Fish Oil Improves Offspring Metabolic Health of Paternal Obese Mice by Targeting Adipose Tissue
Abstract
:1. Introduction
2. Methods
2.1. Animals and Diets
2.2. Experimental Design
2.3. Metabolic Tests
2.4. Histological Analysis
2.5. RNA Isolation, cDNA and Gene Expression
2.6. Statistical Analysis
3. Results
3.1. Male and Female Offspring Body Weight
3.2. Male and Female Offspring Insulin Tolerance Tests (ITTs)
3.3. Male and Female Offspring White Adipose Tissue Weight and Histology
3.4. FA Oxidation and Synthesis Biomarkers
3.5. Inflammatory and Anti-Inflammatory Biomarkers
Gene | Sex (S) | Diet (D) | Interactions (S × D) |
---|---|---|---|
Acaca | 0.28 | 0.70 | 0.14 |
Cd-36 | 0.20 | 0.16 | <0.05 |
Cpt-1 | <0.05 | <0.05 | 0.25 |
Cpt-2 | <0.05 | <0.05 | <0.05 |
Fasn | 0.47 | 0.09 | 0.59 |
Foxo-1 | <0.05 | <0.05 | <0.05 |
Il-6 | <0.05 | 0.08 | 0.48 |
Il-10 | <0.05 | <0.05 | 0.26 |
Tlr-4 | <0.05 | <0.05 | <0.05 |
Ppar-α | <0.05 | 0.78 | 0.65 |
Ppar-γ | <0.05 | <0.05 | 0.69 |
Srebp-1c | 0.62 | 0.56 | <0.05 |
Tnf-α | 0.35 | <0.05 | 0.16 |
Sex (S) | Diet (D) | Interactions (S × D) | |
---|---|---|---|
Acaca | 0.75 | 0.29 | 0.33 |
Cd-36 | 0.24 | 0.72 | 0.21 |
Cpt-1 | <0.05 | <0.05 | 0.09 |
Cpt-2 | <0.05 | 0.46 | 0.32 |
Fasn | 0.62 | 0.50 | 0.56 |
Foxo-1 | <0.05 | <0.05 | 0.11 |
Il-6 | <0.05 | 0.24 | 0.07 |
Il-10 | 0.99 | <0.05 | <0.05 |
Tlr-4 | 0.69 | 0.39 | 0.32 |
Ppar-α | 0.28 | 0.06 | 0.27 |
Ppar-γ | 0.09 | 0.80 | 0.76 |
Srebp-1c | <0.05 | <0.05 | <0.05 |
Tnf-α | 0.40 | 0.48 | 0.48 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Animal Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity among Adults: United States, 2017–2018; NCHS Data Brief; National Center for Health Statistics: Hyattsville, MD, USA, 2020; pp. 1–8.
- Apovian, C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care 2016, 22 (Suppl. S7), s176–s185. [Google Scholar]
- Wright, S.M.; Aronne, L.J. Causes of obesity. Abdom. Imaging 2012, 37, 730–732. [Google Scholar] [CrossRef]
- Lecomte, V.; Maloney, C.A.; Wang, K.W.; Morris, M.J. Effects of paternal obesity on growth and adiposity of male rat offspring. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E117–E125. [Google Scholar] [CrossRef] [PubMed]
- Masuyama, H.; Mitsui, T.; Eguchi, T.; Tamada, S.; Hiramatsu, Y. The effects of paternal high-fat diet exposure on offspring metabolism with epigenetic changes in the mouse adiponectin and leptin gene promoters. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E236–E245. [Google Scholar] [CrossRef]
- Chambers, T.J.G.; Morgan, M.D.; Heger, A.H.; Sharpe, R.M.; Drake, A.J. High-fat diet disrupts metabolism in two generations of rats in a parent-of-origin specific manner. Sci. Rep. 2016, 6, 31857. [Google Scholar] [CrossRef] [PubMed]
- Ornellas, F.; Souza-Mello, V.; Mandarim-de-Lacerda, C.A.; Aguila, M.B. Programming of obesity and comorbidities in the progeny: Lessons from a model of diet-induced obese parents. PLoS ONE 2015, 10, e0124737. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Garrido, M.A.; Ruiz-Pino, F.; Velasco, I.; Barroso, A.; Fernandois, D.; Heras, V.; Manfredi-Lozano, M.; Vazquez, M.J.; Castellano, J.M.; Roa, J.; et al. Intergenerational Influence of Paternal Obesity on Metabolic and Reproductive Health Parameters of the Offspring: Male-Preferential Impact and Involvement of Kiss1-Mediated Pathways. Endocrinology 2018, 159, 1005–1018. [Google Scholar] [CrossRef] [PubMed]
- McPherson, N.O.; Owens, J.A.; Fullston, T.; Lane, M. Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E805–E821. [Google Scholar] [CrossRef] [PubMed]
- Fraser, A.; Tilling, K.; Macdonald-Wallis, C.; Sattar, N.; Brion, M.J.; Benfield, L.; Ness, A.; Deanfield, J.; Hingorani, A.; Nelson, S.M.; et al. Association of maternal weight gain in pregnancy with offspring obesity and metabolic and vascular traits in childhood. Circulation 2010, 121, 2557–2564. [Google Scholar] [CrossRef]
- Eberle, C.; Kirchner, M.F.; Herden, R.; Stichling, S. Paternal metabolic and cardiovascular programming of their offspring: A systematic scoping review. PLoS ONE 2020, 15, e0244826. [Google Scholar] [CrossRef]
- Escalona, R.; Larque, C.; Cortes, D.; Vilchis, R.; Granados-Delgado, E.; Sanchez, A.; Sanchez-Bringas, G.; Lugo-Martinez, H. High-fat diet impairs glucose homeostasis by increased p16 beta-cell expression and alters glucose homeostasis of the progeny in a parental-sex dependent manner. Front. Endocrinol. 2023, 14, 1246194. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.F.; Lin, R.C.; Laybutt, D.R.; Barres, R.; Owens, J.A.; Morris, M.J. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 2010, 467, 963–966. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Prowak, M.; Berlandi-Short, V.M.; Garay, J.; Ramalingam, L. Maternal Obesity: A Focus on Maternal Interventions to Improve Health of Offspring. Front. Cardiovasc. Med. 2021, 8, 696812. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Neto, I.V.; Prestes, J.; Pereira, G.B.; Almeida, J.A.; Ramos, G.V.; de Souza, F.H.V.; de Souza, P.E.N.; Tibana, R.A.; Franco, O.L.; Durigan, J.L.Q.; et al. Protective role of intergenerational paternal resistance training on fibrosis, inflammatory profile, and redox status in the adipose tissue of rat offspring fed with a high-fat diet. Life Sci. 2022, 295, 120377. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, A.; Boesch, C.; Malpuech-Brugere, C.; Orfila, C.; Tomas-Cobos, L. The role of bioactives in energy metabolism and metabolic syndrome. Proc. Nutr. Soc. 2019, 78, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Azzu, V.; Valencak, T.G. Energy Metabolism and Ageing in the Mouse: A Mini-Review. Gerontology 2017, 63, 327–336. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, L.; Menikdiwela, K.R.; Spainhour, S.; Eboh, T.; Moustaid-Moussa, N. Sex Differences in Early Programming by Maternal High Fat Diet Induced-Obesity and Fish Oil Supplementation in Mice. Nutrients 2021, 13, 3703. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, L.; Menikdiwela, K.R.; Clevenger, S.; Eboh, T.; Allen, L.; Koboziev, I.; Scoggin, S.; Rashid, A.M.; Moussa, H.; Moustaid-Moussa, N. Maternal and Postnatal Supplementation of Fish Oil Improves Metabolic Health of Mouse Male Offspring. Obesity 2018, 26, 1740–1748. [Google Scholar] [CrossRef]
- Shrestha, A.; Dellett, S.K.; Yang, J.; Sharma, U.; Ramalingam, L. Effects of Fish Oil Supplementation on Reducing the Effects of Paternal Obesity and Preventing Fatty Liver in Offspring. Nutrients 2023, 15, 38. [Google Scholar] [CrossRef]
- Xiong, L.; Dorus, S.; Ramalingam, L. Role of Fish Oil in Preventing Paternal Obesity and Improving Offspring Skeletal Muscle Health. Biomedicines 2023, 11, 3120. [Google Scholar] [CrossRef]
- Huang, T.; Wang, T.; Heianza, Y.; Zheng, Y.; Sun, D.; Kang, J.H.; Pasquale, L.R.; Rimm, E.B.; Manson, J.E.; Hu, F.B.; et al. Habitual consumption of long-chain n-3 PUFAs and fish attenuates genetically associated long-term weight gain. Am. J. Clin. Nutr. 2019, 109, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Couet, C.; Delarue, J.; Ritz, P.; Antoine, J.M.; Lamisse, F. Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int. J. Obes. Relat. Metab. Disord. 1997, 21, 637–643. [Google Scholar] [CrossRef]
- Saraswathi, V.; Gao, L.; Morrow, J.D.; Chait, A.; Niswender, K.D.; Hasty, A.H. Fish Oil Increases Cholesterol Storage in White Adipose Tissue with Concomitant Decreases in Inflammation, Hepatic Steatosis, and Atherosclerosis in Mice12. J. Nutr. 2007, 137, 1776–1782. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.S.; Lombardo, Y.B.; Lacorte, J.-M.; Chicco, A.G.; Rouault, C.; Slama, G.; Rizkalla, S.W. Dietary fish oil positively regulates plasma leptin and adiponectin levels in sucrose-fed, insulin-resistant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R486–R494. [Google Scholar] [CrossRef] [PubMed]
- Albar, S.A. Dietary Omega-6/Omega-3 Polyunsaturated Fatty Acid (PUFA) and Omega-3 Are Associated With General and Abdominal Obesity in Adults: UK National Diet and Nutritional Survey. Cureus 2022, 14, e30209. [Google Scholar] [CrossRef] [PubMed]
- Noreen, E.E.; Sass, M.J.; Crowe, M.L.; Pabon, V.A.; Brandauer, J.; Averill, L.K. Effects of supplemental fish oil on resting metabolic rate, body composition, and salivary cortisol in healthy adults. J. Int. Soc. Sports Nutr. 2010, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, S.; Prud’homme, D.; Bouchard, C.; Tremblay, A.; Despres, J.P. Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. Am. J. Clin. Nutr. 1993, 58, 463–467. [Google Scholar] [CrossRef]
- Zhao, Q.; Lin, X.; Wang, G. Targeting SREBP-1-Mediated Lipogenesis as Potential Strategies for Cancer. Front. Oncol. 2022, 12, 952371. [Google Scholar] [CrossRef]
- Howell, G., 3rd; Deng, X.; Yellaturu, C.; Park, E.A.; Wilcox, H.G.; Raghow, R.; Elam, M.B. N-3 polyunsaturated fatty acids suppress insulin-induced SREBP-1c transcription via reduced trans-activating capacity of LXRalpha. Biochim. Biophys. Acta 2009, 1791, 1190–1196. [Google Scholar] [CrossRef]
- Sekiya, M.; Yahagi, N.; Matsuzaka, T.; Najima, Y.; Nakakuki, M.; Nagai, R.; Ishibashi, S.; Osuga, J.; Yamada, N.; Shimano, H. Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression. Hepatology 2003, 38, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, M.; Sotoudeh, G.; Djalali, M.; Alvandi, E.; Eshraghian, M.; Sojoudi, F.; Koohdani, F. Dietary omega-3 polyunsaturated fatty acid intake modulates impact of Insertion/Deletion polymorphism of ApoB gene on obesity risk in type 2 diabetic patients. Nutrition 2016, 32, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Blaak, E. Gender differences in fat metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 499–502. [Google Scholar] [CrossRef]
- Chang, E.; Varghese, M.; Singer, K. Gender and Sex Differences in Adipose Tissue. Curr. Diabetes Rep. 2018, 18, 69. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.M.; Clegg, D.J. Central effects of estradiol in the regulation of food intake, body weight, and adiposity. J. Steroid Biochem. Mol. Biol. 2010, 122, 65–73. [Google Scholar] [CrossRef]
- Rubinow, K.B. Estrogens and Body Weight Regulation in Men. Adv. Exp. Med. Biol. 2017, 1043, 285–313. [Google Scholar] [PubMed]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients 2010, 2, 355–374. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Fatty acids and inflammation: The cutting edge between food and pharma. Eur. J. Pharmacol. 2011, 668 (Suppl. S1), S50–S58. [Google Scholar] [CrossRef]
- Boden, G. Obesity and free fatty acids. Endocrinol. Metab. Clin. N. Am. 2008, 37, 635–646. [Google Scholar] [CrossRef]
- Houtkooper, R.H.; Argmann, C.; Houten, S.M.; Canto, C.; Jeninga, E.H.; Andreux, P.A.; Thomas, C.; Doenlen, R.; Schoonjans, K.; Auwerx, J. The metabolic footprint of aging in mice. Sci. Rep. 2011, 1, 134. [Google Scholar] [CrossRef]
- Brand, M.D. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp. Gerontol. 2000, 35, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Li, X.; Hou, Y.; Cao, X.; Zhang, Y.; Wang, H.; Wang, H.; Peng, C.; Li, J.; Li, Q.; et al. Paternal hyperglycemia in rats exacerbates the development of obesity in offspring. J. Endocrinol. 2017, 234, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Harasymowicz, N.S.; Choi, Y.R.; Wu, C.L.; Iannucci, L.; Tang, R.H.; Guilak, F. Intergenerational Transmission of Diet-Induced Obesity, Metabolic Imbalance, and Osteoarthritis in Mice. Arthritis Rheumatol. 2020, 72, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Rando, O.J. Daddy issues: Paternal effects on phenotype. Cell 2012, 151, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Fullston, T.; Ohlsson-Teague, E.M.; Print, C.G.; Sandeman, L.Y.; Lane, M. Sperm microRNA Content Is Altered in a Mouse Model of Male Obesity, but the Same Suite of microRNAs Are Not Altered in Offspring’s Sperm. PLoS ONE 2016, 11, e0166076. [Google Scholar] [CrossRef] [PubMed]
- Fullston, T.; Ohlsson Teague, E.M.; Palmer, N.O.; DeBlasio, M.J.; Mitchell, M.; Corbett, M.; Print, C.G.; Owens, J.A.; Lane, M. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 2013, 27, 4226–4243. [Google Scholar] [CrossRef]
- Soubry, A.; Guo, L.S.; Huang, Z.Q.; Hoyo, C.; Romanus, S.; Price, T.; Murphy, S.K. Obesity-related DNA methylation at imprinted genes in human sperm: Results from the TIEGER study. Clin. Epigenetics 2016, 8, 51. [Google Scholar] [CrossRef]
ST Male | ST Female | LT Male | LT Female | |
---|---|---|---|---|
LF | n = 8 | n = 10 | n = 8 | n = 10 |
HF | n = 10 | n = 8 | n = 14 | n = 13 |
FO | n = 10 | n = 10 | n = 14 | n = 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez Lugo, M.I.; Salas, M.L.; Shrestha, A.; Ramalingam, L. Fish Oil Improves Offspring Metabolic Health of Paternal Obese Mice by Targeting Adipose Tissue. Biomolecules 2024, 14, 418. https://doi.org/10.3390/biom14040418
Pérez Lugo MI, Salas ML, Shrestha A, Ramalingam L. Fish Oil Improves Offspring Metabolic Health of Paternal Obese Mice by Targeting Adipose Tissue. Biomolecules. 2024; 14(4):418. https://doi.org/10.3390/biom14040418
Chicago/Turabian StylePérez Lugo, Mariana I., Melanie L. Salas, Akriti Shrestha, and Latha Ramalingam. 2024. "Fish Oil Improves Offspring Metabolic Health of Paternal Obese Mice by Targeting Adipose Tissue" Biomolecules 14, no. 4: 418. https://doi.org/10.3390/biom14040418
APA StylePérez Lugo, M. I., Salas, M. L., Shrestha, A., & Ramalingam, L. (2024). Fish Oil Improves Offspring Metabolic Health of Paternal Obese Mice by Targeting Adipose Tissue. Biomolecules, 14(4), 418. https://doi.org/10.3390/biom14040418