Impact of COVID-19 on greenhouse gases emissions: A critical review. Sci. Total Environ. 2022, 806, 150349. [Google Scholar] [CrossRef]
- Hassan, M.A.; Mehmood, T.; Liu, J.; Luo, X.; Li, X.; Tanveer, M.; Faheem, M.; Shakoor, A.; Dar, A.A.; Abid, M. A review of particulate pollution over Himalaya region: Characteristics and salient factors contributing ambient PM pollution. Atmos. Environ. 2023, 294, 119472. [Google Scholar] [CrossRef]
- de Bont, J.; Jaganathan, S.; Dahlquist, M.; Persson, Å.; Stafoggia, M.; Ljungman, P. Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses. J. Intern. Med. 2022, 291, 779–800. [Google Scholar] [CrossRef] [PubMed]
- Cuciureanu, M.; Caratașu, C.-C.; Gabrielian, L.; Frăsinariu, O.E.; Checheriță, L.E.; Trandafir, L.M.; Stanciu, G.D.; Szilagyi, A.; Pogonea, I.; Bordeianu, G.; et al. 360-Degree Perspectives on Obesity. Medicina 2023, 59, 1119. [Google Scholar] [CrossRef]
- Bai, K.; Li, K.; Sun, Y.; Wu, L.; Zhang, Y.; Chang, N.-B.; Li, Z. Global synthesis of two decades of research on improving PM2.5 estimation models from remote sensing and data science perspectives. Earth Sci. Rev. 2023, 241, 104461. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Lobato, S.; Castillo-Granada, A.L.; Bucio-Pacheco, M.; Salomón-Soto, V.M.; Álvarez-Valenzuela, R.; Meza-Inostroza, P.M.; Villegas-Vizcaíno, R. PM2.5, component cause of severe metabolically abnormal obesity: An in silico, observational and analytical study. Heliyon 2024, 10, e28936. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.-u.; Nadeem, A.; Li, Z.; Javed, M.; Liu, Q.; Azhar, J.; Rehman, M.S.-u.; Cui, K.; Rehman, S.u. Role of Peroxisome Proliferator-Activated Receptors (PPARs) in Energy Homeostasis of Dairy Animals: Exploiting Their Modulation through Nutrigenomic Interventions. Int. J. Mol. Sci. 2021, 22, 12463. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lei, F.; Lin, Y.; Han, Y.; Yang, L.; Tan, H. Peroxisome proliferator-activated receptors as therapeutic target for cancer. J. Cell. Mol. Med. 2024, 28, e17931. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nakajima, T.; Gonzalez, F.J.; Tanaka, N. PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice. Int. J. Mol. Sci. 2020, 21, 2061. [Google Scholar] [CrossRef]
- Berthier, A.; Johanns, M.; Zummo, F.P.; Lefebvre, P.; Staels, B. PPARs in liver physiology. BBA Mol. Basis Dis. 2021, 1867, 166097. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yu, L.; Qu, X.; Huang, T. The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy. Front. Pharmacol. 2023, 14, 1184794. [Google Scholar] [CrossRef] [PubMed]
- Strosznajder, A.K.; Wójtowicz, S.; Jeżyna, M.J.; Sun, G.Y.; Strosznajder, J.B. Recent Insights on the Role of PPAR-β/δ in Neuroinflammation and Neurodegeneration, and Its Potential Target for Therapy. Neuromolecular Med. 2021, 23, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.-Y.; Lim, C.-M.; Park, H.-M.; Kim, J.; Pham, T.-H.; Yang, Y.; Lee, H.P.; Hong, J.T.; Yoon, D.-Y. MMPP promotes adipogenesis and glucose uptake via binding to the PPARγ ligand binding domain in 3T3-L1 MBX cells. Front. Pharmacol. 2022, 13, 994584. [Google Scholar] [CrossRef]
- Sun, C.; Mao, S.; Chen, S.; Zhang, W.; Liu, C. PPARs-Orchestrated Metabolic Homeostasis in the Adipose Tissue. Int. J. Mol. Sci. 2021, 22, 8974. [Google Scholar] [CrossRef] [PubMed]
- Kilu, W.; Merk, D.; Steinhilber, D.; Proschak, E.; Heering, J. Heterodimer formation with retinoic acid receptor RXRα modulates coactivator recruitment by peroxisome proliferator-activated receptor PPARγ. J. Biol. Chem. 2021, 297, 100814. [Google Scholar] [CrossRef]
- Sharma, S.; Shen, T.; Chitranshi, N.; Gupta, V.; Basavarajappa, D.; Sarkar, S.; Mirzaei, M.; You, Y.; Krezel, W.; Graham, S.L.; et al. Retinoid X Receptor: Cellular and Biochemical Roles of Nuclear Receptor with a Focus on Neuropathological Involvement. Mol. Neurobiol. 2022, 59, 2027–2050. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, T.; Liu, C.; Ma, D.; Wang, J.; Liu, M.; Ran, J.; Wang, X.; Deng, X. PM2.5 induced liver lipid metabolic disorders in C57BL/6J mice. Front. Endocrinol. 2023, 14, 1212291. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Chen, Y.; Miao, K.; Zhang, S.; Deng, F.; Zhu, M.; Wang, C.; Gu, W.; Huang, Y.; Shao, Z.; et al. PPARγ As a Potential Target for Adipogenesis Induced by Fine Particulate Matter in 3T3-L1 Preadipocytes. Environ. Sci. Technol. 2023, 57, 7684–7697. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.M.; Bell, E.L.; Hughes, R.O.; Garfield, A.S. ABC transporters: Human disease and pharmacotherapeutic potential. Trends Mol. Med. 2023, 29, 152–172. [Google Scholar] [CrossRef]
- Cassio Barreto de Oliveira, M.; Balan, A. The ATP-Binding Cassette (ABC) Transport Systems in Mycobacterium tuberculosis: Structure, Function, and Possible Targets for Therapeutics. Biology 2020, 9, 443. [Google Scholar] [CrossRef] [PubMed]
- Flatt, S.; Busiello, D.M.; Zamuner, S.; De Los Rios, P. ABC transporters are billion-year-old Maxwell Demons. Commun. Phys. 2023, 6, 205. [Google Scholar] [CrossRef]
- Koehn, L.M. ABC Transporters: An Overview. In The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–10. [Google Scholar]
- Lok, H.C.; Halliday, G.M.; Kim, W.S. ATP-binding cassette transporters as possible targets for the intervention of neurodegenerative diseases. Neural Regen. Res. 2024, 19, 721–722. [Google Scholar] [CrossRef] [PubMed]
- Szakacs, G.; Abele, R. An inventory of lysosomal ABC transporters. FEBS Lett. 2020, 594, 3965–3985. [Google Scholar] [CrossRef] [PubMed]
- Segrest, J.P.; Tang, C.; Song, H.D.; Jones, M.K.; Davidson, W.S.; Aller, S.G.; Heinecke, J.W. ABCA1 is an extracellular phospholipid translocase. Nat. Commun. 2022, 13, 4812. [Google Scholar] [CrossRef]
- Ristovski, M.; Farhat, D.; Bancud, S.E.M.; Lee, J.-Y. Lipid Transporters Beam Signals from Cell Membranes. Membranes 2021, 11, 562. [Google Scholar] [CrossRef] [PubMed]
- Steck, T.L.; Lange, Y. Is reverse cholesterol transport regulated by active cholesterol? J. Lipid. Res. 2023, 64, 100385. [Google Scholar] [CrossRef]
- Juhl, A.D.; Wüstner, D. Pathways and Mechanisms of Cellular Cholesterol Efflux—Insight from Imaging. Front. Cell Dev. Biol. 2022, 10, 834408. [Google Scholar] [CrossRef] [PubMed]
- Raulin, A.-C.; Martens, Y.A.; Bu, G. Lipoproteins in the Central Nervous System: From Biology to Pathobiology. Annu. Rev. Biochem. 2022, 91, 731–759. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, S.; Chatterjee, P.; Hone, E.; Martins, R.N. High-density lipoprotein-related cholesterol metabolism in Alzheimer’s disease. J. Neurochem. 2021, 159, 343–377. [Google Scholar] [CrossRef]
- Sacher, S.; Mukherjee, A.; Ray, A. Deciphering structural aspects of reverse cholesterol transport: Mapping the knowns and unknowns. Biol. Rev. 2023, 98, 1160–1183. [Google Scholar] [CrossRef]
- Siddiqui, H.; Yevstigneyev, N.; Madani, G.; McCormick, S. Approaches to Visualising Endocytosis of LDL-Related Lipoproteins. Biomolecules 2022, 12, 158. [Google Scholar] [CrossRef]
- Gugliucci, A. The chylomicron saga: Time to focus on postprandial metabolism. Front. Endocrinol. 2024, 14, 1322869. [Google Scholar] [CrossRef]
- Tomassen, M.M.M.; Govers, C.; Vos, A.P.; de Wit, N.J.W. Dietary fat induced chylomicron-mediated LPS translocation in a bicameral Caco-2cell model. Lipids Health Dis. 2023, 22, 4. [Google Scholar] [CrossRef]
- Kumari, A.; Kristensen, K.K.; Ploug, M.; Winther, A.-M.L. The Importance of Lipoprotein Lipase Regulation in Atherosclerosis. Biomedicines 2021, 9, 782. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H.; Kim, K.; Choi, S.H. Lipoprotein Lipase: Is It a Magic Target for the Treatment of Hypertriglyceridemia. Endocrinol. Metab. 2022, 37, 575–586. [Google Scholar] [CrossRef]
- Mead, J.R.; Irvine, S.A.; Ramji, D.P. Lipoprotein lipase: Structure, function, regulation, and role in disease. J. Mol. Med. 2002, 80, 753–769. [Google Scholar] [CrossRef] [PubMed]
- Audano, M.; Pedretti, S.; Caruso, D.; Crestani, M.; De Fabiani, E.; Mitro, N. Regulatory mechanisms of the early phase of white adipocyte differentiation: An overview. Cell. Mol. Life Sci. 2022, 79, 139. [Google Scholar] [CrossRef]
- Li, Q.; Spalding, K.L. The regulation of adipocyte growth in white adipose tissue. Front. Cell Dev. Biol. 2022, 10, 1003219. [Google Scholar] [CrossRef] [PubMed]
- Patti, M.; Hanspers, K.; Lersel, M.V.; Summer-Kutmon, M.; Willighagen, E. Adipogenesis genes (WP447). Available online: https://www.wikipathways.org/instance/WP447 (accessed on 13 July 2024).
- De Sousa-Coelho, A.L.; Gacias, M.; O’Neill, B.T.; Relat, J.; Link, W.; Haro, D.; Marrero, P.F. FOXO1 represses PPARα-Mediated induction of FGF21 gene expression. Biochem. Biophys. Res. Commun. 2023, 644, 122–129. [Google Scholar] [CrossRef]
- Liu, Y.; He, T.; Li, Z.; Sun, Z.; Wang, S.; Shen, H.; Hou, L.; Li, S.; Wei, Y.; Zhuo, B.; et al. TET2 is recruited by CREB to promote Cebpb, Cebpa, and Pparg transcription by facilitating hydroxymethylation during adipocyte differentiation. iScience 2023, 26, 108312. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Li, D.; Piao, J.; Li, J.; Sun, H.; Chen, L.; Chen, S.; Pi, J.; Zhang, R.; Chen, R.; et al. Real-ambient exposure to air pollution exaggerates excessive growth of adipose tissue modulated by Nrf2 signal. Sci. Total Environ. 2020, 730, 138652. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Di, F.; Wei, H.; Liu, N.; Chen, C.; Wang, X.; Sun, M.; Zhang, M.; Li, M.; Zhang, J.; et al. Functional identification of long non-coding RNAs induced by PM2.5 in microglia through microarray analysis. Ecotoxicol. Environ. Saf. 2024, 273, 116136. [Google Scholar] [CrossRef] [PubMed]
- KEGG Pathway. Cytokine-Cytokine Receptor Interaction—Homo sapiens (Human). Available online: https://www.genome.jp/pathway/hsa04060 (accessed on 13 July 2024).
- Arunachalam, A.B. Vaccines Induce Homeostatic Immunity, Generating Several Secondary Benefits. Vaccines 2024, 12, 396. [Google Scholar] [CrossRef]
- Ryan, A.T.; Kim, M.; Lim, K. Immune Cell Migration to Cancer. Cells. 2024, 13, 844. [Google Scholar] [CrossRef] [PubMed]
- Portmann, K.; Linder, A.; Oelgarth, N.; Eyer, K. Single-cell deep phenotyping of cytokine release unmasks stimulation-specific biological signatures and distinct secretion dynamics. Cell Rep. Methods 2023, 3, 100502. [Google Scholar] [CrossRef] [PubMed]
- Megha, K.B.; Joseph, X.; Akhil, V.; Mohanan, P.V. Cascade of immune mechanism and consequences of inflammatory disorders. Phytomedicine 2021, 91, 153712. [Google Scholar] [CrossRef]
- Migliorini, P.; Italiani, P.; Pratesi, F.; Puxeddu, I.; Boraschi, D. The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmun. Rev. 2020, 19, 102617. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, R.D.; Putoczki, T.L.; Griffin, M.D.W. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front. Immunol. 2020, 11, 1424. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Su, Y.; Xu, Y.; Hu, T.; Lu, X.; Sun, J.; Li, W.; Zhou, J.; Ma, X.; Yang, Y.; et al. Adipocyte-Specific Hnrnpa1 Knockout Aggravates Obesity-Induced Metabolic Dysfunction via Upregulation of CCL2. Diabetes 2024, 73, 713–727. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Shao, Y.; Cai, C.; Li, Y.; Yu, B.; Qiao, X.; Feng, C.; Jia, P.; Yang, S. Association of PM2.5 chemical constituents with general, abdominal and visceral obesity and mediation roles of physical activity. Environ. Sci. Eur. 2024, 36, 107. [Google Scholar] [CrossRef]
- Liu, C.; Xu, X.; Bai, Y.; Wang, T.-Y.; Rao, X.; Wang, A.; Sun, L.; Ying, Z.; Gushchina, L.; Maiseyeu, A.; et al. Air Pollution–Mediated Susceptibility to Inflammation and Insulin Resistance: Influence of CCR2 Pathways in Mice. Environ. Health Perspect. 2014, 122, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Pang, Y.; Chen, M.; Li, L.; Yan, L.; Ning, J.; Liu, Q.; Zhang, Y.; Jiang, T.; Kang, A.; et al. Moderate physical activity against effects of short-term PM2.5 exposure on BP via myokines-induced inflammation. Sci. Total Environ. 2023, 854, 158598. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, K.L.; Neiberg, R.H.; Beavers, K.M.; Rejeski, W.J.; Messier, S.P.; Nicklas, B.J.; Beavers, D.P. Effect of Baseline BMI and IL-6 Subgroup Membership on Gait Speed Response to Caloric Restriction in Older Adults with Obesity. J. Nutr. Health Aging 2023, 27, 285–290. [Google Scholar] [CrossRef]
- Penes, O.N.; Weber, B.; Pop, A.L.; Bodnarescu-Cobanoglu, M.; Varlas, V.N.; Kucukberksun, A.S.; Cretoiu, D.; Varlas, R.G.; Zetu, C. Gene Polymorphisms LEP, LEPR, 5HT2A, GHRL, NPY, and FTO-Obesity Biomarkers in Metabolic Risk Assessment: A Retrospective Pilot Study in Overweight and Obese Population in Romania. Cardiogenetics 2024, 14, 93–105. [Google Scholar] [CrossRef]
- Patel, P.; Selvaraju, V.; Babu, J.R.; Wang, X.; Geetha, T. Racial Disparities in Methylation of NRF1, FTO, and LEPR Gene in Childhood Obesity. Genes 2022, 13, 2030. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Rincón, C.L. Role of the hypoxia-inducible factor (HIF) in the process of neurogenesis at the hippocampal level. Rev. Mex. Neuroci. 2022, 23, 71–77. [Google Scholar] [CrossRef]
- Qannita, R.A.; Alalami, A.I.; Harb, A.A.; Aleidi, S.M.; Taneera, J.; Abu-Gharbieh, E.; El-Huneidi, W.; Saleh, M.A.; Alzoubi, K.H.; Semreen, M.H.; et al. Targeting Hypoxia-Inducible Factor-1 (HIF-1) in Cancer: Emerging Therapeutic Strategies and Pathway Regulation. Pharmaceuticals 2024, 17, 195. [Google Scholar] [CrossRef]
- Infantino, V.; Santarsiero, A.; Convertini, P.; Todisco, S.; Iacobazzi, V. Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target. Int. J. Mol. Sci. 2021, 22, 5703. [Google Scholar] [CrossRef] [PubMed]
- Hirota, K. HIF-α Prolyl Hydroxylase Inhibitors and Their Implications for Biomedicine: A Comprehensive Review. Biomedicines 2021, 9, 468. [Google Scholar] [CrossRef] [PubMed]
- Nara, H.; Watanabe, R. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. Int. J. Mol. Sci. 2021, 22, 9889. [Google Scholar] [CrossRef] [PubMed]
- Farahani, M.; Niknam, Z.; Mohammadi Amirabad, L.; Amiri-Dashatan, N.; Koushki, M.; Nemati, M.; Danesh Pouya, F.; Rezaei-Tavirani, M.; Rasmi, Y.; Tayebi, L. Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomed. Pharmacother. 2022, 145, 112420. [Google Scholar] [CrossRef] [PubMed]
- Lestón Pinilla, L.; Ugun-Klusek, A.; Rutella, S.; De Girolamo, L.A. Hypoxia Signaling in Parkinson’s Disease: There Is Use in Asking “What HIF?”. Biology 2021, 10, 723. [Google Scholar] [CrossRef]
- Yfantis, A.; Mylonis, I.; Chachami, G.; Nikolaidis, M.; Amoutzias, G.D.; Paraskeva, E.; Simos, G. Transcriptional Response to Hypoxia: The Role of HIF-1-Associated Co-Regulators. Cells 2023, 12, 798. [Google Scholar] [CrossRef]
- Albanese, A.; Daly, L.A.; Mennerich, D.; Kietzmann, T.; Sée, V. The Role of Hypoxia-Inducible Factor Post-Translational Modifications in Regulating Its Localisation, Stability, and Activity. Int. J. Mol. Sci. 2021, 22, 268. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.T.; Scholz, C.C. The effect of HIF on metabolism and immunity. Nat. Rev. Nephrol. 2022, 18, 573–587. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Samanta, P.; Sarkar, R.; Biswas, S.; Saha, P.; Hajra, S.; Bhowmik, A. Targeting HIF-1α by Natural and Synthetic Compounds: A Promising Approach for Anti-Cancer Therapeutics Development. Molecules 2022, 27, 5192. [Google Scholar] [CrossRef]
- Kimura, K.; Jackson, T.L.B.; Huang, R.C.C. Interaction and Collaboration of SP1, HIF-1, and MYC in Regulating the Expression of Cancer-Related Genes to Further Enhance Anticancer Drug Development. Curr. Issues Mol. Biol. 2023, 45, 9262–9283. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.; Gaete, D.; Rodriguez, D.; Hoogewijs, D.; Rauner, M.; Sormendi, S.; Wielockx, B. Hypoxia Pathway Proteins are Master Regulators of Erythropoiesis. Int. J. Mol. Sci. 2020, 21, 8131. [Google Scholar] [CrossRef] [PubMed]
- Emami Nejad, A.; Najafgholian, S.; Rostami, A.; Sistani, A.; Shojaeifar, S.; Esparvarinha, M.; Nedaeinia, R.; Haghjooy Javanmard, S.; Taherian, M.; Ahmadlou, M.; et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: A novel approach to developing treatment. Cancer Cell Int. 2021, 21, 62. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Golinska, M.; Griffiths, J.R. HIF-1-Independent Mechanisms Regulating Metabolic Adaptation in Hypoxic Cancer Cells. Cells 2021, 10, 2371. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-S.; Riopel, M.; Seo, J.B.; Herrero-Aguayo, V.; Isaac, R.; Lee, Y.S. HIF-2α Preserves Mitochondrial Activity and Glucose Sensing in Compensating β-Cells in Obesity. Diabetes 2022, 71, 1508–1524. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Boytard, L.; Hadi, T.; Koelwyn, G.; Simon, R.; Ouimet, M.; Seifert, L.; Spiro, W.; Yan, B.; Hutchison, S.; et al. Enhanced glycolysis and HIF-1α activation in adipose tissue macrophages sustains local and systemic interleukin-1β production in obesity. Sci. Rep. 2020, 10, 5555. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 7 August 2024).
- Liu, Z.; Cai, L.; Liu, Y.; Chen, W.; Wang, Q. Association between prenatal cadmium exposure and cognitive development of offspring: A systematic review. Environ. Pollut. 2019, 254, 113081. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Changbunjong, T.; Weluwanarak, T.; Hussain, S.; Sparagano, O. The pests of a pest: A systematic review of ectoparasitic fauna among synanthropic rodents in the 21st century with meta-analysis. Acta Trop. 2021, 215, 105802. [Google Scholar] [CrossRef]
- JBI. Appraisal Tool for Cross-Sectional Studies (AXIS Tool). Available online: https://jbi.global/critical-appraisal-tools (accessed on 7 August 2024).
- Cossu, C.A.; Cassini, R.; Bhoora, R.V.; Menandro, M.L.; Oosthuizen, M.C.; Collins, N.E.; Wentzel, J.; Quan, M.; Fagir, D.M.; van Heerden, H. Occurrence and molecular prevalence of Anaplasmataceae, Rickettsiaceae and Coxiellaceae in African wildlife: A systematic review and meta-analysis. Prev. Vet. Med. 2024, 230, 106257. [Google Scholar] [CrossRef] [PubMed]
- de Reuver, S.; Moens, A.J.B.W.D.; Kruyt, M.C.; Nievelstein, R.A.J.; Ito, K.; Castelein, R.M. Ultrasound Shear Wave Elastography of the Intervertebral Disc and Idiopathic Scoliosis: A Systematic Review. Ultrasound Med. Biol. 2022, 48, 721–729. [Google Scholar] [CrossRef]
- Lai, J.; Luo, L.; Zhou, T.; Feng, X.; Ye, J.; Zhong, B. Alterations in Circulating Bile Acids in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Systematic Review and Meta-Analysis. Biomolecules 2023, 13, 1356. [Google Scholar] [CrossRef]
- Ramos-Martínez, E.; Ramos-Martínez, I.; Sánchez-Betancourt, I.; Ramos-Martínez, J.C.; Peña-Corona, S.I.; Valencia, J.; Saucedo, R.; Almeida-Aguirre, E.K.P.; Cerbón, M. Association between Galectin Levels and Neurodegenerative Diseases: Systematic Review and Meta-Analysis. Biomolecules 2022, 12, 1062. [Google Scholar] [CrossRef]
- Suwanwong, C.; Jansem, A.; Intarakamhang, U.; Prasittichok, P.; Tuntivivat, S.; Chuenphittayavut, K.; Le, K.; Lien, L.T.M. Modifiable predictors of mental health literacy in the educational context: A systematic review and meta-analysis. BMC Psychol. 2024, 12, 378. [Google Scholar] [CrossRef] [PubMed]
- Mollaei, F.; Sharif Nia, H.; Pouralizadeh, M.; Karkhah, S.; Javadi-Pashaki, N.; Ghorbani Vajargah, P. Resilience and related factors in caregivers of adult cancer patients: A systematic review. Ann. Med. Surg. 2024, 86, 3451–3459. [Google Scholar] [CrossRef] [PubMed]
- Open Meta-Analyst. Available online: http://www.cebm.brown.edu/openmeta/doc/openMA_help.html#self (accessed on 7 August 2024).
- Sen, S.; Yildirim, I. A Tutorial on How to Conduct Meta-Analysis with IBM SPSS Statistics. Psych 2022, 4, 640–667. [Google Scholar] [CrossRef]
- Afolabi, H.A.; Salleh, S.M.; Zakaria, Z.; Seng, C.n.E.; Nafi, N.M.; Bin AbdulAziz, A.A.; Wada, Y.; Irekeola, A.A.; Al-Ml-hanna, S.B.; Mussa, A. Targeted variant prevalence of FBXW7 gene mutation in colorectal carcinoma propagation. The first systematic review and meta-analysis. Heliyon 2024, 10, e31471. [Google Scholar] [CrossRef] [PubMed]
- Hung, H.-Y.; Hung, W.-L.; Shih, C.-L.; Chen, C.-Y. Drug-induced liver injury by glecaprevir/pibrentasvir treatment for chronic hepatitis C infection: A systematic review and meta-analysis. Ann. Med. 2022, 54, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, H.; Zhang, C.; Luo, J.; Wang, H.; Wu, H.; Zhu, Y.; Cui, H.; Wang, J.; Li, H.; et al. The Prevalence of Psychological Status During the COVID-19 Epidemic in China: A Systemic Review and Meta-Analysis. Front. Psychol. 2021, 12, 614964. [Google Scholar] [CrossRef]
- Toth, G. Exponential and Logarithmic Functions. In Elements of Mathematics: A Problem-Centered Approach to History and Foundations; Springer International Publishing: Cham, Switzerland, 2021; pp. 423–468. [Google Scholar]
- Parisi, E.; Sorolla, A.; Montal, R.; González-Resina, R.; Novell, A.; Salud, A.; Sorolla, M.A. Prognostic Factors Involved in the Epithelial–Mesenchymal Transition Process in Colorectal Cancer Have a Preponderant Role in Oxidative Stress: A Systematic Review and Meta-Analysis. Cancers 2020, 12, 3330. [Google Scholar] [CrossRef]
- Elizarraras, J.M.; Liao, Y.; Shi, Z.; Zhu, Q.; Pico, A.R.; Zhang, B. WebGestalt 2024: Faster gene set analysis and new support for metabolomics and multi-omics. Nucleic Acids Res. 2024, 52, W415–W421. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Chen, C.; Wang, J.; Huang, J.; Yao, D.; Li, C. Atorvastatin Ester Regulates Lipid Metabolism in Hyperlipidemia Rats via the PPAR-signaling Pathway and HMGCR Expression in the Liver. Int. J. Mol. Sci. 2021, 22, 11107. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Wu, R.; Zhu, X.; Li, Y.; Li, M.; An, F.; Wu, J. Ameliorative effect of Lactobacillus plantarum WW-fermented soy extract on rat fatty liver via the PPAR signaling pathway. J. Funct. Foods 2019, 60, 103439. [Google Scholar] [CrossRef]
- Ding, S.; Yuan, C.; Si, B.; Wang, M.; Da, S.; Bai, L.; Wu, W. Combined effects of ambient particulate matter exposure and a high-fat diet on oxidative stress and steatohepatitis in mice. PLoS ONE 2019, 14, e0214680. [Google Scholar] [CrossRef] [PubMed]
- Kostrycki, I.M.; Wildner, G.; Donato, Y.H.; dos Santos, A.B.; Beber, L.C.C.; Frizzo, M.N.; Ludwig, M.S.; Keane, K.N.; Cruzat, V.; Rhoden, C.R.; et al. Effects of High-Fat Diet on eHSP72 and Extra-to-Intracellular HSP70 Levels in Mice Submitted to Exercise under Exposure to Fine Particulate Matter. J. Diabetes Res. 2019, 2019, 4858740. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, Y.; Zhu, P.; Wu, Y.; Jin, Y.; Yu, S.; Wei, H.; Qian, M.; Cao, W.; Xu, S.; et al. Prenatal exposure to diesel exhaust PM2.5 programmed non-alcoholic fatty liver disease differently in adult male offspring of mice fed normal chow and a high-fat diet. Environ. Pollut. 2019, 255, 113366. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, P.; Lu, Y.; Huo, L.; Bai, M.; Yu, F.; Tie, Y. Potential injurious effects of the fine particulate PM2.5 on the progression of atherosclerosis in apoE-deficient mice by activating platelets and leukocytes. Arch. Med. Sci. 2019, 15, 250–261. [Google Scholar] [CrossRef]
- Campolim, C.M.; Weissmann, L.; Ferreira, C.K.d.O.; Zordão, O.P.; Dornellas, A.P.S.; de Castro, G.; Zanotto, T.M.; Boico, V.F.; Quaresma, P.G.F.; Lima, R.P.A.; et al. Short-term exposure to air pollution (PM2.5) induces hypothalamic inflammation, and long-term leads to leptin resistance and obesity via Tlr4/Ikbke in mice. Sci. Rep. 2020, 10, 10160. [Google Scholar] [CrossRef] [PubMed]
- Costa Beber, L.C.; da Silva, M.O.A.F.; dos Santos, A.B.; Mai, A.S.; Goettems-Fiorin, P.B.; Frizzo, M.N.; Hirsch, G.E.; Ludwig, M.S.; Heck, T.G. The association of subchronic exposure to low concentration of PM2.5 and high-fat diet potentiates glucose intolerance development, by impairing adipose tissue antioxidant defense and eHSP72 levels. Environ. Sci. Pollut. Res. 2020, 27, 32006–32016. [Google Scholar] [CrossRef]
- Dahlem, C.; Kado, S.Y.; He, Y.; Bein, K.; Wu, D.; Haarmann-Stemmann, T.; Kado, N.Y.; Vogel, C.F.A. AHR Signaling Interacting with Nutritional Factors Regulating the Expression of Markers in Vascular Inflammation and Atherogenesis. Int. J. Mol. Sci. 2020, 21, 8287. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Li, Y.; Liang, S.; Sun, B.; Shi, Y.; Xu, Q.; Zhang, J.; Shen, H.; Duan, J.; Sun, Z. Combined exposure of fine particulate matter and high-fat diet aggravate the cardiac fibrosis in C57BL/6J mice. J. Hazard. Mater. 2020, 391, 122203. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tu, R.; Qiao, D.; Niu, M.; Li, R.; Mao, Z.; Huo, W.; Chen, G.; Xiang, H.; Guo, Y.; et al. Association between long-term exposure to ambient air pollution and obesity in a Chinese rural population: The Henan Rural Cohort Study. Environ. Pollut. 2020, 260, 114077. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Park, B.; Palanivel, R.; Vinayachandran, V.; Deiuliis, J.A.; Gangwar, R.S.; Das, L.; Yin, J.; Choi, Y.; Al-Kindi, S.; et al. Metabolic effects of air pollution exposure and reversibility. J. Clin. Investig. 2020, 130, 6034–6040. [Google Scholar] [CrossRef]
- Song, Y.; Qi, Z.; Zhang, Y.; Wei, J.; Liao, X.; Li, R.; Dong, C.; Zhu, L.; Yang, Z.; Cai, Z. Effects of exposure to ambient fine particulate matter on the heart of diet-induced obesity mouse model. Sci. Total Environ. 2020, 732, 139304. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, F.; Yang, L.; Li, Q.; Huang, Y.; Cheng, Z.; Chu, H.; Song, Y.; Shang, L.; Hao, W.; et al. Effects of coal-fired PM2.5 on the expression levels of atherosclerosis-related proteins and the phosphorylation level of MAPK in ApoE−/− mice. BMC Pharmacol. Toxicol. 2020, 21, 34. [Google Scholar] [CrossRef] [PubMed]
- Costa-Beber, L.C.; Goettems-Fiorin, P.B.; dos Santos, J.B.; Friske, P.T.; Frizzo, M.N.; Heck, T.G.; Hirsch, G.E.; Ludwig, M.S. Ovariectomy enhances female rats’ susceptibility to metabolic, oxidative, and heat shock response effects induced by a high-fat diet and fine particulate matter. Exp. Gerontol. 2021, 145, 111215. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Zhao, T.; Xu, Q.; Duan, J.; Sun, Z. Evaluation of fine particulate matter on vascular endothelial function in vivo and in vitro. Ecotoxicol. Environ. Saf. 2021, 222, 112485. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Su, X.; Lu, J.; Ning, J.; Lin, M.; Zhou, H. PM2.5 induces intestinal damage by affecting gut microbiota and metabolites of rats fed a high-carbohydrate diet. Environ. Pollut. 2021, 279, 116849. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Lin, L.; Li, Y.; Sun, M.; Liang, Q.; Sun, Z.; Duan, J. Combined exposure to PM2.5 and high-fat diet facilitates the hepatic lipid metabolism disorders via ROS/miR-155/PPARγ pathway. Free Radic. Biol. Med. 2022, 190, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Sun, Q.; Liu, S.; Lin, L.; Ren, X.; Li, T.; Xu, Q.; Sun, Z. Co-exposure of PM2.5 and high-fat diet induce lipid metabolism reprogramming and vascular remodeling. Environ. Pollut. 2022, 315, 120437. [Google Scholar] [CrossRef]
- Guo, B.; Guo, Y.; Nima, Q.; Feng, Y.; Wang, Z.; Lu, R.; Baimayangji; Ma, Y.; Zhou, J.; Xu, H.; et al. Exposure to air pollution is associated with an increased risk of metabolic dysfunction-associated fatty liver disease. J. Hepatol. 2022, 76, 518–525. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhang, H.; Song, Y.; Yang, Z.; Cai, Z. Exposure to ambient fine particulate matter impedes the function of spleen in the mouse metabolism of high-fat diet. J. Hazard. Mater. 2022, 423, 127129. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.; Jia, R.; Wei, M.; Meng, X.; Zhang, X.; Du, R.; Sun, W.; Wang, L.; Song, L. Oxidative stress activates Ryr2-Ca2+ and apoptosis to promote PM2.5-induced heart injury of hyperlipidemia mice. Ecotoxicol. Environ. Saf. 2022, 232, 113228. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.J.T.; Rohm, T.V.; AlAsfoor, S.; Low, A.J.Y.; Keller, L.; Baumann, Z.; Parayil, N.; Stawiski, M.; Rachid, L.; Dervos, T.; et al. Lung versus gut exposure to air pollution particles differentially affect metabolic health in mice. Part. Fibre Toxicol. 2023, 20, 7. [Google Scholar] [CrossRef]
- Chen, S.; Li, M.; Zhang, R.; Ye, L.; Jiang, Y.; Jiang, X.; Peng, H.; Wang, Z.; Guo, Z.; Chen, L.; et al. Type 1 diabetes and diet-induced obesity predispose C57BL/6J mice to PM2.5-induced lung injury: A comparative study. Part. Fibre Toxicol. 2023, 20, 10. [Google Scholar] [CrossRef]
- Costa-Beber, L.C.; Goettems-Fiorin, P.B.; dos Santos, J.B.; Friske, P.T.; Frizzo, M.N.; Heck, T.G.; Ludwig, M.S. Air pollution combined with high-fat feeding aggravates metabolic and cardiovascular diseases: A dangerous, oxidative, and immune-inflammatory association. Life Sci. 2023, 317, 121468. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Jiang, J.; Zhang, G.; Yu, M.; Zheng, Y. Ambient particulate matter exposure plus chronic ethanol ingestion exacerbates hepatic fibrosis by triggering the mitochondrial ROS-ferroptosis signaling pathway in mice. Ecotoxicol. Environ. Saf. 2023, 256, 114897. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, A.B.; Costa-Beber, L.C.; de Pelegrin Basso, E.G.; Donato, Y.H.; Sulzbacher, M.M.; Sulzbacher, L.M.; Ludwig, M.S.; Heck, T.G. Moderate aerobic training is safe and improves glucose intolerance induced by the association of high fat diet and air pollution. Environ. Sci. Pollut. Res. 2023, 30, 1908–1918. [Google Scholar] [CrossRef]
- Guo, B.; Huang, S.; Li, S.; Han, X.; Lin, H.; Li, Y.; Qin, Z.; Jiang, X.; Wang, Z.; Pan, Y.; et al. Long-term exposure to ambient PM2.5 and its constituents is associated with MAFLD. JHEP Rep. 2023, 5, 100912. [Google Scholar] [CrossRef]
- Li, C.; Ni, S.; Sun, H.; Zhu, S.; Feng, Y.; Yang, X.; Huang, Q.; Jiang, S.; Tang, N. Effects of PM2.5 and high-fat diet interaction on blood glucose metabolism in adolescent male Wistar rats: A serum metabolomics analysis based on ultra-high performance liquid chromatography/mass spectrometry. Ecotoxicol. Environ. Saf. 2023, 262, 115200. [Google Scholar] [CrossRef]
- Schneider, L.J.; Santiago, I.; Johnson, B.; Stanley, A.H.; Penaredondo, B.; Lund, A.K. Histological features of non-alcoholic fatty liver disease revealed in response to mixed vehicle emission exposure and consumption of a high-fat diet in wildtype C57Bl/6 male mice. Ecotoxicol. Environ. Saf. 2023, 261, 115094. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zhao, X.; Wang, L.; Ren, Y. Atorvastatin ameliorated PM2.5-induced atherosclerosis in rats. Arch. Environ. Occup. Health 2023, 78, 267–272. [Google Scholar] [CrossRef]
- Zhao, T.; Li, X.; Qian, H.; Miao, X.; Zhu, Y.; Wang, J.; Hui, J.; Zhou, L.; Ye, L. PM2.5 induces the abnormal lipid metabolism and leads to atherosclerosis via Notch signaling pathway in rats. Toxicology 2023, 485, 153415. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Zhao, G.; Edwards, S.; Tran, J.; Rajagopalan, S.; Rao, X. Particulate air pollution exaggerates diet-induced insulin resistance through NLRP3 inflammasome in mice. Environ. Pollut. 2023, 328, 121603. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ni, S.; Zhao, L.; Lin, H.; Yang, X.; Zhang, Q.; Zhang, L.; Guo, L.; Jiang, S.; Tang, N. Effects of PM2.5 and high-fat diet on glucose and lipid metabolisms and role of MT-COX3 methylation in male rats. Environ. Int. 2024, 188, 108780. [Google Scholar] [CrossRef]
- Goettems-Fiorin, P.B.; Grochanke, B.S.; Baldissera, F.G.; dos Santos, A.B.; Homem de Bittencourt, P.I.; Ludwig, M.S.; Rhoden, C.R.; Heck, T.G. Fine particulate matter potentiates type 2 diabetes development in high-fat diet-treated mice: Stress response and extracellular to intracellular HSP70 ratio analysis. J. Physiol. Biochem. 2016, 72, 643–656. [Google Scholar] [CrossRef]
- Della Guardia, L.; Wang, L. Fine particulate matter induces adipose tissue expansion and weight gain: Pathophysiology. Obes. Rev. 2023, 24, e13552. [Google Scholar] [CrossRef] [PubMed]
- Pinmanee, P.; Sompinit, K.; Jantimaporn, A.; Khongkow, M.; Haltrich, D.; Nimchua, T.; Sukyai, P. Purification and Immobilization of Superoxide Dismutase Obtained from Saccharomyces cerevisiae TBRC657 on Bacterial Cellulose and Its Protective Effect against Oxidative Damage in Fibroblasts. Biomolecules 2023, 13, 1156. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants 2023, 12, 1675. [Google Scholar] [CrossRef]
- Bal, A.; Panda, F.; Pati, S.G.; Das, K.; Agrawal, P.K.; Paital, B. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 241, 108971. [Google Scholar] [CrossRef]
- Ji, L.L.; Yeo, D. Oxidative stress: An evolving definition. Fac. Rev. 2021, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Vandekeere, A.; El Kharraz, S.; Altea-Manzano, P.; Fendt, S.-M. Metabolic Rewiring During Metastasis: The Interplay Between the Environment and the Host. Ann. Rev. Cancer Biol. 2024, 8, 269–290. [Google Scholar] [CrossRef]
- Lash, T.L.; VanderWeele, T.J.; Haneuse, S.; Rothman, K.J. Modern Epidemiology, 4th ed.; Wolters Kluwer: Mexico City, Mexico, 2021. [Google Scholar]
- Juanola, O.; Martínez-López, S.; Francés, R.; Gómez-Hurtado, I. Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. Int. J. Environ. Res. Public Health 2021, 18, 5227. [Google Scholar] [CrossRef]
- Doğan, A.; Brockmann, G. Gene Expression Profile as a Precursor of Inflammation in Mouse Models: BFMI860 and C57BL/6NCrl. Experimed 2024, 14, 73–84. [Google Scholar] [CrossRef]
- Guerra-Cantera, S.; Frago, L.M.; Díaz, F.; Ros, P.; Jiménez-Hernaiz, M.; Freire-Regatillo, A.; Barrios, V.; Argente, J.; Chowen, J.A. Short-Term Diet Induced Changes in the Central and Circulating IGF Systems Are Sex Specific. Front. Endocrinol. 2020, 11, 513. [Google Scholar] [CrossRef]
- Abdelmegeed, M.A.; Ha, S.-K.; Choi, Y.; Akbar, M.; Song, B.-J. Role of CYP2E1 in Mitochondrial Dysfunction and Hepatic Injury by Alcohol and Non-Alcoholic Substances. Curr. Mol. Pharmacol. 2017, 10, 207–225. [Google Scholar] [CrossRef]
- Shen, Q.; Chen, Y.; Shi, J.; Pei, C.; Chen, S.; Huang, S.; Li, W.; Shi, X.; Liang, J.; Hou, S. Asperuloside alleviates lipid accumulation and inflammation in HFD-induced NAFLD via AMPK signaling pathway and NLRP3 inflammasome. Eur. J. Pharmacol. 2023, 942, 175504. [Google Scholar] [CrossRef]
- Yoon, Y.-S.; Chung, K.-S.; Lee, S.-Y.; Heo, S.-W.; Kim, Y.-R.; Lee, J.K.; Kim, H.; Park, S.; Shin, Y.-K.; Lee, K.-T. Anti-obesity effects of a standardized ethanol extract of Eisenia bicyclis by regulating the AMPK signaling pathway in 3T3-L1 cells and HFD-induced mice. Food Funct. 2024, 15, 6424–6437. [Google Scholar] [CrossRef]
- Xu, X.; Rao, X.; Wang, T.-Y.; Jiang, S.Y.; Ying, Z.; Liu, C.; Wang, A.; Zhong, M.; Deiuliis, J.A.; Maiseyeu, A.; et al. Effect of co-exposure to nickel and particulate matter on insulin resistance and mitochondrial dysfunction in a mouse model. Part. Fibre Toxicol. 2012, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Songtrai, S.; Pratchayasakul, W.; Arunsak, B.; Chunchai, T.; Kongkaew, A.; Chattipakorn, N.; Chattipakorn, S.C.; Kaewsuwan, S. Cyclosorus terminans Extract Ameliorates Insulin Resistance and Non-Alcoholic Fatty Liver Disease (NAFLD) in High-Fat Diet (HFD)-Induced Obese Rats. Nutrients 2022, 14, 4895. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Zhang, B.; Li, Y.; Chen, K.; Qi, H.; Gao, M.; Rong, J.; Liu, L.; Wan, Y.; et al. Tangshen formula targets the gut microbiota to treat non-alcoholic fatty liver disease in HFD mice: A 16S rRNA and non-targeted metabolomics analyses. Biomed. Pharmacother. 2024, 173, 116405. [Google Scholar] [CrossRef]
- Chen, J.; Wu, L.; Yang, G.; Zhang, C.; Liu, X.; Sun, X.; Chen, X.; Wang, N. The influence of PM2.5 exposure on non-alcoholic fatty liver disease. Life Sci. 2021, 270, 119135. [Google Scholar] [CrossRef] [PubMed]
- Tu, L.; Sun, H.; Tang, M.; Zhao, J.; Zhang, Z.; Sun, X.; He, S. Red raspberry extract (Rubus idaeus L shrub) intake ameliorates hyperlipidemia in HFD-induced mice through PPAR signaling pathway. Food Chem. Toxicol. 2019, 133, 110796. [Google Scholar] [CrossRef]
- Gu, W.; Wang, R.; Chai, Y.; Zhang, L.; Chen, R.; Li, R.; Pan, J.; Zhu, J.; Sun, Q.; Liu, C. β3 adrenergic receptor activation alleviated PM2.5-induced hepatic lipid deposition in mice. Sci. Total Environ. 2024, 907, 168167. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Wang, Z.; Yang, Y.; Du, P.; Li, X. PM2.5 induced weight loss of mice through altering the intestinal microenvironment: Mucus barrier, gut microbiota, and metabolic profiling. J. Hazard. Mater. 2022, 431, 128653. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Silva, M.; Cardoso, J.; Alemão, C.; Santos, S.; Monteiro, A.; Manteigas, V.; Marques-Ramos, A. Impact of Particles on Pulmonary Endothelial Cells. Toxics 2022, 10, 312. [Google Scholar] [CrossRef]
- Jarc, E.; Petan, T. A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 2020, 169, 69–87. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, M.; Qi, B.; Peng, T.; Liu, M.; Li, Z.; Fu, F.; Guo, Y.; Li, C.; Wang, Y.; et al. Lipid overload-induced RTN3 activation leads to cardiac dysfunction by promoting lipid droplet biogenesis. Cell Death Differ. 2024, 31, 292–308. [Google Scholar] [CrossRef]
- Obaseki, E.; Adebayo, D.; Bandyopadhyay, S.; Hariri, H. Lipid droplets and fatty acid-induced lipotoxicity: In a nutshell. FEBS Lett. 2024, 598, 1207–1214. [Google Scholar] [CrossRef]
No. | Ref. | StD | PBM | Exposure | n | TCL | QS |
---|---|---|---|---|---|---|---|
1 | [111] | CCS | C57BL/6J mice | PM2.5, HFD, and PM2.5 + HFD | 40 | Liver | 8 |
2 | [112] | L | Isogenic B6129F2/J mice | PM2.5, HFD, and PM2.5 + HFD | 60 | Blood | 8 |
3 | [113] | CCS | apoE−/− mice | PM2.5, HFD, and PM2.5 + HFD | 32 | Liver | 8 |
4 | [114] | CCS | C57BL/6 J or WT mice TLR4-deficient mice | HFD and PM2.5 + HFD | 13 | Blood | 8 |
5 | [115] | CCS | C57BL/6 J or WT mice TLR4-deficient mice | PM2.5 | 36 | Hypothalamic | 8 |
6 | [116] | CCS | B6129SF2/J mice | PM2.5, HFD, and PM2.5 + HFD | 23 | Adipose tissue | 9 |
7 | [117] | CCS | U937-derived macrophages and human aortic endothelial cells | PM2.5, HFD, and PM2.5 + HFD | NA | U937 human cells and HAEC human cells | 8 |
8 | [118] | CCS | C57BL/6J mice | PM2.5, HFD, and PM2.5 + HFD | 40 | Heart | 8 |
9 | [119] | C | Humans | PM2.5 | 38,824 | Adipose tissue | 7 |
10 | [120] | CCS | C57BL/6J mice | PM2.5 and HFD | 36 | Liver, heart and adipose tissue | 8 |
11 | [121] | CCS | C57BL/6 J mice | PM2.5, HFD, and PM2.5 + HFD | 24 | Heart, hypothalamic, and lung | 8 |
12 | [122] | CCS | ApoE−/− C57BL/6 J | PM2.5 | 14 | Vascular | 9 |
13 | [123] | CCS | Wistar rats | PM2.5, HFD, and PM2.5 + HFD | 36 | Vascular | 8 |
14 | [124] | CCS | C57BL/6 mice | PM2.5, HFD, and PM2.5 + HFD | 40 | Vascular | 8 |
15 | [125] | CCS | SD rats | PM2.5, HFD, and PM2.5 + HFD | 36 | Intestinal | 8 |
16 | [126] | CCS | C57BL/6J mice | PM2.5, HFD, and PM2.5 + HFD | 40 | Liver | 8 |
17 | [127] | CCS | apoE−/− mice | PM2.5, HFD, and PM2.5 + HFD | 40 | Macrophages | 8 |
18 | [128] | T | Humans | PM2.5 + HFD | 90,086 | Blood | 80% |
19 | [129] | CCS | C57BL/6 J mice | PM2.5, HFD, and PM2.5 + HFD | 34 | Spleen | 8 |
20 | [130] | CCS | C57BL/6 mice | PM2.5, HFD, and PM2.5 + HFD | 50 | Heart | 8 |
21 | [131] | CCS | C57BL/6N mice | PM2.5 | 54 | Lung | 8 |
22 | [132] | CCS | C57BL/6J mice | PM2.5 and PM2.5 + HFD | 120 | Lung | 8 |
23 | [133] | CCS | Wistar rats | PM2.5, HFD, and PM2.5 + HFD | 24 | Cardiovascular | 8 |
24 | [134] | CCS | C57BL/6 J mice | PM2.5 | 40 | Liver | 8 |
25 | [135] | CCS | B6129SF2/J mice | PM2.5, HFD, and PM2.5 + HFD | 31 | Muscle, gastrocnemius, soleus, pancreas, and adipose tissue | 8 |
26 | [136] | T | Humans | PM2.5 | 99,556 | Blood | 70% |
27 | [137] | CCS | Wistar rats | PM2.5, HFD, and PM2.5 + HFD | 32 | Blood | 8 |
28 | [138] | CCS | C57Bl/6 mice | PM2.5, HFD, and PM2.5 + HFD | 32 | Liver | 8 |
29 | [139] | CCS | Wistar rats | PM2.5 | 32 | Blood | 8 |
30 | [140] | CCS | Wistar rats | PM2.5 + HFD | 112 | Blood and heart | 8 |
31 | [141] | CCS | C57BL/6 J mice, Nlrp3 | PM2.5 | 52 | Macro-phages | 8 |
32 | [142] | CCS | Wistar rats | PM2.5, HFD, and PM2.5 + HFD | 32 | Liver | 8 |
33 | [20] | CCS | C57Bl/6 mice | PM2.5 and HFD | 20 | Adipose tissue | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobato, S.; Salomón-Soto, V.M.; Espinosa-Méndez, C.M.; Herrera-Moreno, M.N.; García-Solano, B.; Pérez-González, E.; Comba-Marcó-del-Pont, F.; Montesano-Villamil, M.; Mora-Ramírez, M.A.; Mancilla-Simbro, C.; et al. Molecular Pathways Linking High-Fat Diet and PM2.5 Exposure to Metabolically Abnormal Obesity: A Systematic Review and Meta-Analysis. Biomolecules 2024, 14, 1607. https://doi.org/10.3390/biom14121607
Lobato S, Salomón-Soto VM, Espinosa-Méndez CM, Herrera-Moreno MN, García-Solano B, Pérez-González E, Comba-Marcó-del-Pont F, Montesano-Villamil M, Mora-Ramírez MA, Mancilla-Simbro C, et al. Molecular Pathways Linking High-Fat Diet and PM2.5 Exposure to Metabolically Abnormal Obesity: A Systematic Review and Meta-Analysis. Biomolecules. 2024; 14(12):1607. https://doi.org/10.3390/biom14121607
Chicago/Turabian StyleLobato, Sagrario, Víctor Manuel Salomón-Soto, Claudia Magaly Espinosa-Méndez, María Nancy Herrera-Moreno, Beatriz García-Solano, Ernestina Pérez-González, Facundo Comba-Marcó-del-Pont, Mireya Montesano-Villamil, Marco Antonio Mora-Ramírez, Claudia Mancilla-Simbro, and et al. 2024. "Molecular Pathways Linking High-Fat Diet and PM2.5 Exposure to Metabolically Abnormal Obesity: A Systematic Review and Meta-Analysis" Biomolecules 14, no. 12: 1607. https://doi.org/10.3390/biom14121607
APA StyleLobato, S., Salomón-Soto, V. M., Espinosa-Méndez, C. M., Herrera-Moreno, M. N., García-Solano, B., Pérez-González, E., Comba-Marcó-del-Pont, F., Montesano-Villamil, M., Mora-Ramírez, M. A., Mancilla-Simbro, C., & Álvarez-Valenzuela, R. (2024). Molecular Pathways Linking High-Fat Diet and PM2.5 Exposure to Metabolically Abnormal Obesity: A Systematic Review and Meta-Analysis. Biomolecules, 14(12), 1607. https://doi.org/10.3390/biom14121607