Serum Neuron-Specific Enolase as a Biomarker of Neonatal Brain Injury—New Perspectives for the Identification of Preterm Neonates at High Risk for Severe Intraventricular Hemorrhage
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collins, K.A.; Popek, E. Birth injury: Birth Asphyxia and Birth Trauma. Acad. Forensic Pathol. 2018, 8, 788–864. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S.; Strickland, T.; Molloy, E.J. Neonatal Encephalopathy: Need for Recognition of Multiple Etiologies for Optimal Management. Front. Pediatr. 2019, 7, 142. [Google Scholar] [CrossRef] [PubMed]
- Suppiej, A.; Franzoi, M.; Gentilomo, C.; Battistella, P.A.; Drigo, P.; Gavasso, S.; Laverda, A.M.; Simioni, P. High prevalence of inherited thrombophilia in ‘presumed peri-neonatal’ ischemic stroke. Eur. J. Haematol. 2008, 80, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Tataranno, M.L.; Vijlbrief, D.C.; Dudink, J.; Benders, M.J.N.L. Precision Medicine in Neonates: A Tailored Approach to Neonatal Brain Injury. Front. Pediatr. 2021, 9, 634092. [Google Scholar] [CrossRef] [PubMed]
- Metallinou, D.; Karampas, G.; Nyktari, G.; Iacovidou, N.; Lykeridou, K.; Rizos, D. S100B as a biomarker of brain injury in premature neonates. A prospective case–control longitudinal study. Clin. Chim. Acta 2020, 510, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Ahya, K.P.; Suryawanshi, P. Neonatal periventricular leukomalacia: Current perspectives. Res. Rep. Neonatol. 2018, 2018, 8. [Google Scholar] [CrossRef]
- Coskun, Y.; Isik, S.; Bayram, T.; Urgun, K.; Sakarya, S.; Akman, I. A clinical scoring system to predict the development of intraventricular hemorrhage (IVH) in premature infants. Childs Nerv. Syst. 2018, 34, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Russ, J.B.; Simmons, R.; Glass, H.C. Neonatal Encephalopathy: Beyond Hypoxic-Ischemic Encephalopathy. Neoreviews 2021, 22, e148–e162. [Google Scholar] [CrossRef] [PubMed]
- Tenovuo, O.; Janigro, D.; Sanchez, J.C.; Undén, J. Biomarkers of Brain Damage—A Complex Challenge with Great Potential. Front. Neurol. 2021, 12, 664445. [Google Scholar] [CrossRef]
- Wassink, G.; Harrison, S.; Dhillon, S.; Bennet, B.; Gunn, A.J. Prognostic Neurobiomarkers in Neonatal Encephalopathy. Dev. Neurosci. 2022, 44, 331–343. [Google Scholar] [CrossRef]
- Bersani, I.; Pluchinotta, F.; Dotta, A.; Savarese, I.; Campi, F.; Auriti, C.; Chuklantseva, N.; Piersigilli, F.; Gazzolo, F.; Varrica, A.; et al. Early predictors of perinatal brain damage: The role of neurobiomarkers. Clin. Chem. Lab. Med. 2020, 58, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Gazzolo, D.; Pluchinotta, F.; Bashir, M.; Aboulgar, H.; Said, H.M.; Iman, I.; Ivani, G.; Conio, A.; Tina, L.G.; Nigro, F.; et al. Neurological abnormalities in full-term asphyxiated newborns and salivary S100B testing: The “Cooperative Multitask against Brain Injury of Neonates” (CoMBINe) international study. PLoS ONE 2015, 10, e0115194. [Google Scholar] [CrossRef] [PubMed]
- Murray, D.M. Biomarkers in neonatal hypoxic–ischemic encephalopathy—Review of the literature to date and future directions for research. Handb. Clin. Neurol. 2019, 162, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Metallinou, D.; Lazarou, E.; Lykeridou, A. Pharmacological and Non-Pharmacological Brain-Focused Clinical Practices for Premature Neonates at High Risk of Neuronal Injury. Maedica 2021, 16, 281–290. [Google Scholar] [CrossRef]
- Garcia-Alix, A.; Arnaez, J. Neuron-specific enolase in cerebrospinal fluid as a biomarker of brain damage in infants with hypoxic-ischemic encephalopathy. Neural Regen. Res. 2022, 17, 318–319. [Google Scholar] [CrossRef]
- Huang, H.Z.; Hu, X.F.; Wen, X.H.; Yang, L.Q. Serum neuron-specific enolase, magnetic resonance imaging, and electrophysiology for predicting neurodevelopmental outcomes of neonates with hypoxic-ischemic encephalopathy: A prospective study. BMC Pediatr. 2022, 22, 290. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.M.; Luo, Y.L.; Li, S.; Li, Z.X.; Jiang, L.; Zhang, G.X.; Owusu, L.; Chen, H.L. Multifunctional neuron-specific enolase: Its role in lung diseases. Biosci. Rep. 2019, 39, BSR20192732. [Google Scholar] [CrossRef]
- Haque, A.; Polcyn, R.; Matzelle, D.; Banik, N.L. New Insights into the Role of Neuron-Specific Enolase in Neuro-Inflammation, Neurodegeneration, and Neuroprotection. Brain Sci. 2018, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Metallinou, D.; Karampas, G.; Nyktari, G.; Iacovidou, N.; Lykeridou, K.; Rizos, D. Serum glial fibrillary acidic protein as a biomarker of brain injury in premature neonates. Bosn. J. Basic. Med. Sci. 2022, 22, 46–53. [Google Scholar] [CrossRef]
- Gotoh, Y.; Hashimoto, K.; Tada, K. Urine neuron-specific enolase and its clinical implication in patients with neuroblastoma. Tohoku J. Exp. Med. 1986, 149, 67–72. [Google Scholar] [CrossRef]
- Wijnberger, L.D.; Nikkels, P.G.; Van Dongen, A.J.; Noorlander, C.W.; Mulder, E.J.; Schrama, L.H.; Visser, G.H. Expression in the Placenta of Neuronal Markers for Perinatal Brain Damage. Pediatr. Res. 2002, 51, 492–496. [Google Scholar] [CrossRef]
- Attia, H.; Holayl, M.; El-Sheikh, A.E.R.; Abo-Elmagde, Y. Prognostic value of neuron specific enolase in serum for outcome of infants with birth asphyxia. ZUMJ 2016, 22, 269–275. [Google Scholar] [CrossRef]
- Perrone, S.; Grassi, F.; Caporilli, C.; Boscarino, G.; Carbone, G.; Petrolini, C.; Gambini, L.M.; Di Peri, A.; Moretti, S.; Buonocore, G.; et al. Brain Damage in Preterm and Full-Term Neonates: Serum Biomarkers for the Early Diagnosis and Intervention. Antioxidants 2023, 12, 309. [Google Scholar] [CrossRef]
- Kelen, D.; Andorka, C.; Szabó, M.; Alafuzoff, A.; Kaila, K.; Summanen, M. Serum copeptin and neuron specific enolase are markers of neonatal distress and long-term neurodevelopmental outcome. PLoS ONE 2017, 12, e0184593. [Google Scholar] [CrossRef] [PubMed]
- Abbasoglu, A.; Sarialioglu, F.; Yazici, N.; Bayraktar, N.; Haberal, A.; Erbay, A. Serum neuron-specific enolase levels in preterm and term newborns and in infants 1–3 months of age. Pediatr. Neonatol. 2015, 56, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tian, X.; Ma, J.; Zheng, J. Clinical efficacy of gangliosides on premature infants suffering from white matter damage and its effect on the levels of IL-6, NSE and S100β. Exp. Ther. Med. 2019, 18, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Efstathiou, N.; Soubasi, V.; Koliakos, G.; Kyriazis, G.; Zafeiriou, D.I.; Slavakis, A.; Kantziou, K.; Pozotou, T.; Chatzizisi, O.; Drosou-Agakidou, V. Mobilization of circulating progenitor cells following brain injury in premature neonates could be indicative of an endogenous repair process. A pilot study. Hippokratia 2015, 19, 141–147. [Google Scholar]
- Metallinou, D.; Karampas, G.; Lazarou, E.; Iacovidou, N.; Pervanidou, P.; Lykeridou, K.; Mastorakos, G.; Rizos, D. Serum Activin A as Brain Injury Biomarker in the First Three Days of Life. A Prospective Case—Control Longitudinal Study in Human Premature Neonates. Brain Sci. 2021, 11, 1243. [Google Scholar] [CrossRef]
- European Foundation for the Care of Newborn Infants. Available online: https://newborn-health-standards.org/standards/standards-english/medical-care-clinical-practice/neurological-monitoring-in-the-high-risk-infant-ultrasound-and-mri-scanning/ (accessed on 19 March 2024).
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Romero-Guzman, G.J.; Lopez-Munoz, F. Prevalence and risk factors for periventricular leukomalacia in preterm infants. A systematic review. Rev. Neurol. 2017, 65, 57–62. [Google Scholar]
- Efstathiou, N.; Kyriazis, G.; Bougiouklis, D.; Drossou, V.; Soumbasi, V. Circulating progenitor cells in preterm neonates with CNS injury—A preliminary report. In Proceedings of the 4th Congress of the European Academy of Paediatric Societies (EAPS), Istanbul, Turkey, 5–9 October 2012. [Google Scholar] [CrossRef]
- Verina, T.; Fatemi, A.; Johnston, M.V.; Comi, A.M. Pluripotent possibilities: Human umbilical cord blood cell treatment after neonatal brain injury. Pediatr. Neurol. 2013, 48, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Latheef, S.K.; Dadar, M.; Samad, H.A.; Munjal, A.; Khandia, R.; Karthik, K.; Tiwari, R.; Yatoo, M.; Bhatt, P.; et al. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front. Mol. Biosci. 2019, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, M.N.; Paliwal, P.; Varma, M.; Shaikh, M.K.; Mulye, S. Study of neuron specific enolase (NSE) in perinatal asphyxia & its role as an early marker of brain injury. J. Evid. Based Med. Healthc. 2016, 3, 3640–3643. [Google Scholar] [CrossRef]
- Smyser, C.D.; Wheelock, M.D.; Limbrick, D.D., Jr.; Neil, J.J. Neonatal brain injury and aberrant connectivity. Neuroimage 2019, 185, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Rodríguez, M.; Harmony, T.; Carrillo-Prado, C.; Van Horn, J.D.; Irimia, A.; Torgerson, C.; Jacokes, Z. Clinical neuroimaging in the preterm infant: Diagnosis and prognosis. Neuroimage Clin. 2017, 16, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Ment, L.R.; Bada, H.S.; Barnes, P.; Grant, P.E.; Hirtz, D.; Papile, L.A.; Pinto-Martin, J.; Rivkin, M.; Slovis, T.L. Practice parameter: Neuroimaging of the neonate: Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2002, 58, 1726–1738. [Google Scholar] [CrossRef]
- Sewell, E.K.; Andescavage, N.N. Neuroimaging for Neurodevelopmental Prognostication in High-Risk Neonates. Clin. Perinatol. 2018, 45, 421–437. [Google Scholar] [CrossRef]
N | Control Group | Case Group | p-Value |
---|---|---|---|
29 | 29 | ||
Admission Mean (±SD) | 5.91 (±3.68) | 5.62 (±3.11) | 0.904 |
2nd day Mean (±SD) | 4.92 (±2.14) | 5.12 (±2.8) | 0.521 |
3rd day Mean (±SD) | 3.86 (±1.68) 1 | 5.06 (±3.49) | 0.124 |
N | Control Group | PVL | IVH | p-Value |
---|---|---|---|---|
29 | 17 | 12 | ||
Admission Mean (±SD) | 5.91 (±3.68) | 5.66 (±3.15) | 5.57 (±3.21) | NS |
2nd day Mean (±SD) | 4.92 (±2.14) | 4.19 (±2.29) | 6.38 (±3.03) | NS |
3rd day Mean (±SD) | 3.86 (±1.68) 1 | 3.91 (±2.78) | 6.62 (±3.87) | 0.014 2 0.033 3 |
N | All Other (Controls and PVL) | IVH | p-Value |
---|---|---|---|
46 | 12 | ||
Admission Mean (±SD) | 5.82 (±3.46) | 5.57 (±3.21) | 0.592 |
2nd day Mean (±SD) | 4.65 (±2.21) | 6.38 (±3.03) | 0.083 |
3rd day Mean (±SD) | 3.88 (±2.12) | 6.62 (±3.87) | 0.003 |
N | All Other (Controls and PVL) | II–IV Degree IVH | p-Value |
---|---|---|---|
50 | 8 | ||
Admission Mean (±SD) | 5.83 (±3.38) | 5.34 (±3.65) | 0.715 |
2nd day Mean (±SD) | 4.81 (±2.19) | 6.64 (±3.98) | 0.146 |
3rd day Mean (±SD) | 4.06 (±2.43) | 7.52 (±3.57) | 0.003 |
N | Control Group | Deaths | p-Value |
---|---|---|---|
29 | 5 | ||
Admission Mean (±SD) | 5.91 (±3.68) | 2.79 (±1.24) | 0.311 |
2nd day Mean (±SD) | 4.92 (±2.14) | 3.46 (±1.21) | 0.266 |
3rd day Mean (±SD) | 3.86 (±1.68) | 6.62 (±0.25) | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metallinou, D.; Karampas, G.; Pavlou, M.-L.; Louma, M.-I.; Mantzou, A.; Sarantaki, A.; Nanou, C.; Gourounti, K.; Tzeli, M.; Pantelaki, N.; et al. Serum Neuron-Specific Enolase as a Biomarker of Neonatal Brain Injury—New Perspectives for the Identification of Preterm Neonates at High Risk for Severe Intraventricular Hemorrhage. Biomolecules 2024, 14, 434. https://doi.org/10.3390/biom14040434
Metallinou D, Karampas G, Pavlou M-L, Louma M-I, Mantzou A, Sarantaki A, Nanou C, Gourounti K, Tzeli M, Pantelaki N, et al. Serum Neuron-Specific Enolase as a Biomarker of Neonatal Brain Injury—New Perspectives for the Identification of Preterm Neonates at High Risk for Severe Intraventricular Hemorrhage. Biomolecules. 2024; 14(4):434. https://doi.org/10.3390/biom14040434
Chicago/Turabian StyleMetallinou, Dimitra, Grigorios Karampas, Maria-Loukia Pavlou, Maria-Ioanna Louma, Aimilia Mantzou, Antigoni Sarantaki, Christina Nanou, Kleanthi Gourounti, Maria Tzeli, Nikoletta Pantelaki, and et al. 2024. "Serum Neuron-Specific Enolase as a Biomarker of Neonatal Brain Injury—New Perspectives for the Identification of Preterm Neonates at High Risk for Severe Intraventricular Hemorrhage" Biomolecules 14, no. 4: 434. https://doi.org/10.3390/biom14040434
APA StyleMetallinou, D., Karampas, G., Pavlou, M. -L., Louma, M. -I., Mantzou, A., Sarantaki, A., Nanou, C., Gourounti, K., Tzeli, M., Pantelaki, N., Tzamakos, E., Boutsikou, T., Lykeridou, A., & Iacovidou, N. (2024). Serum Neuron-Specific Enolase as a Biomarker of Neonatal Brain Injury—New Perspectives for the Identification of Preterm Neonates at High Risk for Severe Intraventricular Hemorrhage. Biomolecules, 14(4), 434. https://doi.org/10.3390/biom14040434