Next Article in Journal
Vascular Calcification: Molecular Networking, Pathological Implications and Translational Opportunities
Next Article in Special Issue
SKGQA, a Peptide Derived from the ANA/BTG3 Protein, Cleaves Amyloid-β with Proteolytic Activity
Previous Article in Journal
Neuroprotective Effects of the Nutraceutical Dehydrozingerone and Its C2-Symmetric Dimer in a Drosophila Model of Parkinson’s Disease
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Opinion

Upsetting the Balance: How Modifiable Risk Factors Contribute to the Progression of Alzheimer’s Disease

by
Caitlin M. Carroll
1,2 and
Ruth M. Benca
1,*
1
Psychiatry and Behavioral Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
2
Alzheimer’s Disease Research Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
*
Author to whom correspondence should be addressed.
Biomolecules 2024, 14(3), 274; https://doi.org/10.3390/biom14030274
Submission received: 16 January 2024 / Revised: 19 February 2024 / Accepted: 23 February 2024 / Published: 24 February 2024

Abstract

:
Alzheimer’s disease (AD) is a neurodegenerative disorder affecting nearly one in nine older adults in the US. This number is expected to grow exponentially, thereby increasing stress on caregivers and health systems. While some risk factors for developing AD are genetic, an estimated 1/3 of AD cases are attributed to lifestyle. Many of these risk factors emerge decades before clinical symptoms of AD are detected, and targeting them may offer more efficacious strategies for slowing or preventing disease progression. This review will focus on two common risk factors for AD, metabolic dysfunction and sleep impairments, and discuss potential mechanisms underlying their relationship to AD pathophysiology. Both sleep and metabolism can alter AD-related protein production and clearance, contributing to an imbalance that drives AD progression. Additionally, these risk factors have bidirectional relationships with AD, where the presence of AD-related pathology can further disrupt sleep and worsen metabolic functioning. Sleep and metabolism also appear to have a bidirectional relationship with each other, indirectly exacerbating AD pathophysiology. Understanding the mechanisms involved in these relationships is critical for identifying new strategies to slow the AD cascade.

1. Alzheimer’s Disease Background

Alzheimer’s disease (AD) is a progressive disease, with biomarker changes detected decades before the onset of clinical symptoms. Currently, there are more than 55 million individuals worldwide living with dementia, costing more than 1.3 trillion USD annually [1]. As the population continues to age, these numbers are expected to grow exponentially, increasing the pressure to identify novel treatments [1]. According to the proposed A/T/N framework [2,3], AD is defined by the presence of pathology within the following biomarker categories: intracellularly aggregated amyloid-beta (Aβ; “A”), extracellularly aggregated pathological tau (“T”), and neurodegeneration or neuronal injury (“N”). Changes in these biomarker profiles, along with declines in cognitive performance, indicate progression along the AD continuum. This pathological cascade, in which an individual may move from preclinical Alzheimer’s disease to Alzheimer’s disease with mild cognitive impairment (MCI) or dementia, likely occurs over decades [4]. Amyloid deposition occurs 15–20 years before clinical symptom onset [5,6], while increased CSF tau and neurodegeneration likely start 10–15 years before symptoms manifest [4,6]. Other biomarkers, such as altered brain glucose metabolism [6,7,8,9] and markers of inflammation [10,11], as well as modifiable risk factors for AD [12,13,14,15], emerge during this early preclinical phase and may even contribute to disease pathogenesis [8,16,17,18,19]. Therefore, the most clinically efficacious treatments should target this long pre-clinical period to slow biomarker accumulation and stop disease progression.
The traditional amyloid cascade hypothesis posits that AD pathophysiology is spurred by an imbalance in Aβ production and clearance mechanisms, and recent studies suggest similar mechanisms may contribute to early tau hyperphosphorylation and spreading [20,21,22]. Aβ is produced under normal physiological circumstances as a by-product of neuronal activity through the sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretase [23]. APP can also be cleaved by α- and γ-secretase in a non-amyloidogenic pathway, resulting in the release of non-plaque-forming extracellular peptides [24]. Genetic mutations in this APP processing pathway result in increased amyloidogenic pathway activity and are a common cause of early-onset Alzheimer’s disease [25,26,27]. In AD, Aβ aggregates in a concentration-dependent manner into insoluble amyloid plaques. Because of this, Aβ plaques have a regional distribution whereby highly active regions, such as the default mode network, show early and dense plaque accumulation [28,29]. Similarly, neuronal activity also regulates tau release [30,31] and propagation [32], suggesting targeting neuronal activity levels may simultaneously affect both AD pathologies. Aβ is regularly cleared through a variety of mechanisms, including intracellular (e.g., ubiquitin-proteasome and autophagy lysosome systems) and extracellular (e.g., glial phagocytosis) degradation processes [33,34]. Aβ can also be cleared into the periphery across the blood–brain barrier (BBB) [35] and through the glymphatic system, which facilitates Aβ clearance from interstitial fluid (ISF) via astrocytic aquaporin-4 (AQP-4) channels [36]. Studies have shown that impaired clearance mechanisms, such as diminished perivascular drainage across the BBB in cerebral small-vessel disease, lead to increased Aβ accumulation [37]. Recent studies have also demonstrated that the glymphatic system may play a role in tau clearance. Inhibition of AQP-4 function or deletion of the channel increased tau levels and facilitated neurodegeneration in mice [38,39,40]. These studies demonstrate that both overproduction and reduced clearance can cause an imbalance in the regulation of Aβ and tau, thereby increasing AD pathology [41,42,43]. Therefore, treatments targeting mechanisms of production and/or clearance should reduce the overall pathological load and slow AD progression.
There are currently few drugs approved for the treatment of AD pathology and symptoms. Cholinesterase inhibitors (e.g., Donepezil, Rivastigmine) and glutamate regulators (e.g., Memantine) are both approved to treat cognitive symptoms. While these drugs have a modest beneficial impact on functional outcomes, they have no effect on disease progression [44,45]. Recently, the FDA has approved several anti-amyloid therapies for the treatment of AD. These monoclonal antibody therapies are successful at reducing Aβ plaque burden in the brain [46]. However, there is still debate as to whether the clinical efficacy outweighs the potential side effect risks for these drugs, particularly with the first approved drug in this class, Aducanumab. However, results from the Lecanemab and Donanemab clinical trials showed significant slowing of cognitive decline, equating to around a 4–6 month delay in cognitive deterioration, particularly among those with a low disease burden, suggesting more functional efficacy in slowing disease progression [46,47]. However, these cognitive benefits are still coupled with a relatively large risk of monoclonal antibody-related side effects, namely amyloid-related imaging abnormalities (ARIA). ARIA can cause cerebral edema and microhemorrhages and is only diagnosable by MRI, making detection and intervention particularly difficult outside of the clinical trial environment [47]. Moreover, in the decades since the amyloid hypothesis was first proposed [20], there have been several studies showing tau may be more closely correlated with cognitive decline [48,49]. This has ultimately led many to question the future of anti-amyloid therapies for the treatment of Alzheimer’s disease. However, these anti-amyloid clinical trials suggest there is still a benefit to targeting amyloid, particularly early in the AD cascade before plaques form, and potentially in combination therapies designed to target multiple AD risk factors.

2. Sleep and AD: A Bidirectional Relationship

Sleep changes with normal aging on both a macro- and microstructural level. Older adults have decreased total sleep time and spend less time in deeper stages of non-rapid eye movement (NREM) sleep, or slow-wave sleep (SWS) [50,51,52]. They also have greater sleep fragmentation, leading to increased daytime sleepiness and more frequent napping [53,54]. These age-related changes in sleep are associated with an increased risk of cognitive decline [55,56,57]. In cognitively normal older adults, impaired sleep and, specifically, decreased slow-wave amplitude are associated with increased amyloid and tau burden, particularly in brain regions susceptible to early accumulation of AD pathology [58,59,60,61,62]. Recent studies have also demonstrated the importance of sleep spindles in AD pathophysiology. Impaired coupling between slow waves and spindles, which occurs with normal aging [63], predicted greater tau burden [60], whereas decreased fast spindle density was associated with impaired episodic memory [64]. In both rodent and clinical studies, acute sleep deprivation, specifically deprivation of slow-wave sleep, caused elevated levels of Aβ and tau [65,66,67]. Chronic sleep deprivation increased plaque density and tau propagation and accelerated cognitive decline [65,68,69,70,71]. Several studies have demonstrated that the relationship between sleep and AD is bidirectional, such that disrupted sleep drives AD pathology and the presence of AD pathology reciprocally impairs sleep quality. Adults with MCI or AD spent less time in slow-wave sleep and had decreased sleep efficiency, increased fragmentation, and more frequent daytime naps [13,72,73]. Daily rest-activity patterns are also disrupted in individuals with AD [14,74], and amyloid pathology mediates the relationship between these fragmented activity rhythms and cognitive decline [75]. Sleep disturbances also become more severe as AD progresses, further demonstrating the feedforward loop between AD-related pathology and sleep [73,76,77].
Sleep disruption drives AD pathology through both impaired production and clearance of AD-related proteins. Sleep plays an important role in regulating the diurnal rhythm of Aβ. Both preclinical and clinical studies show Aβ is higher during waking periods and lower during periods of sleep in ISF, CSF, and plasma [68,78,79,80]. This is likely due in part to changes in neuronal firing patterns associated with sleep/wake. SWS is associated with a reduction in global neuronal firing rates and cortical excitability [81,82,83,84,85]. Conversely, prolonged wakefulness is associated with increased brain metabolic activity, neuronal firing, and cortical excitability [85,86,87,88]. Increased neuronal firing is associated with increases in Aβ and tau release [28,65,68], thereby explaining one mechanism through which sleep deprivation contributes to increased circulating levels of Aβ and tau in humans [65,66,89,90]. Slow-wave sleep is also critical for the glymphatic clearance of AD-related proteins from the brain [91,92]. Impaired glymphatic function increases Aβ and tau levels [36,40] while enhancing glymphatic clearance can decrease AD protein levels [93,94]. Both normal aging [95,96] and sleep restriction [97,98,99,100] impair BBB structural integrity, leading to impaired glymphatic clearance and decreased protein clearance. Together, these studies suggest disrupted sleep impairs the balance between AD-protein production and clearance, thereby increasing AD risk.
The presence of AD pathology can also disrupt sleep, creating a feedforward loop in which pathology-related sleep impairments further drive AD pathophysiology. Several well-studied AD mouse models develop sleep disruptions as AD-related pathology accumulates, including increased fragmentation, decreased NREM sleep time, and shifts in power spectra towards higher frequencies [78,101,102,103]. These impairments reflect clinical reports, suggesting these changes in sleep are mediated by the presence of pathology. There are likely several potential mechanisms through which pathology causes sleep disruption. One mechanism is cortical hyperexcitability and subsequent neuronal network dysfunction, which has been demonstrated in both rodent and clinical AD studies [104,105,106,107,108]. Importantly, this hyperexcitability is found in early disease progression, before overt neurodegeneration and hypoactivity [107,108], coinciding with observed sleep disruption [109]. Further, a recent study found age-related hyperexcitability in arousal circuits drove sleep instability and increased fragmentation [110]. While it is unclear if AD exacerbates hyperexcitability specifically in arousal circuits, general hyperexcitability and increased epileptiform activity are well documented in individuals with AD [111]. Interestingly, epileptic activity is associated with both sleep disturbances and exacerbated AD pathology, further supporting the notion that hyperexcitability may play a role in the relationship between sleep and AD progression [112,113]. Several studies have also suggested degeneration of certain neural populations within both wake- and sleep-promoting regions may play a mechanistic role in AD-related sleep fragmentation later in disease progression. AD-related degeneration occurs in several sleep-promoting areas, including galanergic neurons in the ventrolateral preoptic nucleus (VLPO) and melanin-concentrating hormone (MCH) neurons in the lateral hypothalamic area (LHA) [114,115,116]. These neural populations are critical for generating sleep through inhibitory projections to wake-promoting brain regions, and, therefore, their degeneration may contribute to the sleep loss observed in AD patients. There is also degeneration in wake-promoting brain regions, such as the locus coeruleus [117,118], histaminergic neurons in the tuberomammillary nucleus, and orexinergic neurons in the LHA [119,120], potentially contributing to sleep-wake instability and sleep fragmentation.
One final mechanism by which AD pathology may contribute to impaired sleep is through inflammation. Chronic neuroinflammation is a hallmark of AD pathophysiology [121,122,123,124], and studies have shown the sustained presence of activated microglia and reactive astrocytes exacerbates pathology accumulation [125,126,127,128] and impairs protein clearance [129]. Chronic and acute inflammation disrupt sleep [130,131,132], and studies suggest chronic low-grade inflammation may explain some age-associated deficits in sleep [133]. A recent study by Mander et al. found microglial activation mediates the relationship between tau pathology and NREM fast sleep spindle density [64], demonstrating neuroinflammation associated with AD pathology can directly impair sleep function. However, this relationship between inflammation and sleep is bidirectional. Circadian dysfunction, chronic short sleep, and insomnia are all associated with greater inflammation [134,135,136,137], which may be due to shifts in cytokine secretion patterns and increased daytime cytokine levels [138,139], which, in turn, can lead to excessive daytime sleepiness and fatigue [140,141]. Together, these data suggest neuroinflammation may also mediate the bidirectional nature of the relationship between AD and sleep.

3. Metabolism and AD

Metabolic syndrome is an independent predictor of mortality [142] and affects nearly 35% of adults in the US, including 50% of adults over 60 years of age [143]. Type 2 diabetes (T2D), hyperglycemia, hyperinsulinemia, and insulin resistance, all factors associated with metabolic syndrome, increase the risk for cognitive and functional decline, frailty, and AD [144,145,146,147,148,149,150,151,152,153]. This elevated AD risk is partially mediated through hypertension and other cardiovascular risk factors common in individuals with metabolic syndrome [154,155,156,157]. However, studies suggest diabetes is an independent risk factor for AD as well [158]. Further, hyperglycemia alone increases ISF Aβ [144] and tau hyperphosphorylation [159,160], suggesting changes in peripheral glucose metabolism may be sufficient to drive AD pathology. In clinical populations, high-glycemic diets led to increased amyloid burden [161,162], while elevated HbA1c levels were associated with AD-related neurodegeneration [163]. Further, imaging studies show that alterations in brain glucose metabolism preceded cognitive symptoms [8,164,165] and predicted cognitive decline [9], suggesting brain glucose metabolism plays a role in early AD pathophysiology. Given this association, several studies have looked at the effect of metabolic syndrome treatments on AD pathology. Preclinical studies found decreased amyloid plaque burden and improved cognitive outcomes after treatment with metformin [166,167], GLP-1 agonists [168,169], and sulfonylureas [170,171]. However, results in clinical studies were varied [172,173,174,175,176,177], indicating the need for further studies to understand the mechanisms behind this relationship.
While there are clear associations between metabolic disruption and AD, the mechanisms by which altered metabolic function drives AD pathology are not clear. One mechanism explored as a potential link between metabolic dysfunction and AD risk is inflammation [178]. Chronic low-grade peripheral inflammation is a hallmark of metabolic syndrome [179,180] and predicts cognitive decline and a more rapid transition from MCI to AD [11,181,182]. It is well documented that chronic peripheral inflammation can lead to neuroinflammation, largely through cytokine-induced disruption of the BBB, which allows a further influx of cytokines into the brain [183]. Studies have demonstrated a similar pattern in metabolic syndrome, where increased permeability of the BBB is associated with neuroinflammation and neurodegeneration [184,185,186]. As previously discussed, neuroinflammation plays a significant role in the pathological progression of AD, exacerbating protein production and impairing clearance. Therefore, peripheral inflammation associated with metabolic syndrome may be a mechanistic link connecting these two diseases [181,187,188].
Disrupted brain insulin signaling and insulin resistance also play a role in mediating cognitive deficits observed with metabolic syndrome [189,190,191]. Moreover, hyperinsulinemia alone has been shown to increase AD risk [192], and the impacts of insulin on AD pathology seem to occur before clinical symptom onset [193]. Hyperinsulinemia increases Aβ production via γ-secretase activity [194], induces Aβ extracellular secretion [195], and increases tau hyperphosphorylation [196]. Hyperinsulinemia also impairs Aβ clearance, as both are degraded by insulin-degrading enzyme (IDE), and, during periods of high brain insulin, IDE will preferentially bind insulin [197,198,199]. There is also evidence that Aβ accumulation can impair insulin signaling and cause brain insulin resistance [200,201]. However, other studies have demonstrated that the brain remains responsive to insulin in the presence of amyloid pathology [202]. In clinical studies, hyperinsulinemic clamps increased Aβ production, but also improved memory [203]. This result led to several clinical trials exploring intranasal insulin as a treatment for cognitive decline [204], which have reported modest cognitive improvement [205,206]. The effect of intranasal insulin might contradict expected outcomes given the associations between hyperinsulinemia and Aβ and tau described earlier. Given these conflicting results, further studies are necessary to understand how insulin contributes to the AD cascade and its future as a treatment option.

4. Sleep and Metabolism

The sleep and circadian systems are also major regulators of metabolic activity in the brain and periphery. Blood glucose has a diurnal rhythm, in which glucose levels peak in the evening and glucose tolerance and insulin sensitivity peak in the morning, thus lowering glucose levels [207]. These shifts in blood glucose levels are in part due to decreased glucose utilization during slow-wave sleep [208]. Sleep also regulates the secretion of important hunger- and satiety-related proteins, such as ghrelin and leptin [209,210]. The regulation of these proteins contributes to the diurnal rhythms of glucose homeostasis, as glucose intake follows food consumption patterns. Studies have shown that short sleep and sleep fragmentation are associated with a greater risk of metabolic impairments and an increased prevalence of diabetes [209,211,212,213,214,215]. Specifically, suppression of slow-wave sleep has been shown to impair insulin sensitivity, causing impaired glucose tolerance and a greater risk of metabolic syndrome [213,216]. Therefore, SWS deficits caused by AD pathology may contribute to impaired metabolic function.
Obstructive sleep apnea (OSA) is a common sleep disorder characterized by periods of hypoxemia and/or hypercapnia due to upper airway obstruction, thereby leading to sleep fragmentation. OSA is extremely common in obese individuals and those with metabolic syndrome [217,218,219], and, because of the increasing obesity epidemic, OSA prevalence continues to rise. OSA is also a risk factor for AD, likely because of both the sleep fragmentation and metabolic components [220]. A study by Ju et al. found continuous positive airway pressure (CPAP) treatment for OSA increased SWS, and that increase was associated with decreased Aβ levels [221]. Importantly, CPAP treatment also improved metabolic function [222,223,224]. Together, this suggests sleep improvements may have a beneficial effect on both metabolic status and AD risk.
Sleep disturbances are commonly reported by individuals with T2D and metabolic syndrome [219]. While it is clear that disrupted sleep can impair metabolic functioning, several studies suggest the opposite relationship, whereby metabolic syndrome directly affects sleep, may also exist. A genetic mouse model of diabetes (db/db mice) has increased sleep fragmentation and decreased delta power, a marker of SWS [225]. High-sugar diets are also associated with decreased sleep quality and reduced slow-wave sleep [226,227]. Further, acute instances of hyperglycemia are sufficient to decrease delta power, a marker of SWS, and total NREM sleep time [228]. Several mechanisms might explain this relationship. Hyperglycemia can increase neuronal activity [144,228], which may in turn drive sleep instability and wakefulness [88,110]. Neuroinflammation associated with metabolic syndrome may also disrupt sleep, similar to what is hypothesized to happen with age-related inflammation [133]. While further studies are necessary to identify mechanisms involved, these initial studies suggest a bidirectional relationship between metabolism and sleep, which may contribute to AD pathophysiology. Therefore, when designing AD clinical trials, we should consider multimodal treatment approaches in which multiple AD risk factors are simultaneously targeted. Further, we should prioritize lifestyle interventions in early disease stages and identify those with sleep and metabolic impairments as “at risk” populations, as early targeting of these risk factors will provide the best opportunity for slowing disease progression.

5. Conclusions

This review highlights several mechanisms through which disrupted sleep and metabolism, common lifestyle risk factors for AD, contribute to AD pathogenesis and disease progression. We also demonstrate the bidirectional nature of these relationships, where the presence of AD pathology negatively affects sleep and metabolic health, therefore creating feedforward cycles of worsening AD pathology. Finally, we explore the underlying bidirectional connection between these risk factors and suggest potential mechanisms, such as neuroinflammation and neuronal hyperexcitability, by which impaired sleep and metabolic function may synergistically contribute to AD progression. Together, this review highlights the need to identify mechanisms connecting lifestyle risk factors both to AD and to each other, as many of these risk factors are present before clinical AD symptoms appear, and targeting lifestyle risk factors like sleep and metabolic disruption early in disease progression may lower overall AD risk.

Funding

This work was supported by National Institutes of Health T32AG033534 and Wake Forest School of Medicine.

Conflicts of Interest

R.B. is a consultant for Eisai, Idorsia, Genentech, Merck, and Sage. R.B. also has grant support from Eisai.

References

  1. Alzheimer’s Disease International. Dementia Facts & Figures. 2024. Available online: https://www.alzint.org/about/dementia-facts-figures/ (accessed on 16 January 2024).
  2. Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Feldman, H.H.; Frisoni, G.B.; Hampel, H.; Jagust, W.J.; Johnson, K.A.; Knopman, D.S.; et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 2016, 87, 539–547. [Google Scholar] [CrossRef]
  3. Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
  4. Jack, C.R.; Knopman, D.S.; Jagust, W.J.; Petersen, R.C.; Weiner, M.W.; Aisen, P.S.; Shaw, L.M.; Vemuri, P.; Wiste, H.J.; Weigand, S.D.; et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013, 12, 207–216. [Google Scholar] [CrossRef]
  5. Schindler, S.E.; Li, Y.; Buckles, V.D.; Gordon, B.A.; Benzinger, T.L.S.; Wang, G.; Coble, D.; Klunk, W.E.; Fagan, A.M.; Holtzman, D.M.; et al. Predicting Symptom Onset in Sporadic Alzheimer Disease With Amyloid PET. Neurology 2021, 97, e1823–e1834. [Google Scholar] [CrossRef]
  6. Bateman, R.J.; Xiong, C.; Benzinger, T.L.S.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; et al. Clinical and Biomarker Changes in Dominantly Inherited Alzheimer’s Disease. N. Engl. J. Med. 2012, 367, 795–804. [Google Scholar] [CrossRef] [PubMed]
  7. Hadjichrysanthou, C.; Evans, S.; Bajaj, S.; Siakallis, L.C.; McRae-McKee, K.; de Wolf, F.; Anderson, R.M.; the Alzheimer’s Disease Neuroimaging Initiative. The dynamics of biomarkers across the clinical spectrum of Alzheimer’s disease. Alzheimer’s Res. Ther. 2020, 12, 74. [Google Scholar] [CrossRef] [PubMed]
  8. Mosconi, L.; Mistur, R.; Switalski, R.; Tsui, W.H.; Glodzik, L.; Li, Y.; Pirraglia, E.; De Santi, S.; Reisberg, B.; Wisniewski, T.; et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 811–822. [Google Scholar] [CrossRef] [PubMed]
  9. Mosconi, L.; De Santi, S.; Li, J.; Tsui, W.H.; Li, Y.; Boppana, M.; Laska, E.; Rusinek, H.; de Leon, M.J. Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol. Aging 2008, 29, 676–692. [Google Scholar] [CrossRef]
  10. Gross, A.L.; Walker, K.A.; Moghekar, A.R.; Pettigrew, C.; Soldan, A.; Albert, M.S.; Walston, J.D. Plasma Markers of Inflammation Linked to Clinical Progression and Decline During Preclinical AD. Front. Aging Neurosci. 2019, 11, 229. [Google Scholar] [CrossRef] [PubMed]
  11. Pillai, J.A.; Bena, J.; Bebek, G.; Bekris, L.M.; Bonner-Jackson, A.; Kou, L.; Pai, A.; Sørensen, L.; Neilsen, M.; Rao, S.M.; et al. Inflammatory pathway analytes predicting rapid cognitive decline in MCI stage of Alzheimer’s disease. Ann. Clin. Transl. Neurol. 2020, 7, 1225–1239. [Google Scholar] [CrossRef] [PubMed]
  12. Norton, S.; Matthews, F.E.; Barnes, D.E.; Yaffe, K.; Brayne, C. Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurol. 2014, 13, 788–794. [Google Scholar] [CrossRef] [PubMed]
  13. Ju, Y.-E.S.; McLeland, J.S.; Toedebusch, C.D.; Xiong, C.; Fagan, A.M.; Duntley, S.P.; Morris, J.C.; Holtzman, D.M. Sleep Quality and Preclinical Alzheimer Disease. JAMA Neurol. 2013, 70, 587–593. [Google Scholar] [CrossRef] [PubMed]
  14. Musiek, E.S.; Bhimasani, M.; Zangrilli, M.A.; Morris, J.C.; Holtzman, D.M.; Ju, Y.-E.S. Circadian Rest-Activity Pattern Changes in Aging and Preclinical Alzheimer Disease. JAMA Neurol. 2018, 75, 582–590. [Google Scholar] [CrossRef] [PubMed]
  15. Misiak, B.; Leszek, J.; Kiejna, A. Metabolic syndrome, mild cognitive impairment and Alzheimer’s disease—The emerging role of systemic low-grade inflammation and adiposity. Brain Res. Bull. 2012, 89, 144–149. [Google Scholar] [CrossRef] [PubMed]
  16. Rogers, J.; Webster, S.; Lue, L.-F.; Brachova, L.; Harold Civin, W.; Emmerling, M.; Shivers, B.; Walker, D.; McGeer, P. Inflammation and Alzheimer’s disease pathogenesis. Neurobiol. Aging 1996, 17, 681–686. [Google Scholar] [CrossRef] [PubMed]
  17. Biel, D.; Suárez-Calvet, M.; Hager, P.; Rubinski, A.; Dewenter, A.; Steward, A.; Roemer, S.; Ewers, M.; Haass, C.; Brendel, M.; et al. sTREM2 is associated with amyloid-related p-tau increases and glucose hypermetabolism in Alzheimer’s disease. EMBO Mol. Med. 2023, 15, e16987. [Google Scholar] [CrossRef] [PubMed]
  18. Oh, H.; Madison, C.; Baker, S.; Rabinovici, G.; Jagust, W. Dynamic relationships between age, amyloid-β deposition, and glucose metabolism link to the regional vulnerability to Alzheimer’s disease. Brain 2016, 139, 2275–2289. [Google Scholar] [CrossRef] [PubMed]
  19. Xiang, X.; Wind, K.; Wiedemann, T.; Blume, T.; Shi, Y.; Briel, N.; Beyer, L.; Biechele, G.; Eckenweber, F.; Zatcepin, A.; et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci. Transl. Med. 2021, 13, eabe5640. [Google Scholar] [CrossRef]
  20. Glenner, G.G.; Wong, C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 1984, 120, 885–890. [Google Scholar] [CrossRef]
  21. Colom-Cadena, M.; Davies, C.; Sirisi, S.; Lee, J.-E.; Simzer, E.M.; Tzioras, M.; Querol-Vilaseca, M.; Sánchez-Aced, É.; Chang, Y.Y.; Holt, K.; et al. Synaptic oligomeric tau in Alzheimer’s disease—A potential culprit in the spread of tau pathology through the brain. Neuron 2023, 111, 2170–2183.e6. [Google Scholar] [CrossRef]
  22. Vogel, J.W.; Iturria-Medina, Y.; Strandberg, O.T.; Smith, R.; Levitis, E.; Evans, A.C.; Hansson, O.; Weiner, M.; Aisen, P.; Petersen, R.; et al. Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease. Nat. Commun. 2020, 11, 2612. [Google Scholar] [CrossRef] [PubMed]
  23. Chow, V.W.; Mattson, M.P.; Wong, P.C.; Gleichmann, M. An overview of APP processing enzymes and products. Neuromol. Med. 2010, 12, 1–12. [Google Scholar] [CrossRef]
  24. Chen, G.-F.; Xu, T.-H.; Yan, Y.; Zhou, Y.-R.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 2017, 38, 1205–1235. [Google Scholar] [CrossRef] [PubMed]
  25. Isacson, O.; Seo, H.; Lin, L.; Albeck, D.; Granholm, A.-C. Alzheimer’s disease and Down’s syndrome: Roles of APP, trophic factors and ACh. Trends Neurosci. 2002, 25, 79–84. [Google Scholar] [CrossRef]
  26. Jayadev, S.; Leverenz, J.B.; Steinbart, E.; Stahl, J.; Klunk, W.; Yu, C.-E.; Bird, T.D. Alzheimer’s disease phenotypes and genotypes associated with mutations in presenilin 2. Brain 2010, 133, 1143–1154. [Google Scholar] [CrossRef]
  27. Russo, C.; Schettini, G.; Saido, T.C.; Hulette, C.; Lippa, C.; Lannfelt, L.; Ghetti, B.; Gambetti, P.; Tabaton, M.; Teller, J.K. Presenilin-1 mutations in Alzheimer’s disease. Nature 2000, 405, 531–532. [Google Scholar] [CrossRef] [PubMed]
  28. Bero, A.W.; Yan, P.; Roh, J.H.; Cirrito, J.R.; Stewart, F.R.; Raichle, M.E.; Lee, J.-M.; Holtzman, D.M. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat. Neurosci. 2011, 14, 750–756. [Google Scholar] [CrossRef]
  29. Palmqvist, S.; Schöll, M.; Strandberg, O.; Mattsson, N.; Stomrud, E.; Zetterberg, H.; Blennow, K.; Landau, S.; Jagust, W.; Hansson, O. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 2017, 8, 1214. [Google Scholar] [CrossRef]
  30. Yamada, K.; Holth, J.K.; Liao, F.; Stewart, F.R.; Mahan, T.E.; Jiang, H.; Cirrito, J.R.; Patel, T.K.; Hochgräfe, K.; Mandelkow, E.-M.; et al. Neuronal activity regulates extracellular tau in vivo. J. Exp. Med. 2014, 211, 387–393. [Google Scholar] [CrossRef]
  31. Pooler, A.M.; Phillips, E.C.; Lau, D.H.W.; Noble, W.; Hanger, D.P. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 2013, 14, 389–394. [Google Scholar] [CrossRef]
  32. Wu, J.W.; Hussaini, S.A.; Bastille, I.M.; Rodriguez, G.A.; Mrejeru, A.; Rilett, K.; Sanders, D.W.; Cook, C.; Fu, H.; Boonen, R.A.C.M.; et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat. Neurosci. 2016, 19, 1085–1092. [Google Scholar] [CrossRef]
  33. Xin, S.-H.; Tan, L.; Cao, X.; Yu, J.-T.; Tan, L. Clearance of Amyloid Beta and Tau in Alzheimer’s Disease: From Mechanisms to Therapy. Neurotox. Res. 2018, 34, 733–748. [Google Scholar] [CrossRef]
  34. Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef] [PubMed]
  35. Zlokovic, B.V. Clearing amyloid through the blood–brain barrier. J. Neurochem. 2004, 89, 807–811. [Google Scholar] [CrossRef] [PubMed]
  36. Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; et al. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Sci. Transl. Med. 2012, 4, 147ra111. [Google Scholar] [CrossRef]
  37. Grimmer, T.; Faust, M.; Auer, F.; Alexopoulos, P.; Förstl, H.; Henriksen, G.; Perneczky, R.; Sorg, C.; Yousefi, B.H.; Drzezga, A.; et al. White matter hyperintensities predict amyloid increase in Alzheimer’s disease. Neurobiol. Aging 2012, 33, 2766–2773. [Google Scholar] [CrossRef]
  38. Ishida, K.; Yamada, K.; Nishiyama, R.; Hashimoto, T.; Nishida, I.; Abe, Y.; Yasui, M.; Iwatsubo, T. Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration. J. Exp. Med. 2022, 219, e20211275. [Google Scholar] [CrossRef]
  39. Harrison, I.F.; Ismail, O.; Machhada, A.; Colgan, N.; Ohene, Y.; Nahavandi, P.; Ahmed, Z.; Fisher, A.; Meftah, S.; Murray, T.K.; et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain 2020, 143, 2576–2593. [Google Scholar] [CrossRef] [PubMed]
  40. Iliff, J.J.; Chen, M.J.; Plog, B.A.; Zeppenfeld, D.M.; Soltero, M.; Yang, L.; Singh, I.; Deane, R.; Nedergaard, M. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury. J. Neurosci. 2014, 34, 16180–16193. [Google Scholar] [CrossRef]
  41. Yan, P.; Bero, A.W.; Cirrito, J.R.; Xiao, Q.; Hu, X.; Wang, Y.; Gonzales, E.; Holtzman, D.M.; Lee, J.-M. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J. Neurosci. 2009, 29, 10706–10714. [Google Scholar] [CrossRef]
  42. Bateman, R.J.; Munsell, L.Y.; Morris, J.C.; Swarm, R.; Yarasheski, K.E.; Holtzman, D.M. Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat. Med. 2006, 12, 856–861. [Google Scholar] [CrossRef]
  43. Tarasoff-Conway, J.M.; Carare, R.O.; Osorio, R.S.; Glodzik, L.; Butler, T.; Fieremans, E.; Axel, L.; Rusinek, H.; Nicholson, C.; Zlokovic, B.V.; et al. Clearance systems in the brain—Implications for Alzheimer disease. Nat. Rev. Neurol. 2015, 11, 457–470. [Google Scholar] [CrossRef]
  44. Matsunaga, S.; Kishi, T.; Iwata, N. Memantine Monotherapy for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0123289. [Google Scholar] [CrossRef]
  45. Trinh, N.-H.; Hoblyn, J.; Mohanty, S.; Yaffe, K. Efficacy of Cholinesterase Inhibitors in the Treatment of Neuropsychiatric Symptoms and Functional Impairment in Alzheimer Disease: A Meta-analysis. JAMA 2003, 289, 210–216. [Google Scholar] [CrossRef]
  46. Ramanan, V.K.; Day, G.S. Anti-amyloid therapies for Alzheimer disease: Finally, good news for patients. Mol. Neurodegener. 2023, 18, 42. [Google Scholar] [CrossRef]
  47. Li, J.; Wu, X.; Tan, X.; Wang, S.; Qu, R.; Wu, X.; Chen, Z.; Wang, Z.; Chen, G. The efficacy and safety of anti-Aβ agents for delaying cognitive decline in Alzheimer’s disease: A meta-analysis. Front. Aging Neurosci. 2023, 15, 1257973. [Google Scholar] [CrossRef] [PubMed]
  48. Hanseeuw, B.J.; Betensky, R.A.; Jacobs, H.I.L.; Schultz, A.P.; Sepulcre, J.; Becker, J.A.; Cosio, D.M.O.; Farrell, M.; Quiroz, Y.T.; Mormino, E.C.; et al. Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease: A Longitudinal Study. JAMA Neurol. 2019, 76, 915–924. [Google Scholar] [CrossRef] [PubMed]
  49. Tanner, J.A.; Rabinovici, G.D. Relationship Between Tau and Cognition in the Evolution of Alzheimer’s Disease: New Insights from Tau PET. J. Nucl. Med. 2021, 62, 612–613. [Google Scholar] [CrossRef]
  50. Mander, B.A.; Winer, J.R.; Walker, M.P. Sleep and Human Aging. Neuron 2017, 94, 19–36. [Google Scholar] [CrossRef] [PubMed]
  51. Van Cauter, E.; Leproult, R.; Plat, L. Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 2000, 284, 861–868. [Google Scholar] [CrossRef] [PubMed]
  52. Gaudreau, H.; Carrier, J.; Montplaisir, J. Age-related modifications of NREM sleep EEG: From childhood to middle age. J. Sleep Res. 2001, 10, 165–172. [Google Scholar] [CrossRef] [PubMed]
  53. Carskadon, M.A.; Brown, E.D.; Dement, W.C. Sleep fragmentation in the elderly: Relationship to daytime sleep tendency. Neurobiol. Aging 1982, 3, 321–327. [Google Scholar] [CrossRef] [PubMed]
  54. Foley, D.J.; Vitiello, M.V.; Bliwise, D.L.; Ancoli-Israel, S.; Monjan, A.A.; Walsh, J.K. Frequent Napping Is Associated With Excessive Daytime Sleepiness, Depression, Pain, and Nocturia in Older Adults: Findings From the National Sleep Foundation ‘2003 Sleep in America’ Poll. Am. J. Geriatr. Psychiatry 2007, 15, 344–350. [Google Scholar] [CrossRef]
  55. Blackwell, T.; Yaffe, K.; Ancoli-Israel, S.; Redline, S.; Ensrud, K.E.; Stefanick, M.L.; Laffan, A.; Stone, K.L.; Osteoporotic Fractures in Men (MrOS) Study Group. Association of Sleep Characteristics and Cognition in Older Community-Dwelling Men: The MrOS Sleep Study. Sleep 2011, 34, 1347–1356. [Google Scholar] [CrossRef] [PubMed]
  56. Spira, A.P.; Chen-Edinboro, L.P.; Wu, M.N.; Yaffe, K. Impact of sleep on the risk of cognitive decline and dementia. Curr. Opin. Psychiatry 2014, 27, 478–483. [Google Scholar] [CrossRef] [PubMed]
  57. Lim, A.S.P.; Kowgier, M.; Yu, L.; Buchman, A.S.; Bennett, D.A. Sleep Fragmentation and the Risk of Incident Alzheimer’s Disease and Cognitive Decline in Older Persons. Sleep 2013, 36, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
  58. Sprecher, K.E.; Koscik, R.L.; Carlsson, C.M.; Zetterberg, H.; Blennow, K.; Okonkwo, O.C.; Sager, M.A.; Asthana, S.; Johnson, S.C.; Benca, R.M.; et al. Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology 2017, 89, 445–453. [Google Scholar] [CrossRef] [PubMed]
  59. Sprecher, K.E.; Bendlin, B.B.; Racine, A.M.; Okonkwo, O.C.; Christian, B.T.; Koscik, R.L.; Sager, M.A.; Asthana, S.; Johnson, S.C.; Benca, R.M. Amyloid burden is associated with self-reported sleep in nondemented late middle-aged adults. Neurobiol. Aging 2015, 36, 2568–2576. [Google Scholar] [CrossRef]
  60. Winer, J.R.; Mander, B.A.; Helfrich, R.F.; Maass, A.; Harrison, T.M.; Baker, S.L.; Knight, R.T.; Jagust, W.J.; Walker, M.P. Sleep as a Potential Biomarker of Tau and β-Amyloid Burden in the Human Brain. J. Neurosci. 2019, 39, 6315–6324. [Google Scholar] [CrossRef]
  61. Winer, J.R.; Mander, B.A.; Kumar, S.; Reed, M.; Baker, S.L.; Jagust, W.J.; Walker, M.P. Sleep Disturbance Forecasts β-Amyloid Accumulation across Subsequent Years. Curr. Biol. 2020, 30, 4291–4298.e3. [Google Scholar] [CrossRef]
  62. Lucey, B.P.; McCullough, A.; Landsness, E.C.; Toedebusch, C.D.; McLeland, J.S.; Zaza, A.M.; Fagan, A.M.; McCue, L.; Xiong, C.; Morris, J.C.; et al. Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease. Sci. Transl. Med. 2019, 11, eaau6550. [Google Scholar] [CrossRef]
  63. Helfrich, R.F.; Mander, B.A.; Jagust, W.J.; Knight, R.T.; Walker, M.P. Old brains come uncoupled in sleep: Slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron 2018, 97, 221–230.e4. [Google Scholar] [CrossRef]
  64. Mander, B.A.; Dave, A.; Lui, K.K.; Sprecher, K.E.; Berisha, D.; Chappel-Farley, M.G.; Chen, I.Y.; Riedner, B.A.; Heston, M.; Suridjan, I.; et al. Inflammation, tau pathology, and synaptic integrity associated with sleep spindles and memory prior to β-amyloid positivity. Sleep 2022, 45, zsac135. [Google Scholar] [CrossRef]
  65. Holth, J.K.; Fritschi, S.K.; Wang, C.; Pedersen, N.P.; Cirrito, J.R.; Mahan, T.E.; Finn, M.B.; Manis, M.; Geerling, J.C.; Fuller, P.M.; et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 2019, 363, 880–884. [Google Scholar] [CrossRef]
  66. Lucey, B.P.; Hicks, T.J.; McLeland, J.S.; Toedebusch, C.D.; Boyd, J.; Elbert, D.L.; Patterson, B.W.; Baty, J.; Morris, J.C.; Ovod, V.; et al. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann. Neurol. 2018, 83, 197–204. [Google Scholar] [CrossRef]
  67. Ju, Y.-E.S.; Ooms, S.J.; Sutphen, C.; Macauley, S.L.; Zangrilli, M.A.; Jerome, G.; Fagan, A.M.; Mignot, E.; Zempel, J.M.; Claassen, J.A.H.R.; et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain 2017, 140, 2104–2111. [Google Scholar] [CrossRef]
  68. Kang, J.-E.; Lim, M.M.; Bateman, R.J.; Lee, J.J.; Smyth, L.P.; Cirrito, J.R.; Fujiki, N.; Nishino, S.; Holtzman, D.M. Amyloid Dynamics Are Regulated by Orexin and the Sleep-Wake Cycle. Science 2009, 326, 1005–1007. [Google Scholar] [CrossRef]
  69. Rothman, S.M.; Herdener, N.; Frankola, K.A.; Mughal, M.R.; Mattson, M.P. Chronic mild sleep restriction accentuates contextual memory impairments, and accumulations of cortical Aβ and pTau in a mouse model of Alzheimer’s disease. Brain Res. 2013, 1529, 200–208. [Google Scholar] [CrossRef] [PubMed]
  70. Wang, C.; Gao, W.-R.; Yin, J.; Wang, Z.-J.; Qi, J.-S.; Cai, H.-Y.; Wu, M.-N. Chronic sleep deprivation exacerbates cognitive and synaptic plasticity impairments in APP/PS1 transgenic mice. Behav. Brain Res. 2021, 412, 113400. [Google Scholar] [CrossRef] [PubMed]
  71. Abbott, S.M.; Videnovic, A. Chronic sleep disturbance and neural injury: Links to neurodegenerative disease. Nat. Sci. Sleep 2016, 8, 55–61. [Google Scholar] [CrossRef] [PubMed]
  72. McCurry, S.M.; Logsdon, R.G.; Teri, L.; Gibbons, L.E.; Kukull, W.A.; Bowen, J.D.; McCormick, W.C.; Larson, E.B. Characteristics of Sleep Disturbance in Community-Dwelling Alzheimer’s Disease Patients. J. Geriatr. Psychiatry Neurol. 1999, 12, 53–59. [Google Scholar] [CrossRef]
  73. Vitiello, M.V.; Prinz, P.N.; Williams, D.E.; Frommlet, M.S.; Ries, R.K. Sleep Disturbances in Patients With Mild-Stage Alzheimer’s Disease. J. Gerontol. 1990, 45, M131–M138. [Google Scholar] [CrossRef]
  74. Alfini, A.; Albert, M.; Faria, A.V.; Soldan, A.; Pettigrew, C.; Wanigatunga, S.; Zipunnikov, V.; Spira, A.P. Associations of actigraphic sleep and circadian rest/activity rhythms with cognition in the early phase of Alzheimer’s disease. Sleep Adv. 2021, 2, zpab007. [Google Scholar] [CrossRef]
  75. Roh, H.W.; Choi, J.-G.; Kim, N.-R.; Choe, Y.S.; Choi, J.W.; Cho, S.-M.; Seo, S.W.; Park, B.; Hong, C.H.; Yoon, D.; et al. Associations of rest-activity patterns with amyloid burden, medial temporal lobe atrophy, and cognitive impairment. eBioMedicine 2020, 58, 102881. [Google Scholar] [CrossRef]
  76. Bliwise, D.L.; Hughes, M.; McMahon, P.M.; Kutner, N. Observed Sleep/Wakefulness and Severity of Dementia in an Alzheimer’s Disease Special Care Unit. J. Gerontol. Ser. A 1995, 50A, M303–M306. [Google Scholar] [CrossRef]
  77. Pat-Horenczyk, R.; Klauber, M.R.; Shochat, T.; Ancoli-Israel, S. Hourly profiles of sleep and wakefulness in severely versus mild-moderately demented nursing home patients. Aging Clin. Exp. Res. 1998, 10, 308–315. [Google Scholar] [CrossRef] [PubMed]
  78. Roh, J.H.; Huang, Y.; Bero, A.W.; Kasten, T.; Stewart, F.R.; Bateman, R.J.; Holtzman, D.M. Disruption of the Sleep-Wake Cycle and Diurnal Fluctuation of Amyloid in Mice with Alzheimer’s Disease Pathology. Sci. Transl. Med. 2012, 4, 150ra122. [Google Scholar] [CrossRef] [PubMed]
  79. Bateman, R.J.; Wen, G.; Morris, J.C.; Holtzman, D.M. Fluctuations of CSF amyloid-β levels: Implications for a diagnostic and therapeutic biomarker. Neurology 2007, 68, 666–669. [Google Scholar] [CrossRef] [PubMed]
  80. Huang, Y.; Potter, R.; Sigurdson, W.; Kasten, T.; Connors, R.; Morris, J.C.; Benzinger, T.; Mintun, M.; Ashwood, T.; Ferm, M.; et al. β-Amyloid Dynamics in Human Plasma. Arch. Neurol. 2012, 69, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
  81. Bushey, D.; Tononi, G.; Cirelli, C. Sleep- and wake-dependent changes in neuronal activity and reactivity demonstrated in fly neurons using in vivo calcium imaging. Proc. Natl. Acad. Sci. USA 2015, 112, 4785–4790. [Google Scholar] [CrossRef]
  82. Glenn, L.; Steriade, M. Discharge rate and excitability of cortically projecting intralaminar thalamic neurons during waking and sleep states. J. Neurosci. 1982, 2, 1387–1404. [Google Scholar] [CrossRef]
  83. Miyawaki, H.; Diba, K. Regulation of hippocampal firing by network oscillations during sleep. Curr. Biol. 2016, 26, 893–902. [Google Scholar] [CrossRef] [PubMed]
  84. Watson, B.O.; Levenstein, D.; Greene, J.P.; Gelinas, J.N.; Buzsáki, G. Network Homeostasis and State Dynamics of Neocortical Sleep. Neuron 2016, 90, 839–852. [Google Scholar] [CrossRef] [PubMed]
  85. Vyazovskiy, V.V.; Olcese, U.; Lazimy, Y.M.; Faraguna, U.; Esser, S.K.; Williams, J.C.; Cirelli, C.; Tononi, G. Cortical Firing and Sleep Homeostasis. Neuron 2009, 63, 865–878. [Google Scholar] [CrossRef] [PubMed]
  86. Huber, R.; Mäki, H.; Rosanova, M.; Casarotto, S.; Canali, P.; Casali, A.G.; Tononi, G.; Massimini, M. Human Cortical Excitability Increases with Time Awake. Cereb. Cortex 2012, 23, 1–7. [Google Scholar] [CrossRef] [PubMed]
  87. Dash, M.B.; Tononi, G.; Cirelli, C. Extracellular Levels of Lactate, but Not Oxygen, Reflect Sleep Homeostasis in the Rat Cerebral Cortex. Sleep 2012, 35, 909–919. [Google Scholar] [CrossRef] [PubMed]
  88. Naylor, E.; Aillon, D.; Barrett, B.; Wilson, G.; Johnson, D.; Johnson, D.; Harmon, H.; Gabbert, S.; Petillo, P. Lactate as a Biomarker for Sleep. Sleep 2012, 35, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
  89. Shokri-Kojori, E.; Wang, G.-J.; Wiers, C.E.; Demiral, S.B.; Guo, M.; Kim, S.W.; Lindgren, E.; Ramirez, V.; Zehra, A.; Freeman, C.; et al. Amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl. Acad. Sci. USA 2018, 115, 4483–4488. [Google Scholar] [CrossRef] [PubMed]
  90. Barthélemy, N.R.; Liu, H.; Lu, W.; Kotzbauer, P.T.; Bateman, R.J.; Lucey, B.P. Sleep Deprivation Affects Tau Phosphorylation in Human Cerebrospinal Fluid. Ann. Neurol. 2020, 87, 700–709. [Google Scholar] [CrossRef]
  91. Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; et al. Sleep Drives Metabolite Clearance from the Adult Brain. Science 2013, 342, 373–377. [Google Scholar] [CrossRef]
  92. Hablitz, L.M.; Vinitsky, H.S.; Sun, Q.; Stæger, F.F.; Sigurdsson, B.; Mortensen, K.N.; Lilius, T.O.; Nedergaard, M. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci. Adv. 2019, 5, eaav5447. [Google Scholar] [CrossRef]
  93. Liu, D.-X.; He, X.; Wu, D.; Zhang, Q.; Yang, C.; Liang, F.-Y.; He, X.-F.; Dai, G.-Y.; Pei, Z.; Lan, Y.; et al. Continuous theta burst stimulation facilitates the clearance efficiency of the glymphatic pathway in a mouse model of sleep deprivation. Neurosci. Lett. 2017, 653, 189–194. [Google Scholar] [CrossRef] [PubMed]
  94. Wen, Y.-R.; Yang, J.-H.; Wang, X.; Yao, Z.-B. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer’s disease. Neural Regen. Res. 2018, 13, 709. [Google Scholar]
  95. Mooradian, A.D. Effect of aging on the blood-brain barrier. Neurobiol. Aging 1988, 9, 31–39. [Google Scholar] [CrossRef] [PubMed]
  96. Kress, B.T.; Iliff, J.J.; Xia, M.; Wang, M.; Wei, H.S.; Zeppenfeld, D.; Xie, L.; Kang, H.; Xu, Q.; Liew, J.A.; et al. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 2014, 76, 845–861. [Google Scholar] [CrossRef] [PubMed]
  97. He, J.; Hsuchou, H.; He, Y.; Kastin, A.J.; Wang, Y.; Pan, W. Sleep Restriction Impairs Blood–Brain Barrier Function. J. Neurosci. 2014, 34, 14697–14706. [Google Scholar] [CrossRef] [PubMed]
  98. Hurtado-Alvarado, G.; Domínguez-Salazar, E.; Pavon, L.; Velázquez-Moctezuma, J.; Gómez-González, B. Blood-Brain Barrier Disruption Induced by Chronic Sleep Loss: Low-Grade Inflammation May Be the Link. J. Immunol. Res. 2016, 2016, 4576012. [Google Scholar] [CrossRef]
  99. Sun, J.; Wu, J.; Hua, F.; Chen, Y.; Zhan, F.; Xu, G. Sleep Deprivation Induces Cognitive Impairment by Increasing Blood-Brain Barrier Permeability via CD44. Front. Neurol. 2020, 11, 563916. [Google Scholar] [CrossRef]
  100. Medina-Flores, F.; Hurtado-Alvarado, G.; Contis-Montes de Oca, A.; López-Cervantes, S.P.; Konigsberg, M.; Deli, M.A.; Gómez-González, B. Sleep loss disrupts pericyte-brain endothelial cell interactions impairing blood-brain barrier function. Brain Behav. Immun. 2020, 89, 118–132. [Google Scholar] [CrossRef]
  101. Sethi, M.; Joshi, S.S.; Webb, R.L.; Beckett, T.L.; Donohue, K.D.; Murphy, M.P.; O’Hara, B.F.; Duncan, M.J. Increased fragmentation of sleep–wake cycles in the 5XFAD mouse model of Alzheimer’s disease. Neuroscience 2015, 290, 80–89. [Google Scholar] [CrossRef]
  102. Holth, J.K.; Mahan, T.E.; Robinson, G.O.; Rocha, A.; Holtzman, D.M. Altered sleep and EEG power in the P301S Tau transgenic mouse model. Ann. Clin. Transl. Neurol. 2017, 4, 180–190. [Google Scholar] [CrossRef]
  103. Van Erum, J.; Van Dam, D.; Sheorajpanday, R.; De Deyn, P.P. Sleep architecture changes in the APP23 mouse model manifest at onset of cognitive deficits. Behav. Brain Res. 2019, 373, 112089. [Google Scholar] [CrossRef]
  104. Casula, E.P.; Borghi, I.; Maiella, M.; Pellicciari, M.C.; Bonnì, S.; Mencarelli, L.; Assogna, M.; D’Acunto, A.; Di Lorenzo, F.; Spampinato, D.A.; et al. Regional Precuneus Cortical Hyperexcitability in Alzheimer’s Disease Patients. Ann. Neurol. 2023, 93, 371–383. [Google Scholar] [CrossRef]
  105. Busche, M.A.; Eichhoff, G.; Adelsberger, H.; Abramowski, D.; Wiederhold, K.-H.; Haass, C.; Staufenbiel, M.; Konnerth, A.; Garaschuk, O. Clusters of Hyperactive Neurons Near Amyloid Plaques in a Mouse Model of Alzheimer’s Disease. Science 2008, 321, 1686–1689. [Google Scholar] [CrossRef]
  106. Tabuchi, M.; Lone, S.R.; Liu, S.; Liu, Q.; Zhang, J.; Spira, A.P.; Wu, M.N. Sleep Interacts with Aβ to Modulate Intrinsic Neuronal Excitability. Curr. Biol. 2015, 25, 702–712. [Google Scholar] [CrossRef]
  107. Dickerson, B.; Salat, D.; Greve, D.; Chua, E.; Rand-Giovannetti, E.; Rentz, D.; Bertram, L.; Mullin, K.; Tanzi, R.; Blacker, D. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005, 65, 404–411. [Google Scholar] [CrossRef]
  108. Bookheimer, S.Y.; Strojwas, M.H.; Cohen, M.S.; Saunders, A.M.; Pericak-Vance, M.A.; Mazziotta, J.C.; Small, G.W. Patterns of brain activation in people at risk for Alzheimer’s disease. N. Engl. J. Med. 2000, 343, 450–456. [Google Scholar] [CrossRef]
  109. D’Rozario, A.L.; Chapman, J.L.; Phillips, C.L.; Palmer, J.R.; Hoyos, C.M.; Mowszowski, L.; Duffy, S.L.; Marshall, N.S.; Benca, R.; Mander, B.; et al. Objective measurement of sleep in mild cognitive impairment: A systematic review and meta-analysis. Sleep Med. Rev. 2020, 52, 101308. [Google Scholar] [CrossRef]
  110. Li, S.-B.; Damonte, V.M.; Chen, C.; Wang, G.X.; Kebschull, J.M.; Yamaguchi, H.; Bian, W.-J.; Purmann, C.; Pattni, R.; Urban, A.E.; et al. Hyperexcitable arousal circuits drive sleep instability during aging. Science 2022, 375, eabh3021. [Google Scholar] [CrossRef]
  111. Sen, A.; Capelli, V.; Husain, M. Cognition and dementia in older patients with epilepsy. Brain 2018, 141, 1592–1608. [Google Scholar] [CrossRef]
  112. Giorgi, F.S.; Saccaro, L.F.; Busceti, C.L.; Biagioni, F.; Fornai, F. Epilepsy and Alzheimer’s Disease: Potential mechanisms for an association. Brain Res. Bull. 2020, 160, 107–120. [Google Scholar] [CrossRef]
  113. Szabo, A.; Cretin, B.; Gérard, F.; Curot, J.; Barbeau, E.J.; Pariente, J.; Dahan, L.; Valton, L. Sleep: The Tip of the Iceberg in the Bidirectional Link Between Alzheimer’s Disease and Epilepsy. Front. Neurol. 2022, 13, 836292. [Google Scholar] [CrossRef]
  114. Lim, A.S.; Ellison, B.A.; Wang, J.L.; Yu, L.; Schneider, J.A.; Buchman, A.S.; Bennett, D.A.; Saper, C.B. Sleep is related to neuron numbers in the ventrolateral preoptic/intermediate nucleus in older adults with and without Alzheimer’s disease. Brain 2014, 137, 2847–2861. [Google Scholar] [CrossRef]
  115. Mladinov, M.; Oh, J.Y.; Petersen, C.; Eser, R.A.; Li, S.; Theofilas, P.; Spina, S.; Seeley, W.W.; Bittencourt, J.C.; Neylan, T.; et al. A post-mortem study of melanin-concentrating hormone (MCH) neurons in Alzheimer’s disease and progressive supranuclear palsy: The complex degeneration pattern of the lateral hypothalamic area. Alzheimer’s Dement. 2021, 17, e054313. [Google Scholar] [CrossRef]
  116. Mladinov, M.; Oh, J.Y.; Petersen, C.; Eser, R.; Li, S.H.; Theofilas, P.; Spina, S.; Seeley, W.W.; Bittencourt, J.C.; Neylan, T.C.; et al. Specific pattern of melanin-concentrating hormone (MCH) neuron degeneration in Alzheimer’s disease and possible clinical implications. medRxiv 2021. [Google Scholar] [CrossRef]
  117. Tomlinson, B.; Irving, D.; Blessed, G. Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J. Neurol. Sci. 1981, 49, 419–428. [Google Scholar] [CrossRef]
  118. Ehrenberg, A.; Nguy, A.; Theofilas, P.; Dunlop, S.; Suemoto, C.; Di Lorenzo Alho, A.; Leite, R.; Diehl Rodriguez, R.; Mejia, M.; Rüb, U. Quantifying the accretion of hyperphosphorylated tau in the locus coeruleus and dorsal raphe nucleus: The pathological building blocks of early Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 2017, 43, 393–408. [Google Scholar] [CrossRef]
  119. Fronczek, R.; van Geest, S.; Frölich, M.; Overeem, S.; Roelandse, F.W.; Lammers, G.J.; Swaab, D.F. Hypocretin (orexin) loss in Alzheimer’s disease. Neurobiol. Aging 2012, 33, 1642–1650. [Google Scholar] [CrossRef]
  120. Oh, J.; Eser, R.A.; Ehrenberg, A.J.; Morales, D.; Petersen, C.; Kudlacek, J.; Dunlop, S.R.; Theofilas, P.; Resende, E.D.; Cosme, C. Profound degeneration of wake-promoting neurons in Alzheimer’s disease. Alzheimer’s Dement. 2019, 15, 1253–1263. [Google Scholar] [CrossRef]
  121. Heneka, M.T.; Carson, M.J.; Khoury, J.E.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef]
  122. Parhizkar, S.; Holtzman, D.M. APOE mediated neuroinflammation and neurodegeneration in Alzheimer’s disease. Semin. Immunol. 2022, 59, 101594. [Google Scholar] [CrossRef]
  123. Ulrich, J.D.; Holtzman, D.M. TREM2 function in Alzheimer’s disease and neurodegeneration. ACS Chem. Neurosci. 2016, 7, 420–427. [Google Scholar] [CrossRef]
  124. Popp, J.; Oikonomidi, A.; Tautvydaitė, D.; Dayon, L.; Bacher, M.; Migliavacca, E.; Henry, H.; Kirkland, R.; Severin, I.; Wojcik, J.; et al. Markers of neuroinflammation associated with Alzheimer’s disease pathology in older adults. Brain Behav. Immun. 2017, 62, 203–211. [Google Scholar] [CrossRef]
  125. Kitazawa, M.; Yamasaki, T.R.; LaFerla, F.M. Microglia as a Potential Bridge between the Amyloid β-Peptide and Tau. Ann. N. Y. Acad. Sci. 2004, 1035, 85–103. [Google Scholar] [CrossRef]
  126. Garwood, C.J.; Pooler, A.M.; Atherton, J.; Hanger, D.P.; Noble, W. Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis. 2011, 2, e167. [Google Scholar] [CrossRef]
  127. Kitazawa, M.; Oddo, S.; Yamasaki, T.R.; Green, K.N.; LaFerla, F.M. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J. Neurosci. 2005, 25, 8843–8853. [Google Scholar] [CrossRef]
  128. Maphis, N.; Xu, G.; Kokiko-Cochran, O.N.; Jiang, S.; Cardona, A.; Ransohoff, R.M.; Lamb, B.T.; Bhaskar, K. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain 2015, 138, 1738–1755. [Google Scholar] [CrossRef]
  129. Hickman, S.E.; Allison, E.K.; El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci. 2008, 28, 8354–8360. [Google Scholar] [CrossRef]
  130. Drake, C.L.; Roehrs, T.A.; Royer, H.; Koshorek, G.; Turner, R.B.; Roth, T. Effects of an experimentally induced rhinovirus cold on sleep, performance, and daytime alertness. Physiol. Behav. 2000, 71, 75–81. [Google Scholar] [CrossRef]
  131. Wilson, R.G.; Stevens, B.W.; Guo, A.Y.; Russell, C.N.; Thornton, A.; Cohen, M.A.; Sturgeon, H.C.; Giallourakis, C.; Khalili, H.; Nguyen, D.D.; et al. High C-Reactive Protein Is Associated with Poor Sleep Quality Independent of Nocturnal Symptoms in Patients with Inflammatory Bowel Disease. Dig. Dis. Sci. 2015, 60, 2136–2143. [Google Scholar] [CrossRef]
  132. Bjurström, M.F.; Olmstead, R.; Irwin, M.R. Reciprocal Relationship Between Sleep Macrostructure and Evening and Morning Cellular Inflammation in Rheumatoid Arthritis. Psychosom. Med. 2017, 79, 24–33. [Google Scholar] [CrossRef]
  133. Ingiosi, A.M.; Opp, M.R.; Krueger, J.M. Sleep and immune function: Glial contributions and consequences of aging. Curr. Opin. Neurobiol. 2013, 23, 806–811. [Google Scholar] [CrossRef]
  134. Castanon-Cervantes, O.; Wu, M.; Ehlen, J.C.; Paul, K.; Gamble, K.L.; Johnson, R.L.; Besing, R.C.; Menaker, M.; Gewirtz, A.T.; Davidson, A.J. Dysregulation of Inflammatory Responses by Chronic Circadian Disruption. J. Immunol. 2010, 185, 5796–5805. [Google Scholar] [CrossRef]
  135. Floam, S.; Simpson, N.; Nemeth, E.; Scott-Sutherland, J.; Gautam, S.; Haack, M. Sleep characteristics as predictor variables of stress systems markers in insomnia disorder. J. Sleep Res. 2015, 24, 296–304. [Google Scholar] [CrossRef]
  136. Cho, H.J.; Seeman, T.E.; Kiefe, C.I.; Lauderdale, D.S.; Irwin, M.R. Sleep disturbance and longitudinal risk of inflammation: Moderating influences of social integration and social isolation in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Brain Behav. Immun. 2015, 46, 319–326. [Google Scholar] [CrossRef]
  137. Wright, K.P.; Drake, A.L.; Frey, D.J.; Fleshner, M.; Desouza, C.A.; Gronfier, C.; Czeisler, C.A. Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain Behav. Immun. 2015, 47, 24–34. [Google Scholar] [CrossRef]
  138. Liu, P.Y.; Irwin, M.R.; Krueger, J.M.; Gaddameedhi, S.; Van Dongen, H.P.A. Night shift schedule alters endogenous regulation of circulating cytokines. Neurobiol. Sleep Circadian Rhythm. 2021, 10, 100063. [Google Scholar] [CrossRef]
  139. Vgontzas, A.N.; Papanicolaou, D.A.; Bixler, E.O.; Lotsikas, A.; Zachman, K.; Kales, A.; Prolo, P.; Wong, M.L.; Licinio, J.; Gold, P.W.; et al. Circadian interleukin-6 secretion and quantity and depth of sleep. J. Clin. Endocrinol. Metab. 1999, 84, 2603–2607. [Google Scholar] [CrossRef]
  140. Vgontzas, A.N.; Papanicolaou, D.A.; Bixler, E.O.; Kales, A.; Tyson, K.; Chrousos, G.P. Elevation of Plasma Cytokines in Disorders of Excessive Daytime Sleepiness: Role of Sleep Disturbance and Obesity. J. Clin. Endocrinol. Metab. 1997, 82, 1313–1316. [Google Scholar] [CrossRef]
  141. Yang, H.; Engeland, C.G.; King, T.S.; Sawyer, A.M. The relationship between diurnal variation of cytokines and symptom expression in mild obstructive sleep apnea. J. Clin. Sleep Med. 2020, 16, 715–723. [Google Scholar] [CrossRef]
  142. Stepanova, M.; Rafiq, N.; Younossi, Z.M. Components of metabolic syndrome are independent predictors of mortality in patients with chronic liver disease: A population-based study. Gut 2010, 59, 1410–1415. [Google Scholar] [CrossRef]
  143. Aguilar, M.; Bhuket, T.; Torres, S.; Liu, B.; Wong, R.J. Prevalence of the Metabolic Syndrome in the United States, 2003–2012. JAMA 2015, 313, 1973–1974. [Google Scholar] [CrossRef] [PubMed]
  144. Macauley, S.L.; Stanley, M.; Caesar, E.E.; Yamada, S.A.; Raichle, M.E.; Perez, R.; Mahan, T.E.; Sutphen, C.L.; Holtzman, D.M. Hyperglycemia modulates extracellular amyloid-beta concentrations and neuronal activity in vivo. J. Clin. Investig. 2015, 125, 2463–2467. [Google Scholar] [CrossRef] [PubMed]
  145. Morris, J.K.; Vidoni, E.D.; Honea, R.A.; Burns, J.M. Impaired glycemia increases disease progression in mild cognitive impairment. Neurobiol. Aging 2014, 35, 585–589. [Google Scholar] [CrossRef]
  146. Janson, J.; Laedtke, T.; Parisi, J.E.; O’Brien, P.; Petersen, R.C.; Butler, P.C. Increased Risk of Type 2 Diabetes in Alzheimer Disease. Diabetes 2004, 53, 474–481. [Google Scholar] [CrossRef]
  147. Baker, L.D.; Cross, D.J.; Minoshima, S.; Belongia, D.; Watson, G.S.; Craft, S. Insulin Resistance and Alzheimer-like Reductions in Regional Cerebral Glucose Metabolism for Cognitively Normal Adults With Prediabetes or Early Type 2 Diabetes. Arch. Neurol. 2011, 68, 51–57. [Google Scholar] [CrossRef]
  148. Matsuzaki, T.; Sasaki, K.; Tanizaki, Y.; Hata, J.; Fujimi, K.; Matsui, Y.; Sekita, A.; Suzuki, S.O.; Kanba, S.; Kiyohara, Y.; et al. Insulin resistance is associated with the pathology of Alzheimer disease. Hisayama Study 2010, 75, 764–770. [Google Scholar] [CrossRef]
  149. Luchsinger, J.A.; Reitz, C.; Patel, B.; Tang, M.-X.; Manly, J.J.; Mayeux, R. Relation of Diabetes to Mild Cognitive Impairment. Arch. Neurol. 2007, 64, 570–575. [Google Scholar] [CrossRef]
  150. Watts, A.S.; Loskutova, N.; Burns, J.M.; Johnson, D.K. Metabolic Syndrome and Cognitive Decline in Early Alzheimer’s Disease and Healthy Older Adults. J. Alzheimer’s Dis. 2013, 35, 253–265. [Google Scholar] [CrossRef]
  151. Vanhanen, M.; Koivisto, K.; Moilanen, L.; Helkala, E.L.; Hänninen, T.; Soininen, H.; Kervinen, K.; Kesäniemi, Y.A.; Laakso, M.; Kuusisto, J. Association of metabolic syndrome with Alzheimer disease. A population-based study. Neurology 2006, 67, 843–847. [Google Scholar] [CrossRef]
  152. Pérez-Tasigchana, R.F.; León-Muñoz, L.M.; Lopez-Garcia, E.; Gutierrez-Fisac, J.L.; Laclaustra, M.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Metabolic syndrome and insulin resistance are associated with frailty in older adults: A prospective cohort study. Age Ageing 2017, 46, 807–812. [Google Scholar] [CrossRef] [PubMed]
  153. Ottenbacher, K.J.; Ostir, G.V.; Peek, M.K.; Goodwin, J.S.; Markides, K.S. Diabetes mellitus as a risk factor for hip fracture in mexican american older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M648–M653. [Google Scholar] [CrossRef] [PubMed]
  154. Cifuentes, D.; Poittevin, M.; Dere, E.; Broquères-You, D.; Bonnin, P.; Benessiano, J.; Pocard, M.; Mariani, J.; Kubis, N.; Merkulova-Rainon, T. Hypertension accelerates the progression of Alzheimer-like pathology in a mouse model of the disease. Hypertension 2015, 65, 218–224. [Google Scholar] [CrossRef] [PubMed]
  155. Thorin, E. Hypertension and Alzheimer disease: Another brick in the wall of awareness. Hypertension 2015, 65, 36–38. [Google Scholar] [CrossRef] [PubMed]
  156. He, J.-T.; Zhao, X.; Xu, L.; Mao, C.-Y. Vascular Risk Factors and Alzheimer’s Disease: Blood-Brain Barrier Disruption, Metabolic Syndromes, and Molecular Links. J. Alzheimer’s Dis. 2020, 73, 39–58. [Google Scholar] [CrossRef] [PubMed]
  157. de Bruijn, R.F.A.G.; Ikram, M.A. Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Med. 2014, 12, 130. [Google Scholar] [CrossRef]
  158. Profenno, L.A.; Porsteinsson, A.P.; Faraone, S.V. Meta-Analysis of Alzheimer’s Disease Risk with Obesity, Diabetes, and Related Disorders. Biol. Psychiatry 2010, 67, 505–512. [Google Scholar] [CrossRef]
  159. Huang, R.; Tian, S.; Zhang, H.; Zhu, W.; Wang, S. Chronic hyperglycemia induces tau hyperphosphorylation by downregulating OGT-involved O-GlcNAcylation in vivo and in vitro. Brain Res. Bull. 2020, 156, 76–85. [Google Scholar] [CrossRef]
  160. Sun, Y.; Xiao, Q.; Luo, C.; Zhao, Y.; Pu, D.; Zhao, K.; Chen, J.; Wang, M.; Liao, Z. High-glucose induces tau hyperphosphorylation through activation of TLR9-P38MAPK pathway. Exp. Cell Res. 2017, 359, 312–318. [Google Scholar] [CrossRef]
  161. Taylor, M.K.; Sullivan, D.K.; Morris, J.K.; Vidoni, E.D.; Honea, R.A.; Mahnken, J.D.; Burns, J.M. High glycemic diet is related to brain amyloid accumulation over one year in preclinical Alzheimer’s disease. Front. Nutr. 2021, 8, 741534. [Google Scholar] [CrossRef]
  162. Taylor, M.K.; Sullivan, D.K.; Swerdlow, R.H.; Vidoni, E.D.; Morris, J.K.; Mahnken, J.D.; Burns, J.M. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am. J. Clin. Nutr. 2017, 106, 1463–1470. [Google Scholar] [CrossRef]
  163. Byun, M.S.; Kim, H.J.; Yi, D.; Choi, H.J.; Baek, H.; Lee, J.H.; Choe, Y.M.; Sohn, B.K.; Lee, J.-Y.; Lee, Y.; et al. Differential effects of blood insulin and HbA1c on cerebral amyloid burden and neurodegeneration in nondiabetic cognitively normal older adults. Neurobiol. Aging 2017, 59, 15–21. [Google Scholar] [CrossRef]
  164. Mosconi, L.; Pupi, A.; De Leon, M.J. Brain Glucose Hypometabolism and Oxidative Stress in Preclinical Alzheimer’s Disease. Ann. N. Y. Acad. Sci. 2008, 1147, 180–195. [Google Scholar] [CrossRef] [PubMed]
  165. Mosconi, L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 486–510. [Google Scholar] [CrossRef] [PubMed]
  166. Ou, Z.; Kong, X.; Sun, X.; He, X.; Zhang, L.; Gong, Z.; Huang, J.; Xu, B.; Long, D.; Li, J.; et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav. Immun. 2018, 69, 351–363. [Google Scholar] [CrossRef] [PubMed]
  167. Chen, Y.; Zhao, S.; Fan, Z.; Li, Z.; Zhu, Y.; Shen, T.; Li, K.; Yan, Y.; Tian, J.; Liu, Z.; et al. Metformin attenuates plaque-associated tau pathology and reduces amyloid-β burden in APP/PS1 mice. Alzheimer’s Res. Ther. 2021, 13, 40. [Google Scholar] [CrossRef] [PubMed]
  168. Tai, J.; Liu, W.; Li, Y.; Li, L.; Hölscher, C. Neuroprotective effects of a triple GLP-1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer’s disease. Brain Res. 2018, 1678, 64–74. [Google Scholar] [CrossRef] [PubMed]
  169. Cao, Y.; Hölscher, C.; Hu, M.-M.; Wang, T.; Zhao, F.; Bai, Y.; Zhang, J.; Wu, M.-N.; Qi, J.-S. DA5-CH, a novel GLP-1/GIP dual agonist, effectively ameliorates the cognitive impairments and pathology in the APP/PS1 mouse model of Alzheimer’s disease. Eur. J. Pharmacol. 2018, 827, 215–226. [Google Scholar] [CrossRef] [PubMed]
  170. Macauley, S.L.; Stanley, M.S.; Caesar, E.E.; Moritz, W.R.; Bice, A.R.; Cruz-Diaz, N.; Carroll, C.M.; Day, S.M.; Grizzanti, J.; Mahan, T.E.; et al. Sulfonylureas target the neurovascular response to decrease Alzheimer’s pathology. bioRxiv 2021. [Google Scholar] [CrossRef]
  171. Ju, Y.-J.; Kim, N.; Gee, M.S.; Jeon, S.H.; Lee, D.; Do, J.; Ryu, J.-S.; Lee, J.K. Glibenclamide modulates microglial function and attenuates Aβ deposition in 5XFAD mice. Eur. J. Pharmacol. 2020, 884, 173416. [Google Scholar] [CrossRef]
  172. Imfeld, P.; Bodmer, M.; Jick, S.S.; Meier, C.R. Metformin, Other Antidiabetic Drugs, and Risk of Alzheimer’s Disease: A Population-Based Case–Control Study. J. Am. Geriatr. Soc. 2012, 60, 916–921. [Google Scholar] [CrossRef]
  173. Samaras, K.; Makkar, S.; Crawford, J.D.; Kochan, N.A.; Wen, W.; Draper, B.; Trollor, J.N.; Brodaty, H.; Sachdev, P.S. Metformin Use Is Associated With Slowed Cognitive Decline and Reduced Incident Dementia in Older Adults With Type 2 Diabetes: The Sydney Memory and Ageing Study. Diabetes Care 2020, 43, 2691–2701. [Google Scholar] [CrossRef]
  174. Ha, J.; Choi, D.-W.; Kim, K.J.; Cho, S.Y.; Kim, H.; Kim, K.Y.; Koh, Y.; Nam, C.M.; Kim, E. Association of metformin use with Alzheimer’s disease in patients with newly diagnosed type 2 diabetes: A population-based nested case–control study. Sci. Rep. 2021, 11, 24069. [Google Scholar] [CrossRef] [PubMed]
  175. Sluggett, J.K.; Koponen, M.; Bell, J.S.; Taipale, H.; Tanskanen, A.; Tiihonen, J.; Uusitupa, M.; Tolppanen, A.-M.; Hartikainen, S. Metformin and Risk of Alzheimer’s Disease Among Community-Dwelling People With Diabetes: A National Case-Control Study. J. Clin. Endocrinol. Metab. 2020, 105, e963–e972. [Google Scholar] [CrossRef]
  176. Campbell, J.M.; Stephenson, M.D.; de Courten, B.; Chapman, I.; Bellman, S.M.; Aromataris, E. Metformin Use Associated with Reduced Risk of Dementia in Patients with Diabetes: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2018, 65, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
  177. Moore, E.M.; Mander, A.G.; Ames, D.; Kotowicz, M.A.; Carne, R.P.; Brodaty, H.; Woodward, M.; Boundy, K.; Ellis, K.A.; Bush, A.I.; et al. Increased Risk of Cognitive Impairment in Patients With Diabetes Is Associated With Metformin. Diabetes Care 2013, 36, 2981–2987. [Google Scholar] [CrossRef]
  178. Rojas-Gutierrez, E.; Muñoz-Arenas, G.; Treviño, S.; Espinosa, B.; Chavez, R.; Rojas, K.; Flores, G.; Díaz, A.; Guevara, J. Alzheimer’s disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 2017, 71, e21990. [Google Scholar] [CrossRef]
  179. Elks, C.M.; Francis, J. Central Adiposity, Systemic Inflammation, and the Metabolic Syndrome. Curr. Hypertens. Rep. 2010, 12, 99–104. [Google Scholar] [CrossRef]
  180. Gregor, M.F.; Hotamisligil, G.S. Inflammatory Mechanisms in Obesity. Annu. Rev. Immunol. 2011, 29, 415–445. [Google Scholar] [CrossRef] [PubMed]
  181. Koyama, A.; O’Brien, J.; Weuve, J.; Blacker, D.; Metti, A.L.; Yaffe, K. The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: A meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 433–440. [Google Scholar] [CrossRef]
  182. Yaffe, K.; Kanaya, A.; Lindquist, K.; Simonsick, E.M.; Harris, T.; Shorr, R.I.; Tylavsky, F.A.; Newman, A.B. The Metabolic Syndrome, Inflammation, and Risk of Cognitive Decline. JAMA 2004, 292, 2237–2242. [Google Scholar] [CrossRef]
  183. Sun, Y.; Koyama, Y.; Shimada, S. Inflammation From Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation? Front. Aging Neurosci. 2022, 14, 903455. [Google Scholar] [CrossRef]
  184. Van Dyken, P.; Lacoste, B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. Front. Neurosci. 2018, 12, 930. [Google Scholar] [CrossRef] [PubMed]
  185. Tucsek, Z.; Toth, P.; Sosnowska, D.; Gautam, T.; Mitschelen, M.; Koller, A.; Szalai, G.; Sonntag, W.E.; Ungvari, Z.; Csiszar, A. Obesity in Aging Exacerbates Blood–Brain Barrier Disruption, Neuroinflammation, and Oxidative Stress in the Mouse Hippocampus: Effects on Expression of Genes Involved in Beta-Amyloid Generation and Alzheimer’s Disease. J. Gerontol. Ser. A 2013, 69, 1212–1226. [Google Scholar] [CrossRef] [PubMed]
  186. Meraz-Ríos, M.A.; Toral-Rios, D.; Franco-Bocanegra, D.; Villeda-Hernández, J.; Campos-Peña, V. Inflammatory process in Alzheimer’s Disease. Front. Integr. Neurosci. 2013, 7, 59. [Google Scholar] [CrossRef] [PubMed]
  187. Xie, J.; Van Hoecke, L.; Vandenbroucke, R.E. The Impact of Systemic Inflammation on Alzheimer’s Disease Pathology. Front. Immunol. 2021, 12, 796867. [Google Scholar] [CrossRef] [PubMed]
  188. Oberlin, L.E.; Erickson, K.I.; Mackey, R.; Klunk, W.E.; Aizenstein, H.; Lopresti, B.J.; Kuller, L.H.; Lopez, O.L.; Snitz, B.E. Peripheral inflammatory biomarkers predict the deposition and progression of amyloid-β in cognitively unimpaired older adults. Brain Behav. Immun. 2021, 95, 178–189. [Google Scholar] [CrossRef] [PubMed]
  189. McNay, E.C.; Recknagel, A.K. Brain insulin signaling: A key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes. Neurobiol. Learn. Mem. 2011, 96, 432–442. [Google Scholar] [CrossRef] [PubMed]
  190. Willmann, C.; Brockmann, K.; Wagner, R.; Kullmann, S.; Preissl, H.; Schnauder, G.; Maetzler, W.; Gasser, T.; Berg, D.; Eschweiler, G.W.; et al. Insulin sensitivity predicts cognitive decline in individuals with prediabetes. BMJ Open Diabetes Res. Care 2020, 8, e001741. [Google Scholar] [CrossRef] [PubMed]
  191. Ekblad, L.L.; Rinne, J.O.; Puukka, P.; Laine, H.; Ahtiluoto, S.; Sulkava, R.; Viitanen, M.; Jula, A. Insulin Resistance Predicts Cognitive Decline: An 11-Year Follow-up of a Nationally Representative Adult Population Sample. Diabetes Care 2017, 40, 751–758. [Google Scholar] [CrossRef]
  192. Luchsinger, J.A.; Tang, M.X.; Shea, S.; Mayeux, R. Hyperinsulinemia and risk of Alzheimer disease. Neurology 2004, 63, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
  193. Willette, A.A.; Johnson, S.C.; Birdsill, A.C.; Sager, M.A.; Christian, B.; Baker, L.D.; Craft, S.; Oh, J.; Statz, E.; Hermann, B.P. Insulin resistance predicts brain amyloid deposition in late middle-aged adults. Alzheimer’s Dement. 2015, 11, 504–510.e1. [Google Scholar] [CrossRef]
  194. Ho, L.; Qin, W.; Pompl, P.N.; Xiang, Z.; Wang, J.; Zhao, Z.; Peng, Y.; Cambareri, G.; Rocher, A.; Mobbs, C.V. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J. 2004, 18, 902–904. [Google Scholar] [CrossRef] [PubMed]
  195. Gasparini, L.; Gouras, G.K.; Wang, R.; Gross, R.S.; Beal, M.F.; Greengard, P.; Xu, H. Stimulation of β-Amyloid Precursor Protein Trafficking by Insulin Reduces Intraneuronal β-Amyloid and Requires Mitogen-Activated Protein Kinase Signaling. J. Neurosci. 2001, 21, 2561–2570. [Google Scholar] [CrossRef]
  196. Freude, S.; Plum, L.; Schnitker, J.; Leeser, U.; Udelhoven, M.; Krone, W.; Bruning, J.C.; Schubert, M. Peripheral Hyperinsulinemia Promotes Tau Phosphorylation In Vivo. Diabetes 2005, 54, 3343–3348. [Google Scholar] [CrossRef] [PubMed]
  197. Qiu, W.Q.; Walsh, D.M.; Ye, Z.; Vekrellis, K.; Zhang, J.; Podlisny, M.B.; Rosner, M.R.; Safavi, A.; Hersh, L.B.; Selkoe, D.J. Insulin-degrading Enzyme Regulates Extracellular Levels of Amyloid β-Protein by Degradation *. J. Biol. Chem. 1998, 273, 32730–32738. [Google Scholar] [CrossRef]
  198. Farris, W.; Mansourian, S.; Chang, Y.; Lindsley, L.; Eckman, E.A.; Frosch, M.P.; Eckman, C.B.; Tanzi, R.E.; Selkoe, D.J.; Guénette, S. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. USA 2003, 100, 4162–4167. [Google Scholar] [CrossRef]
  199. Shiiki, T.; Ohtsuki, S.; Kurihara, A.; Naganuma, H.; Nishimura, K.; Tachikawa, M.; Hosoya, K.-i.; Terasaki, T. Brain insulin impairs amyloid-β (1-40) clearance from the brain. J. Neurosci. 2004, 24, 9632–9637. [Google Scholar] [CrossRef]
  200. Gali, C.C.; Fanaee-Danesh, E.; Zandl-Lang, M.; Albrecher, N.M.; Tam-Amersdorfer, C.; Stracke, A.; Sachdev, V.; Reichmann, F.; Sun, Y.; Avdili, A.; et al. Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice. Mol. Cell. Neurosci. 2019, 99, 103390. [Google Scholar] [CrossRef]
  201. Molina-Fernández, R.; Picón-Pagès, P.; Barranco-Almohalla, A.; Crepin, G.; Herrera-Fernández, V.; García-Elías, A.; Fanlo-Ucar, H.; Fernàndez-Busquets, X.; García-Ojalvo, J.; Oliva, B.; et al. Differential regulation of insulin signalling by monomeric and oligomeric amyloid beta-peptide. Brain Commun. 2022, 4, fcac243. [Google Scholar] [CrossRef]
  202. Stanley, M.; Macauley, S.L.; Caesar, E.E.; Koscal, L.J.; Moritz, W.; Robinson, G.O.; Roh, J.; Keyser, J.; Jiang, H.; Holtzman, D.M. The Effects of Peripheral and Central High Insulin on Brain Insulin Signaling and Amyloid-β in Young and Old APP/PS1 Mice. J. Neurosci. 2016, 36, 11704–11715. [Google Scholar] [CrossRef] [PubMed]
  203. Watson, G.S.; Peskind, E.R.; Asthana, S.; Purganan, K.; Wait, C.; Chapman, D.; Schwartz, M.W.; Plymate, S.; Craft, S. Insulin increases CSF Aβ42 levels in normal older adults. Neurology 2003, 60, 1899–1903. [Google Scholar] [CrossRef] [PubMed]
  204. Kellar, D.; Craft, S. Brain insulin resistance in Alzheimer’s disease and related disorders: Mechanisms and therapeutic approaches. Lancet Neurol. 2020, 19, 758–766. [Google Scholar] [CrossRef] [PubMed]
  205. Craft, S.; Newcomer, J.; Kanne, S.; Dagogo-Jack, S.; Cryer, P.; Sheline, Y.; Luby, J.; Dagogo-Jack, A.; Alderson, A. Memory improvement following induced hyperinsulinemia in alzheimer’s disease. Neurobiol. Aging 1996, 17, 123–130. [Google Scholar] [CrossRef] [PubMed]
  206. Reger, M.A.; Watson, G.S.; Green, P.S.; Wilkinson, C.W.; Baker, L.D.; Cholerton, B.; Fishel, M.A.; Plymate, S.R.; Breitner, J.C.S.; DeGroodt, W.; et al. Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology 2008, 70, 440–448. [Google Scholar] [CrossRef] [PubMed]
  207. Van Cauter, E.; Polonsky, K.S.; Scheen, A.J. Roles of Circadian Rhythmicity and Sleep in Human Glucose Regulation*. Endocr. Rev. 1997, 18, 716–738. [Google Scholar] [CrossRef]
  208. Boyle, P.J.; Scott, J.C.; Krentz, A.J.; Nagy, R.J.; Comstock, E.; Hoffman, C. Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans. J. Clin. Investig. 1994, 93, 529–535. [Google Scholar] [CrossRef]
  209. Knutson, K.L.; Spiegel, K.; Penev, P.; Van Cauter, E. The metabolic consequences of sleep deprivation. Sleep Med. Rev. 2007, 11, 163–178. [Google Scholar] [CrossRef]
  210. Van Cauter, E.; Spiegel, K.; Tasali, E.; Leproult, R. Metabolic consequences of sleep and sleep loss. Sleep Med. 2008, 9 (Suppl. S1), S23–S28. [Google Scholar] [CrossRef]
  211. Knutson, K.L.; Ryden, A.M.; Mander, B.A.; Van Cauter, E. Role of Sleep Duration and Quality in the Risk and Severity of Type 2 Diabetes Mellitus. Arch. Intern. Med. 2006, 166, 1768–1774. [Google Scholar] [CrossRef]
  212. Spiegel, K.; Knutson, K.; Leproult, R.; Tasali, E.; Cauter, E.V. Sleep loss: A novel risk factor for insulin resistance and Type 2 diabetes. J. Appl. Physiol. 2005, 99, 2008–2019. [Google Scholar] [CrossRef] [PubMed]
  213. Tasali, E.; Leproult, R.; Ehrmann, D.A.; Van Cauter, E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
  214. Chaput, J.-P.; Després, J.-P.; Bouchard, C.; Tremblay, A. Association of sleep duration with type 2 diabetes and impaired glucose tolerance. Diabetologia 2007, 50, 2298–2304. [Google Scholar] [CrossRef] [PubMed]
  215. Kawakami, N.; Takatsuka, N.; Shimizu, H. Sleep Disturbance and Onset of Type 2 Diabetes. Diabetes Care 2004, 27, 282–283. [Google Scholar] [CrossRef] [PubMed]
  216. Baud, M.O.; Magistretti, P.J.; Petit, J.-M. Sustained sleep fragmentation affects brain temperature, food intake and glucose tolerance in mice. J. Sleep Res. 2013, 22, 3–12. [Google Scholar] [CrossRef] [PubMed]
  217. Sanders, M. Sleep breathing disorders. In Principles and Practice of Sleep Medicine; Elsevier: Amsterdam, The Netherlands, 2005; pp. 969–1121. [Google Scholar]
  218. Vgontzas, A.N.; Bixler, E.O.; Chrousos, G.P. Sleep apnea is a manifestation of the metabolic syndrome. Sleep Med. Rev. 2005, 9, 211–224. [Google Scholar] [CrossRef] [PubMed]
  219. Resnick, H.E.; Redline, S.; Shahar, E.; Gilpin, A.; Newman, A.; Walter, R.; Ewy, G.A.; Howard, B.V.; Punjabi, N.M. Diabetes and Sleep Disturbances: Findings from the Sleep Heart Health Study. Diabetes Care 2003, 26, 702–709. [Google Scholar] [CrossRef]
  220. Andrade, A.G.; Bubu, O.M.; Varga, A.W.; Osorio, R.S. The Relationship between Obstructive Sleep Apnea and Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 64, S255–S270. [Google Scholar] [CrossRef]
  221. Ju, Y.-E.S.; Zangrilli, M.A.; Finn, M.B.; Fagan, A.M.; Holtzman, D.M. Obstructive sleep apnea treatment, slow wave activity, and amyloid-β. Ann. Neurol. 2019, 85, 291–295. [Google Scholar] [CrossRef]
  222. Oktay, B.; Akbal, E.; Firat, H.; Ardiç, S.; Kizilgun, M. CPAP treatment in the coexistence of obstructive sleep apnea syndrome and metabolic syndrome, results of one year follow up. Acta Clin. Belg. 2009, 64, 329–334. [Google Scholar] [CrossRef] [PubMed]
  223. Weinstock, T.G.; Wang, X.; Rueschman, M.; Ismail-Beigi, F.; Aylor, J.; Babineau, D.C.; Mehra, R.; Redline, S. A Controlled Trial of CPAP Therapy on Metabolic Control in Individuals with Impaired Glucose Tolerance and Sleep Apnea. Sleep 2012, 35, 617–625. [Google Scholar] [CrossRef] [PubMed]
  224. Salord, N.; Fortuna, A.M.; Monasterio, C.; Gasa, M.; Pérez, A.; Bonsignore, M.R.; Vilarrasa, N.; Montserrat, J.M.; Mayos, M. A Randomized Controlled Trial of Continuous Positive Airway Pressure on Glucose Tolerance in Obese Patients with Obstructive Sleep Apnea. Sleep 2016, 39, 35–41. [Google Scholar] [CrossRef] [PubMed]
  225. Laposky, A.D.; Bradley, M.A.; Williams, D.L.; Bass, J.; Turek, F.W. Sleep-wake regulation is altered in leptin-resistant (db/db) genetically obese and diabetic mice. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2008, 295, R2059–R2066. [Google Scholar] [CrossRef] [PubMed]
  226. Alahmary, S.A.; Alduhaylib, S.A.; Alkawii, H.A.; Olwani, M.M.; Shablan, R.A.; Ayoub, H.M.; Purayidathil, T.S.; Abuzaid, O.I.; Khattab, R.Y. Relationship Between Added Sugar Intake and Sleep Quality Among University Students: A Cross-sectional Study. Am. J. Lifestyle Med. 2022, 16, 122–129. [Google Scholar] [CrossRef]
  227. St-Onge, M.P.; Roberts, A.; Shechter, A.; Choudhury, A.R. Fiber and Saturated Fat Are Associated with Sleep Arousals and Slow Wave Sleep. J. Clin. Sleep Med. 2016, 12, 19–24. [Google Scholar] [CrossRef]
  228. Carroll, C.M.; Stanley, M.; Raut, R.V.; Constantino, N.J.; Irmen, R.E.; Mitra, A.; Snipes, J.A.; Raichle, M.E.; Holtzman, D.M.; Gould, R.W.; et al. Acute hyper- and hypoglycemia uncouples the metabolic cooperation between glucose and lactate to disrupt sleep. bioRxiv 2022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Carroll, C.M.; Benca, R.M. Upsetting the Balance: How Modifiable Risk Factors Contribute to the Progression of Alzheimer’s Disease. Biomolecules 2024, 14, 274. https://doi.org/10.3390/biom14030274

AMA Style

Carroll CM, Benca RM. Upsetting the Balance: How Modifiable Risk Factors Contribute to the Progression of Alzheimer’s Disease. Biomolecules. 2024; 14(3):274. https://doi.org/10.3390/biom14030274

Chicago/Turabian Style

Carroll, Caitlin M., and Ruth M. Benca. 2024. "Upsetting the Balance: How Modifiable Risk Factors Contribute to the Progression of Alzheimer’s Disease" Biomolecules 14, no. 3: 274. https://doi.org/10.3390/biom14030274

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop