Therapeutic Potential of Hydrogen Sulfide in Reproductive System Disorders
Abstract
:1. Introduction
2. Physical and Chemical Properties of H2S
3. Distribution of H2S Synthases in the Reproductive System
3.1. Distribution of H2S Synthases in the Male Reproductive System
3.2. Distribution of H2S Synthases in the Female Reproductive System
4. Effects of H2S on Male Reproductive System Disorders
4.1. H2S Promotes Penile Erection
4.1.1. H2S Relieves Erectile Dysfunction
4.1.2. Mechanisms of H2S in Regulating Penile Erection
4.2. Regulatory Role of H2S in Prostate Cancer
4.3. H2S Promotes Male Fertility
4.4. H2S Relieves Testicular Damage
5. Effects of H2S on the Female Reproductive System Diseases
5.1. H2S Relieves the Preterm Birth
5.1.1. H2S Relieves Abnormal Uterine Contractions-Caused Preterm Birth
5.1.2. H2S Relieves Inflammation-Caused Preterm Birth
5.2. H2S Promotes the Endometrial Angiogenesis
5.3. H2S Promotes Embryo Implantation
5.4. H2S Promotes Postpartum Myometrial Recovery
5.5. H2S Improves Pre-Eclampsia
5.6. H2S Improves Fetal Growth Restriction
5.7. H2S Alleviates Recurrent Spontaneous Abortion
5.8. H2S Improves Placental Oxidative Damage
5.9. H2S Promotes Ovulation
5.10. H2S Regulates Oviductal Transport
5.11. H2S Modulates the Female Sexual Response
6. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Miyaso, H.; Ogawa, Y.; Itoh, M. Microenvironment for spermatogenesis and sperm maturation. Histochem. Cell Biol. 2022, 157, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Magro-Lopez, E.; Muñoz-Fernández, M.Á. The role of bmp signaling in female reproductive system development and function. Int. J. Mol. Sci. 2021, 22, 11927. [Google Scholar] [CrossRef] [PubMed]
- Farsimadan, M.; Motamedifar, M. Bacterial infection of the male reproductive system causing infertility. J. Reprod. Immunol. 2020, 142, 103183. [Google Scholar] [CrossRef]
- Han, X.; Huang, Q. Environmental pollutants exposure and male reproductive toxicity: The role of epigenetic modifications. Toxicology 2021, 456, 152780. [Google Scholar] [CrossRef] [PubMed]
- Fozooni, R.; Shirazi, M.R.J.; Saedi, S.; Jahromi, B.N.; Khoradmehr, A.; Anvari, M.; Rahmanifar, F.; Khodabandeh, Z.; Tamadon, A. Male subfertility effects of sub-chronic ethanol exposure during stress in a rat model. Alcohol 2021, 96, 63–71. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Gong, H.; You, S.; Zhang, C.; Zhong, C.; Li, L. Mirna-138-5p suppresses cigarette smoke-induced apoptosis in testicular cells by targeting caspase-3 through the bcl-2 signaling pathway. J. Biochem. Mol. Toxicol. 2021, 35, e22783. [Google Scholar] [CrossRef] [PubMed]
- Chacra, L.A.; Benatmane, A.; Iwaza, R.; Ly, C.; Alibar, S.; Armstrong, N.; Mediannikov, O.; Bretelle, F.; Fenollar, F. Culturomics reveals a hidden world of vaginal microbiota with the isolation of 206 bacteria from a single vaginal sample. Arch. Microbiol. 2023, 206, 20. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tian, Y.; Zhu, H.; Xu, P.; Zhang, J.; Hu, Y.; Ji, X.; Yan, R.; Yue, H.; Sang, N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. Toxics 2023, 11, 1000. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wang, R. H2S and blood vessels: An overview. Handb. Exp. Pharmacol. 2015, 230, 85–110. [Google Scholar] [PubMed]
- Cirino, G.; Szabo, C.; Papapetropoulos, A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol. Rev. 2023, 103, 31–276. [Google Scholar] [CrossRef]
- Zhu, X.-Y.; Gu, H.; Ni, X. Hydrogen sulfide in the endocrine and reproductive systems. Expert Rev. Clin. Pharmacol. 2011, 4, 75–82. [Google Scholar] [CrossRef]
- Bianca, R.D.d.V.; Fusco, F.; Mirone, V.; Cirino, G.; Sorrentino, R. The Role of the Hydrogen Sulfide Pathway in Male and Female Urogenital System in Health and Disease. Antioxid. Redox Signal 2017, 27, 654–668. [Google Scholar] [CrossRef]
- Wang, R.; Tang, C. Hydrogen Sulfide Biomedical Research in China—20 Years of Hindsight. Antioxidants 2022, 11, 2136. [Google Scholar] [CrossRef]
- Kadlec, M.; Ros-Santaella, J.L.; Pintus, E. The Roles of NO and H2S in Sperm Biology: Recent Advances and New Perspectives. Int. J. Mol. Sci. 2020, 21, 2174. [Google Scholar] [CrossRef]
- Liang, R.; Yu, W.-D.; Du, J.-B.; Yang, L.-J.; Shang, M.; Guo, J.-Z. Localization of cystathionine beta synthase in mice ovaries and its expression profile during follicular development. Chin. Med. J. 2006, 119, 1877–1883. [Google Scholar] [CrossRef]
- Srilatha, B.; Hu, L.; Adaikan, G.P.; Moore, P.K. Initial Characterization of Hydrogen Sulfide Effects in Female Sexual Function. J. Sex. Med. 2009, 6, 1875–1884. [Google Scholar] [CrossRef]
- d’Emmanuele di Villa Bianca, R.; Sorrentino, R.; Maffia, P.; Mirone, V.; Imbimbo, C.; Fusco, F.; De Palma, R.; Ignarro, L.J.; Cirino, G. Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc. Natl. Acad. Sci. USA 2009, 106, 4513–4518. [Google Scholar] [CrossRef]
- Srilatha, B.; Adaikan, P.G.; Moore, P.K. Possible role for the novel gasotransmitter hydrogen sulphide in erectile dysfunction—A pilot study. Eur. J. Pharmacol. 2006, 535, 280–282. [Google Scholar] [CrossRef]
- Zeng, Q.; He, S.; Chen, F.; Wang, L.; Zhong, L.; Hui, J.; Ding, W.; Fan, J.; Zhang, H.; Wei, A.-Y. Administration of h(2)s improves erectile dysfunction by inhibiting phenotypic modulation of corpus cavernosum smooth muscle in bilateral cavernous nerve injury rats. Nitric Oxide Biol. Chem. 2021, 107, 1–10. [Google Scholar] [CrossRef]
- Shukla, N.; Rossoni, G.; Hotston, M.; Sparatore, A.; Del Soldato, P.; Tazzari, V.; Persad, R.; Angelini, G.D.; Jeremy, J.Y. Effect of hydrogen sulphide-donating sildenafil (acs6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU Int. 2009, 103, 1522–1529. [Google Scholar] [CrossRef]
- Sugiura, Y.; Kashiba, M.; Maruyama, K.; Hoshikawa, K.; Sasaki, R.; Saito, K.; Kimura, H.; Goda, N.; Suematsu, M. Cadmium Exposure Alters Metabolomics of Sulfur-Containing Amino Acids in Rat Testes. Antioxid. Redox Signal. 2005, 7, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Ová, H.I.; Moravec, J.Í.; Tiavnická, M.; Havránková, J.I.; Monsef, L.; Ek, P.H.; Ová, Á.P.; Almanová, T.; Fenclová, T.; Petr, J.; et al. Evidence of endogenously produced hydrogen sulfide (h(2)s) and persulfidation in male reproduction. Sci. Rep. 2022, 12, 11426. [Google Scholar]
- Li, J.; Li, Y.; Du, Y.; Mou, K.; Sun, H.; Zang, Y.; Liu, C. Endogenous hydrogen sulfide as a mediator of vas deferens smooth muscle relaxation. Fertil. Steril. 2011, 95, 1833–1835. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zang, Y.; Fu, S.; Zhang, H.; Gao, L.; Li, J. H2S Relaxes Vas Deferens Smooth Muscle by Modulating the Large Conductance Ca2+-Activated K+ (BKCa) Channels via a Redox Mechanism. J. Sex. Med. 2012, 9, 2806–2813. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, R.; Singh, M.; Samir, G.; Carson, R.J. L-cysteine and sodium hydrosulphide inhibit spontaneous contractility in isolated pregnant rat uterine strips in vitro. Pharmacol. Toxicol. 2001, 88, 198–203. [Google Scholar] [CrossRef]
- Ning, N.; Zhu, J.; Du, Y.; Gao, X.; Liu, C.; Li, J. Dysregulation of hydrogen sulphide metabolism impairs oviductal transport of embryos. Nat. Commun. 2014, 5, 4107. [Google Scholar] [CrossRef] [PubMed]
- Nuño-Ayala, M.; Guillén, N.; Arnal, C.; Lou-Bonafonte, J.M.; de Martino, A.; García-De-Jalón, J.-A.; Gascón, S.; Osaba, L.; Osada, J.; Navarro, M.-A. Cystathionine β-synthase deficiency causes infertility by impairing decidualization and gene expression networks in uterus implantation sites. Physiol. Genom. 2012, 44, 702–716. [Google Scholar] [CrossRef]
- Wang, R. Physiological Implications of Hydrogen Sulfide: A Whiff Exploration That Blossomed. Physiol. Rev. 2012, 92, 791–896. [Google Scholar] [CrossRef] [PubMed]
- Kolluru, G.K.; Shackelford, R.E.; Shen, X.; Dominic, P.; Kevil, C.G. Sulfide regulation of cardiovascular function in health and disease. Nat. Rev. Cardiol. 2023, 20, 109–125. [Google Scholar] [CrossRef]
- Singh, S.; Padovani, D.; Leslie, R.A.; Chiku, T.; Banerjee, R. Relative contributions of cystathionine beta-synthase and gam-ma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J. Biol. Chem. 2009, 284, 22457–22466. [Google Scholar] [CrossRef]
- Munteanu, C.; Rotariu, M.; Turnea, M.; Dogaru, G.; Popescu, C.; Spînu, A.; Andone, I.; Postoiu, R.; Ionescu, E.V.; Oprea, C.; et al. Recent Advances in Molecular Research on Hydrogen Sulfide (H2S) Role in Diabetes Mellitus (DM)—A Systematic Review. Int. J. Mol. Sci. 2022, 23, 6720. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Moore, P.K. Putative biological roles of hydrogen sulfide in health and disease: A breath of not so fresh air? Trends Pharmacol. Sci. 2008, 29, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Szabó, C. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov. 2007, 6, 917–935. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mesfin, F.M.; Hunter, C.E.; Olson, K.R.; Shelley, W.C.; Brokaw, J.P.; Manohar, K.; Markel, T.A. Recent Development of the Molecular and Cellular Mechanisms of Hydrogen Sulfide Gasotransmitter. Antioxidants 2022, 11, 1788. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Chen, S.; Tang, C.; Jin, H.; Du, J.; Huang, Y. Hydrogen sulfide and vascular regulation—An update. J. Adv. Res. 2021, 27, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Shimizu, T.; Shimizu, S.; Higashi, Y.; Nakamura, K.; Ono, H.; Aratake, T.; Saito, M. Possible role of hydrogen sulfide as an endogenous relaxation factor in the rat bladder and prostate. Neurourol. Urodyn. 2018, 37, 2519–2526. [Google Scholar] [CrossRef]
- Shibuya, N.; Koike, S.; Tanaka, M.; Ishigami-Yuasa, M.; Kimura, Y.; Ogasawara, Y.; Fukui, K.; Nagahara, N.; Kimura, H. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat. Commun. 2013, 4, 1366. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, T.M.; Grieshaber, M.K. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J. 2008, 275, 3352–3361. [Google Scholar] [CrossRef] [PubMed]
- Libiad, M.; Yadav, P.K.; Vitvitsky, V.; Martinov, M.; Banerjee, R. Organization of the Human Mitochondrial Hydrogen Sulfide Oxidation Pathway. J. Biol. Chem. 2014, 289, 30901–30910. [Google Scholar] [CrossRef] [PubMed]
- Olson, K.R. H2S and polysulfide metabolism: Conventional and unconventional pathways. Biochem. Pharmacol. 2018, 149, 77–90. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, X.; Chadha, R.; McCartney, C.; Lam, Y.; Brummett, B.; Ramush, G.; Xian, M. Methods for Suppressing Hydrogen Sulfide in Biological Systems. Antioxid. Redox Signal. 2022, 36, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Qin, M.; Liu, X.; Zhu, Y. The role of hydrogen sulfide on cardiovascular homeostasis: An overview with update on im-munomodulation. Front. Pharmacol. 2017, 8, 686. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, M.; Cai, C.; Zhu, S.; Zhang, C.; Wang, Q.; Zhai, Y.; Ji, X.; Wu, D. Role of hydrogen sulphide in physiological and pathological angiogenesis. Cell Prolif. 2023, 56, e13374. [Google Scholar] [CrossRef]
- Módis, K.; Wolanska, K.; Vozdek, R. Hydrogen sulfide in cell signaling, signal transduction, cellular bioenergetics and physiology in C. elegans. Gen. Physiol. Biophys. 2013, 32, 1–22. [Google Scholar] [CrossRef]
- Sunzini, F.; De Stefano, S.; Chimenti, M.S.; Melino, S. Hydrogen Sulfide as Potential Regulatory Gasotransmitter in Arthritic Diseases. Int. J. Mol. Sci. 2020, 21, 1180. [Google Scholar] [CrossRef]
- Hughes, M.N.; Centelles, M.N.; Moore, K.P. Making and working with hydrogen sulfide: The chemistry and generation of hy-drogen sulfide in vitro and its measurement in vivo: A review. Free Radic. Biol. Med. 2009, 47, 1346–1353. [Google Scholar] [CrossRef] [PubMed]
- Srilatha, B.; Adaikan, P.G.; Li, L.; Moore, P.K. Hydrogen Sulphide: A Novel Endogenous Gasotransmitter Facilitates Erectile Function. J. Sex. Med. 2007, 4, 1304–1311. [Google Scholar] [CrossRef]
- Gai, J.-W.; Wahafu, W.; Guo, H.; Liu, M.; Wang, X.-C.; Xiao, Y.-X.; Zhang, L.; Xin, Z.-C.; Jin, J. Further evidence of endogenous hydrogen sulphide as a mediator of relaxation in human and rat bladder. Asian J. Androl. 2013, 15, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Gai, J.-W.; Wang, Y.; Jin, H.-F.; Du, J.-B.; Jin, J. Characterization of Hydrogen Sulfide and Its Synthases, Cystathionine β-Synthase and Cystathionine γ-Lyase, in Human Prostatic Tissue and Cells. Urology 2012, 79, 483.e1–483.e5. [Google Scholar] [CrossRef]
- Ghasemi, M.; Dehpour, A.R.; Moore, K.P.; Mani, A.R. Role of endogenous hydrogen sulfide in neurogenic relaxation of rat corpus cavernosum. Biochem. Pharmacol. 2012, 83, 1261–1268. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Wang, T.; Wang, S.-G.; Liu, J.-H.; Yin, C.-P.; Ye, Z.-Q. Decreased Endogenous Hydrogen Sulfide Generation in Penile Tissues of Diabetic Rats with Erectile Dysfunction. J. Sex. Med. 2016, 13, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Yetik-Anacak, G.; Dikmen, A.; Coletta, C.; Mitidieri, E.; Dereli, M.; Donnarumma, E.; di Villa Bianca, R.D.E.; Sorrentino, R. Hydrogen sulfide compensates nitric oxide deficiency in murine corpus cavernosum. Pharmacol. Res. 2016, 113, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Aydinoglu, F.; Dalkir, F.T.; Demirbag, H.O.; Ogulener, N. The interaction of l-cysteine/H2S pathway and muscarinic acetylcholine receptors (mAChRs) in mouse corpus cavernosum. Nitric Oxide 2017, 70, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Li, S.; Wu, L.; Lai, C.; Yang, G. Hydrogen Sulfide Represses Androgen Receptor Transactivation by Targeting at the Second Zinc Finger Module. J. Biol. Chem. 2014, 289, 20824–20835. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xie, Z.-Z.; Chua, J.M.; Wong, P.; Bian, J. Hydrogen sulfide protects testicular germ cells against heat-induced injury. Nitric Oxide 2015, 46, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.-D.; Xu, J.-W.; Qin, W.-B.; Peng, L.; Qiu, Z.-E.; Wang, L.-L.; Lan, C.-F.; Cao, X.-N.; Xu, J.-B.; Zhu, Y.-X.; et al. Cellular Mechanism Underlying Hydrogen Sulfide Mediated Epithelial K+ Secretion in Rat Epididymis. Front. Physiol. 2018, 9, 1886. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Vatish, M.; Heptinstall, J.; Wang, R.; Carson, R.J. The endogenous production of hydrogen sulphide in intrauterine tissues. Reprod. Biol. Endocrinol. 2009, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Hydrogen Sulfide Producing Enzymes in Pregnancy and Preeclampsia. Available online: https://pubmed.ncbi.nlm.nih.gov/22391326/ (accessed on 25 February 2024).
- Hu, T.-X.; Guo, X.; Wang, G.; Gao, L.; He, P.; Xia, Y.; Gu, H.; Ni, X. Mir133b is involved in endogenous hydrogen sulfide suppression of sFlt-1 production in human placenta. Placenta 2017, 52, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ahmad, S.; Cai, M.; Rennie, J.; Fujisawa, T.; Crispi, F.; Baily, J.; Miller, M.R.; Cudmore, M.; Hadoke, P.W.F.; et al. Ahmed, Dysregulation of hydrogen sulfide producing enzyme cystathionine γ-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation 2013, 127, 2514–2522. [Google Scholar] [CrossRef]
- Cindrova-Davies, T.; Herrera, E.A.; Niu, Y.; Kingdom, J.; Giussani, D.A.; Burton, G.J. Reduced Cystathionine γ-Lyase and Increased miR-21 Expression Are Associated with Increased Vascular Resistance in Growth-Restricted Pregnancies: Hydrogen Sulfide as a Placental Vasodilator. Am. J. Pathol. 2013, 182, 1448–1458. [Google Scholar] [CrossRef]
- Sheibani, L.; Lechuga, T.J.; Zhang, H.; Hameed, A.; Wing, D.A.; Kumar, S.; Rosenfeld, C.R.; Chen, D.-B. Augmented H2S production via cystathionine-beta-synthase upregulation plays a role in pregnancy-associated uterine vasodilation. Biol. Reprod. 2017, 96, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Lechuga, T.J.; Qi, Q.-R.; Magness, R.R.; Chen, D.-B. Ovine uterine artery hydrogen sulfide biosynthesis in vivo: Effects of ovarian cycle and pregnancy. Biol. Reprod. 2019, 100, 1630–1636. [Google Scholar] [CrossRef]
- Qi, Q.-R.; Lechuga, T.J.; Patel, B.; Nguyen, N.A.; Yang, Y.-H.; Li, Y.; Sarnthiyakul, S.; Zhang, Q.-W.; Bai, J.; Makhoul, J.; et al. Enhanced Stromal Cell CBS-H2S Production Promotes Estrogen-Stimulated Human Endometrial Angiogenesis. Endocrinology 2020, 161, bqaa176. [Google Scholar] [CrossRef]
- Sun, Q.; Huang, J.; Yue, Y.-J.; Xu, J.-B.; Jiang, P.; Yang, D.-L.; Zeng, Y.; Zhou, W.-L. Hydrogen Sulfide Facilitates Vaginal Lubrication by Activation of Epithelial ATP-Sensitive K+ Channels and Cystic Fibrosis Transmembrane Conductance Regulator. J. Sex. Med. 2016, 13, 798–807. [Google Scholar] [CrossRef]
- Dean, R.C.; Lue, T.F. Physiology of Penile Erection and Pathophysiology of Erectile Dysfunction. Urol. Clin. N. Am. 2005, 32, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Jupiter, R.C.; Yoo, D.; Pankey, E.A.; Reddy, V.V.G.; Edward, J.A.; Polhemus, D.J.; Peak, T.C.; Katakam, P.; Kadowitz, P.J. Analysis of erectile responses to H2S donors in the anesthetized rat. Am. J. Physiol. Circ. Physiol. 2015, 309, H835–H843. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, E.; Kaya-Sezginer, E.; Yilmaz-Oral, D.; Cengiz, T.; Bayatli, N.; Gur, S. Effects of hydrogen sulphide donor, sodium hy-drosulphide treatment on the erectile dysfunction in l-name-induced hypertensive rats. Andrologia 2019, 51, e13240. [Google Scholar] [CrossRef]
- Zhong, L.; Ding, W.; Zeng, Q.; He, B.; Zhang, H.; Wang, L.; Fan, J.; He, S.; Zhang, Y.; Wei, A. Sodium tanshinone iia sulfonate attenuates erectile dysfunction in rats with hyperlipidemia. Oxid Med. Cell Longev. 2020, 2020, 7286958. [Google Scholar]
- La Fuente, J.M.; Sevilleja-Ortiz, A.; García-Rojo, E.; El Assar, M.; Fernández, A.; Pepe-Cardoso, A.J.; Martínez-Salamanca, J.I.; Romero-Otero, J.; Rodríguez-Mañas, L.; Angulo, J. Erectile dysfunction is associated with defective L-cysteine/hydrogen sulfide pathway in human corpus cavernosum and penile arteries. Eur. J. Pharmacol. 2020, 884, 173370. [Google Scholar] [CrossRef]
- Yetik-Anacak, G.; Dereli, M.V.; Sevin, G.; Ozzayım, O.; Erac, Y.; Ahmed, A. Resveratrol Stimulates Hydrogen Sulfide (H2S) Formation to Relax Murine Corpus Cavernosum. J. Sex. Med. 2015, 12, 2004–2012. [Google Scholar] [CrossRef]
- Salonia, A.; Burnett, A.L.; Graefen, M.; Hatzimouratidis, K.; Montorsi, F.; Mulhall, J.P.; Stief, C. Prevention and Management of Postprostatectomy Sexual Dysfunctions Part 2: Recovery and Preservation of Erectile Function, Sexual Desire, and Orgasmic Function. Eur. Urol. 2012, 62, 273–286. [Google Scholar] [CrossRef]
- Cirino, G.; Sorrentino, R.; di Villa Bianca, R.D.; Popolo, A.; Palmieri, A.; Imbimbo, C.; Fusco, F.; Longo, N.; Tajana, G.; Ignarro, L.J.; et al. Involvement of beta 3-adrenergic receptor activation via cyclic gmp- but not no-dependent mechanisms in human corpus cavernosum function. Proc. Natl. Acad. Sci. USA 2003, 100, 5531–5536. [Google Scholar] [CrossRef]
- Mitidieri, E.; Tramontano, T.; Gurgone, D.; Imbimbo, C.; Mirone, V.; Fusco, F.; Cirino, G.; di Villa Bianca, R.D.E.; Sorrentino, R. Β(3) adrenergic receptor activation relaxes human corpus cavernosum and penile artery through a hydrogen sul-fide/cgmp-dependent mechanism. Pharmacol. Res. 2017, 124, 100–104. [Google Scholar] [CrossRef]
- Gur, S.; Peak, T.; Yafi, F.A.; Kadowitz, P.J.; Sikka, S.C.; Hellstrom, W.J.G. Mirabegron causes relaxation of human and rat corpus cavernosum: Could it be a potential therapy for erectile dysfunction? BJU Int. 2016, 118, 464–474. [Google Scholar] [CrossRef]
- Dayar, E.; Kara, E.; Yetik-Anacak, G.; Hocaoglu, N.; Bozkurt, O.; Gidener, S.; Durmus, N. Do penile haemodynamics change in the presence of hydrogen sulphide (H2S) donor in metabolic syndrome-induced erectile dysfunction? Andrologia 2018, 50, e12885. [Google Scholar] [CrossRef]
- Qabazard, B.; Yousif, M.; Mousa, A.; Phillips, O.A. GYY4137 attenuates functional impairment of corpus cavernosum and reduces fibrosis in rats with STZ-induced diabetes by inhibiting the TGF-β1/Smad/CTGF pathway. Biomed. Pharmacother. 2021, 138, 111486. [Google Scholar] [CrossRef]
- Yilmaz-Oral, D.; Kaya-Sezginer, E.; Oztekin, C.V.; Bayatli, N.; Lokman, U.; Gur, S. Evaluation of combined therapeutic effects of hydrogen sulfide donor sodium hydrogen sulfide and phosphodiesterase type-5 inhibitor tadalafil on erectile dysfunction in a partially bladder outlet obstructed rat model. Neurourol. Urodyn. 2020, 39, 1087–1097. [Google Scholar] [CrossRef]
- Sullivan, M.E.; Thompson, C.S.; Dashwood, M.R.; Khan, M.A.; Jeremy, J.Y.; Morgan, R.J.; Mikhailidis, D.P. Nitric oxide and penile erection: Is erectile dysfunction another manifestation of vascular disease? Cardiovasc. Res. 1999, 43, 658–665. [Google Scholar] [CrossRef]
- Murad, F. Nitric oxide and cyclic guanosine monophosphate signaling in the eye. Can. J. Ophthalmol. 2008, 43, 291–294. [Google Scholar] [CrossRef]
- Meng, J.; Adaikan, P.G.; Srilatha, B. Hydrogen sulfide promotes nitric oxide production in corpus cavernosum by en-hancing expression of endothelial nitric oxide synthase. Int. J. Impot. Res. 2013, 25, 86–90. [Google Scholar] [CrossRef]
- Mostafa, T.; Rashed, L.; Nabil, N.; Abo-Sief, A.F.; Mohamed, M.M.; Omar, M.S. Cavernosal hydrogen sulfide levels are associated with nitric oxide and hemeoxygenase levels in diabetic rats. Int. J. Impot. Res. 2019, 31, 105–110. [Google Scholar] [CrossRef]
- Olivencia, M.A.; Esposito, E.; Brancaleone, V.; Castaldo, S.; Cirino, G.; Pérez-Vizcaino, F.; Sorrentino, R.; di Villa Bianca, R.D.E.; Mitidieri, E. Hydrogen sulfide regulates the redox state of soluble guanylate cyclase in cse(-/-) mice corpus cavernosum microcirculation. Pharmacol. Res. 2023, 194, 106834. [Google Scholar] [CrossRef]
- Elmoneim, H.A.; Sharabi, F.; El Din, M.M.; Louedec, L.; Norel, X.; Senbel, A. Potassium channels modulate the action but not the synthesis of hydrogen sulfide in rat corpus cavernosum. Life Sci. 2017, 189, 39–43. [Google Scholar] [CrossRef]
- Qabazard, B.; Yousif, M.H.M.; Phillips, O.A. Alleviation of impaired reactivity in the corpus cavernosum of STZ-diabetic rats by slow-release H2S donor GYY4137. Int. J. Impot. Res. 2019, 31, 111–118. [Google Scholar] [CrossRef]
- Aydinoglu, F.; Belli, E.Z.A.; Lmaz-Oral, D.Y.; Ogulener, N. Involvement of rhoa/rho-kinase in l-cysteine/H2S pathway-induced inhibition of agonist-mediated corpus cavernosal smooth muscle contraction. Nitric Oxide Biol. Chem. 2019, 85, 54–60. [Google Scholar] [CrossRef]
- Fukami, K.; Sekiguchi, F.; Yasukawa, M.; Asano, E.; Kasamatsu, R.; Ueda, M.; Yoshida, S.; Kawabata, A. Functional upregulation of the H2S/Cav3.2 channel pathway accelerates secretory function in neuroendocrine-differentiated human prostate cancer cells. Biochem. Pharmacol. 2015, 97, 300–309. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, W.-D.; Liu, X.-Q.; Zhang, P.-F.; Hao, Y.-N.; Li, L.; Chen, L.; Shen, W.; Tang, X.-F.; Min, L.-J.; et al. Hydrogen Sulfide and/or Ammonia Reduces Spermatozoa Motility through AMPK/AKT Related Pathways. Sci. Rep. 2016, 6, 37884. [Google Scholar] [CrossRef]
- Li, S.; Ma, Y.; Ye, S.; Su, Y.; Hu, D.; Xiao, F. Endogenous hydrogen sulfide counteracts polystyrene nanoplastics-induced mito-chondrial apoptosis and excessive autophagy via regulating nrf2 and pgc-1α signaling pathway in mouse spermatocyte-derived gc-2spd(ts) cells. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2022, 164, 113071. [Google Scholar]
- Bozkurt, M.; Degirmentepe, R.; Polat, E.; Yildirim, F.; Sonmez, K.; Cekmen, M.; Eraldemir, C.; Otunctemur, A. Protective effect of hydrogen sulfide on experimental testicular ischemia reperfusion in rats. J. Pediatr. Urol. 2020, 16, 40.e1–40.e8. [Google Scholar] [CrossRef]
- Wang, J.; Shen, T.; Hong, R.; Tang, S.; Zhao, X. H2S catalysed by CBS regulates testosterone synthesis through affecting the sulfhydrylation of PDE. J. Cell. Mol. Med. 2021, 25, 3460–3468. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Li, S.; Han, Y.; Zhang, P.; Meng, G.; Xiao, Y.; Xie, L.; Wang, X.; Sha, J.; et al. Hydrogen Sulfide As a Potential Target in Preventing Spermatogenic Failure and Testicular Dysfunction. Antioxidants Redox Signal. 2018, 28, 1447–1462. [Google Scholar] [CrossRef]
- Pintus, E.; Jovičić, M.; Kadlec, M.; Ros-Santaella, J.L. Divergent effect of fast- and slow-releasing H2S donors on boar spermatozoa under oxidative stress. Sci. Rep. 2020, 10, 6508. [Google Scholar] [CrossRef]
- Xia, Y.-Q.; Ning, J.-Z.; Cheng, F.; Yu, W.-M.; Rao, T.; Ruan, Y.; Yuan, R.; Du, Y. GYY4137 a H2S donor, attenuates ipsilateral epididymis injury in experimentally varicocele-induced rats via activation of the PI3K/Akt pathway. Iran. J. Basic Med. Sci. 2019, 22, 729–735. [Google Scholar] [CrossRef]
- You, X.-J.; Xu, C.; Lu, J.-Q.; Zhu, X.-Y.; Gao, L.; Cui, X.-R.; Li, Y.; Gu, H.; Ni, X. Expression of Cystathionine β-synthase and Cystathionine γ-lyase in Human Pregnant Myometrium and Their Roles in the Control of Uterine Contractility. PLoS ONE 2011, 6, e23788. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, M.; Zhao, Y.; Xu, W.; Xiang, F.; Li, X.; Zhang, T.; Wu, R.; Kang, X. Hydrogen sulfide contributes to uterine quiescence through inhibition of nlrp3 inflammasome activation by suppressing the tlr4/nf-κb signalling pathway. J. Inflamm. Res. 2021, 14, 2753–2768. [Google Scholar] [CrossRef]
- Liu, W.; Xu, C.; You, X.; Olson, D.M.; Chemtob, S.; Gao, L.; Ni, X. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways. PLoS ONE 2016, 11, e0152838. [Google Scholar] [CrossRef]
- Lechuga, T.J.; Zhang, H.-H.; Sheibani, L.; Karim, M.; Jia, J.; Magness, R.R.; Rosenfeld, C.R.; Chen, D.-B. Estrogen Replacement Therapy in Ovariectomized Nonpregnant Ewes Stimulates Uterine Artery Hydrogen Sulfide Biosynthesis by Selectively Up-Regulating Cystathionine β-Synthase Expression. Endocrinology 2015, 156, 2288–2298. [Google Scholar] [CrossRef]
- Lechuga, T.J.; Bilg, A.K.; Patel, B.A.; Nguyen, N.A.; Qi, Q.; Chen, D. Estradiol-17β stimulates H2S biosynthesis by er-dependent cbs and cse transcription in uterine artery smooth muscle cells in vitro. J. Cell Physiol. 2019, 234, 9264–9273. [Google Scholar] [CrossRef]
- Lei, S.; Cao, Y.; Sun, J.; Li, M.; Zhao, D. H2S promotes proliferation of endometrial stromal cells via activating the nf-κb pathway in endometriosis. Am. J. Transl. Res. 2018, 10, 4247–4257. [Google Scholar]
- Guzmán, M.A.; Navarro, M.A.; Carnicer, R.; Sarría, A.J.; Acín, S.; Arnal, C.; Muniesa, P.; Surra, J.C.; Arbonés-Mainar, J.M.; Maeda, N.; et al. Cystathionine beta-synthase is essential for female reproductive function. Hum. Mol. Genet. 2006, 15, 3168–3176. [Google Scholar] [CrossRef]
- Sarno, L.; Raso, G.M.; Bianca, R.D.d.V.; Mitidieri, E.; Maruotti, G.; Esposito, G.; Meli, R.; Sorrentino, R.; Martinelli, P. OS064. Contribute of the L-cysteine/H2S pathway in placenta homeostasisin hypertensive disorders. Pregnancy Hypertens. 2012, 2, 211–212. [Google Scholar] [CrossRef]
- Hu, T.; Wang, G.; Zhu, Z.; Huang, Y.; Gu, H.; Ni, X. Increased ADAM10 expression in preeclamptic placentas is associated with decreased expression of hydrogen sulfide production enzymes. Placenta 2015, 36, 947–950. [Google Scholar] [CrossRef]
- Du, J.; Wang, P.; Gou, Q.; Jin, S.; Xue, H.; Li, D.; Tian, D.; Sun, J.; Zhang, X.; Teng, X.; et al. Hydrogen sulfide ameliorated preeclampsia via suppression of toll-like receptor 4-activated inflammation in the rostral ventrolateral medulla of rats. Biomed. Pharmacother. 2022, 150, 113018. [Google Scholar] [CrossRef]
- Hu, T.-X.; Wang, G.; Guo, X.-J.; Sun, Q.-Q.; He, P.; Gu, H.; Huang, Y.; Gao, L.; Ni, X. MiR 20a,-20b and -200c are involved in hydrogen sulfide stimulation of VEGF production in human placental trophoblasts. Placenta 2016, 39, 101–110. [Google Scholar] [CrossRef]
- Chen, D.-B.; Feng, L.; Hodges, J.K.; Lechuga, T.J.; Zhang, H. Human trophoblast-derived hydrogen sulfide stimulates placental artery endothelial cell angiogenesis. Biol. Reprod. 2017, 97, 478–489. [Google Scholar] [CrossRef]
- Xu, J.-W.; Gao, D.-D.; Peng, L.; Qiu, Z.-E.; Ke, L.-J.; Zhu, Y.-X.; Zhang, Y.-L.; Zhou, W.-L. The gasotransmitter hydrogen sulfide inhibits transepithelial anion secretion of pregnant mouse endometrial epithelium. Nitric Oxide 2019, 90, 37–46. [Google Scholar] [CrossRef]
- Lu, L.; Kingdom, J.; Burton, G.J.; Cindrova-Davies, T. Placental stem villus arterial remodeling associated with reduced hydrogen sulfide synthesis contributes to human fetal growth restriction. Am. J. Pathol. 2017, 187, 908–920. [Google Scholar] [CrossRef]
- Wang, B.; Xu, T.; Li, Y.; Wang, W.; Lyu, C.; Luo, D.; Yang, Q.; Ning, N.; Chen, Z.-J.; Yan, J.; et al. Trophoblast H2S Maintains Early Pregnancy via Regulating Maternal-Fetal Interface Immune Hemostasis. J. Clin. Endocrinol. Metab. 2020, 105, e4275–e4289. [Google Scholar] [CrossRef]
- Zhao, F.; Lei, F.; Yan, X.; Zhang, S.; Wang, W.; Zheng, Y. Protective effects of hydrogen sulfide against cigarette smoke expo-sure-induced placental oxidative damage by alleviating redox imbalance via nrf2 pathway in rats. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2018, 48, 1815–1828. [Google Scholar] [CrossRef]
- Wu, W.; Tan, Q.-Y.; Xi, F.-F.; Ruan, Y.; Wang, J.; Luo, Q.; Dou, X.-B.; Hu, T.-X. NLRP3 inflammasome activation in gestational diabetes mellitus placentas is associated with hydrogen sulfide synthetase deficiency. Exp. Ther. Med. 2022, 23, 94. [Google Scholar] [CrossRef]
- Liang, R.; Yu, W.; Du, J.; Yang, L.; Yang, J.; Xu, J.; Shang, M.; Guo, J. Cystathionine beta synthase participates in murine oocyte maturation mediated by homocysteine. Reprod. Toxicol. 2007, 24, 89–96. [Google Scholar] [CrossRef]
- Bucci, M.; Papapetropoulos, A.; Vellecco, V.; Zhou, Z.; Pyriochou, A.; Roussos, C.; Roviezzo, F.; Brancaleone, V.; Cirino, G. Hydrogen Sulfide Is an Endogenous Inhibitor of Phosphodiesterase Activity. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1998–2004. [Google Scholar] [CrossRef]
- La Fuente, J.M.; Fernández, A.; Pepe-Cardoso, A.J.; Martínez-Salamanca, J.I.; Louro, N.; Angulo, J. L-cysteine/hydrogen sulfide pathway induces cgmp-dependent relaxation of corpus cavernosum and penile arteries from patients with erectile dysfunction and improves arterial vasodilation induced by pde5 inhibition. Eur. J. Pharmacol. 2019, 863, 172675. [Google Scholar] [CrossRef]
- Nelson, M.T.; Quayle, J.M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 1995, 268, C799–C822. [Google Scholar] [CrossRef]
- Christ, G.J.; Spray, D.C.; Brink, P.R. Characterization of K Currents in Cultured Human Corporal Smooth Muscle Cells. J. Androl. 1993, 14, 319–328. [Google Scholar] [CrossRef]
- Lee, S.; Lee, C.O. Inhibition of Na+-K+ pump and l-type Ca2+ channel by glibenclamide in guinea pig ventricular myocytes. J. Pharmacol. Exp. Ther. 2005, 312, 61–68. [Google Scholar] [CrossRef]
- Chitaley, K.; Wingard, C.J.; Webb, R.C.; Branam, H.; Stopper, V.S.; Lewis, R.W.; Mills, T.M. Antagonism of rho-kinase stim-ulates rat penile erection via a nitric oxide-independent pathway. Nat. Med. 2001, 7, 119–122. [Google Scholar] [CrossRef]
- Aydinoglu, F.; Ogulener, N. The role of arachidonic acid/cyclooxygenase cascade, phosphodiesterase iv and rho-kinase in H2S-induced relaxation in the mouse corpus cavernosum. Pharmacol. Rep. PR 2017, 69, 610–615. [Google Scholar] [CrossRef]
- Ngowi, E.E.; Afzal, A.; Sarfraz, M.; Khattak, S.; Zaman, S.U.; Khan, N.H.; Li, T.; Jiang, Q.-Y.; Zhang, X.; Duan, S.-F.; et al. Role of hydrogen sulfide donors in cancer development and progression. Int. J. Biol. Sci. 2021, 17, 73–88. [Google Scholar] [CrossRef]
- Chattopadhyay, M.; Kodela, R.; Nath, N.; Dastagirzada, Y.M.; Velázquez-Martínez, C.A.; Boring, D.; Kashfi, K. Hydrogen sul-fide-releasing nsaids inhibit the growth of human cancer cells: A general property and evidence of a tissue type-independent effect. Biochem. Pharmacol. 2012, 83, 715–722. [Google Scholar] [CrossRef]
- Bigagli, E.; Luceri, C.; De Angioletti, M.; Chegaev, K.; D’ambrosio, M.; Riganti, C.; Gazzano, E.; Saponara, S.; Longini, M.; Luceri, F.; et al. New NO- and H2S-releasing doxorubicins as targeted therapy against chemoresistance in castration-resistant prostate cancer: In vitro and in vivo evaluations. Investig. New Drugs 2018, 36, 985–998. [Google Scholar] [CrossRef]
- Zhou, B.; Jia, B.-X.; Zhang, M.-J.; Tan, Y.-J.; Liang, W.-Y.; Gan, X.; Li, H.-T.; Yang, X.; Shen, X.-C. Zn2+-interference and H2S-mediated gas therapy based on ZnS-tannic acid nanoparticles synergistic enhancement of cell apoptosis for specific treatment of prostate cancer. Colloids Surf. B Biointerfaces 2023, 226, 113313. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, Y.; Zhang, P.; Hao, Y.; Yu, S.; Min, L.; Li, L.; Ma, D.; Chen, L.; Yi, B.; et al. Decrease in male mouse fertility by hydrogen sulfide and/or ammonia can Be inheritable. Chemosphere 2018, 194, 147–157. [Google Scholar] [CrossRef]
- Moustafa, A. Changes in nitric oxide, carbon monoxide, hydrogen sulfide and male reproductive hormones in response to chronic restraint stress in rats. Free Radic. Biol. Med. 2021, 162, 353–366. [Google Scholar] [CrossRef]
- Azarbarz, N.; Seifabadi, Z.S.; Moaiedi, M.Z.; Mansouri, E. Assessment of the effect of sodium hydrogen sulfide (hydrogen sulfide donor) on cisplatin-induced testicular toxicity in rats. Environ. Sci. Pollut. Res. 2020, 27, 8119–8128. [Google Scholar] [CrossRef]
- Ohlander, S.J.; Lindgren, M.C.; Lipshultz, L.I. Testosterone and male infertility. Urol. Clin. N. Am. 2016, 43, 195–202. [Google Scholar] [CrossRef]
- Shi, H.; Li, Q.-Y.; Li, H.; Wang, H.-Y.; Fan, C.-X.; Dong, Q.-Y.; Pan, B.-C.; Ji, Z.-L.; Li, J.-Y. ROS-induced oxidative stress is a major contributor to sperm cryoinjury. Hum. Reprod. 2024, 39, 310–325. [Google Scholar] [CrossRef]
- Wiliński, B.; Wiliński, J.; Gajda, M.; Jasek, E.; Somogyi, E.; Owacki, M.A.G.; Liwa, L. Sodium hydrosulfide exerts a transitional at-tenuating effect on spermatozoa migration in vitro. Folia. Biol. 2015, 63, 145–149. [Google Scholar] [CrossRef]
- Kadlec, M.; Pintus, E.; Ros-Santaella, J.L. The Interaction of NO and H2S in Boar Spermatozoa under Oxidative Stress. Animals 2022, 12, 602. [Google Scholar] [CrossRef]
- Pintus, E.; Chinn, A.F.; Kadlec, M.; García-Vázquez, F.A.; Novy, P.; Matson, J.B.; Ros-Santaella, J.L. N-thiocarboxyanhydrides, amino acid-derived enzyme-activated H2S donors, enhance sperm mitochondrial activity in presence and absence of oxidative stress. BMC Vet. Res. 2023, 19, 52. [Google Scholar] [CrossRef]
- Jones, R. Murdoch Regulation of the motility and metabolism of spermatozoa for storage in the epididymis of eutherian and marsupial mammals. Reprod. Fertil. Dev. 1996, 8, 553–568. [Google Scholar] [CrossRef]
- Lorian, K.; Kadkhodaee, M.; Kianian, F.; Abdi, A.; Ranjbaran, M.; Ashabi, G.; Seifi, B. Long-term nahs administration reduces ox-idative stress and apoptosis in a rat model of left-side varicocele. Andrologia 2020, 52, e13496. [Google Scholar] [CrossRef]
- Shafie, A.; Kianian, F.; Ashabi, G.; Kadkhodaee, M.; Ranjbaran, M.; Hajiaqaei, M.; Lorian, K.; Abdi, A.; Seifi, B. Beneficial effects of combination therapy with testosterone and hydrogen sulfide by reducing oxidative stress and apoptosis: Rat experimental varicocele model. Int. J. Reprod. Biomed. (IJRM) 2022, 20, 941–954. [Google Scholar] [CrossRef]
- Hayden, L.J.; Goeden, H.; Roth, S.H. Growth and Development in the Rat during Sub-Chronic Exposure to Low Levels of Hydrogen Sulfide. Toxicol. Ind. Health 1990, 6, 389–401. [Google Scholar] [CrossRef]
- Robinson, H.; Wray, S. A New Slow Releasing, H2S Generating Compound, GYY4137 Relaxes Spontaneous and Oxytocin-Stimulated Contractions of Human and Rat Pregnant Myometrium. PLoS ONE 2012, 7, e46278. [Google Scholar] [CrossRef]
- Mitidieri, E.; Tramontano, T.; Donnarumma, E.; Brancaleone, V.; Cirino, G.; Bianca, R.D.d.V.; Sorrentino, R. l -Cys/CSE/H 2 S pathway modulates mouse uterus motility and sildenafil effect. Pharmacol. Res. 2016, 111, 283–289. [Google Scholar] [CrossRef]
- Hu, R.; Lu, J.; You, X.; Zhu, X.; Hui, N.; Ni, X. Hydrogen sulfide inhibits the spontaneous and oxytocin-induced contractility of human pregnant myometrium. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2011, 27, 900–904. [Google Scholar] [CrossRef]
- Challis, J.R.; Lockwood, C.J.; Myatt, L.; Norman, J.E.; Strauss, J.F.R.; Petraglia, F. Inflammation and pregnancy. Reprod. Sci. 2009, 16, 206–215. [Google Scholar] [CrossRef]
- Osman, I.; Young, A.; Ledingham, M.A.; Thomson, A.J.; Jordan, F.; Greer, I.A.; Norman, J.E. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol. Hum. Reprod. 2003, 9, 41–45. [Google Scholar] [CrossRef]
- Ray, A.; Chakraborty, K.; Ray, P. Immunosuppressive MDSCs induced by TLR signaling during infection and role in resolution of inflammation. Front. Cell. Infect. Microbiol. 2013, 3, 52. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, J. Regulation of Placental Angiogenesis. Microcirculation 2014, 21, 15–25. [Google Scholar] [CrossRef]
- Das, A.; Mantena, S.R.; Kannan, A.; Evans, D.B.; Bagchi, M.K.; Bagchi, I.C. De novo synthesis of estrogen in pregnant uterus is critical for stromal decidualization and angiogenesis. Proc. Natl. Acad. Sci. USA 2009, 106, 12542–12547. [Google Scholar] [CrossRef]
- Loriaux, D.L.; Ruder, H.J.; Knab, D.R.; Lipsett, M.B. Estrone sulfate, estrone, estradiol and estriol plasma levels in human preg-nancy. J. Clin. Endocrinol. Metab. 1972, 35, 887–891. [Google Scholar] [CrossRef]
- Bai, J.; Lechuga, T.J.; Makhoul, J.; Yan, H.; Major, C.; Hameed, A.; Chen, D. Erα/erβ-directed cbs transcription mediates e2β-stimulated huaec H2S production. J. Mol. Endocrinol. 2023, 70, e220175. [Google Scholar] [CrossRef]
- Maybin, J.A.; Critchley, H.O. Menstrual physiology: Implications for endometrial pathology and beyond. Hum. Reprod. Updat. 2015, 21, 748–761. [Google Scholar] [CrossRef]
- Ruan, Y.C.; Guo, J.H.; Liu, X.; Zhang, R.; Tsang, L.L.; Da Dong, J.; Chen, H.; Yu, M.K.; Jiang, X.; Zhang, X.H.; et al. Activation of the epithelial Na+ channel triggers prostaglandin E2 release and production required for embryo implantation. Nat. Med. 2012, 18, 1112–1117. [Google Scholar] [CrossRef]
- Ajonuma, L.C.; Ng, E.H.Y.; Chan, H.C. New insights into the mechanisms underlying hydrosalpinx fluid formation and its ad-verse effect on ivf outcome. Hum. Reprod. Update 2002, 8, 255–264. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmed, A. Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ. Res. 2004, 95, 884–891. [Google Scholar] [CrossRef]
- Ahmed, A. Molecular mechanisms and therapeutic implications of the carbon monoxide/hmox1 and the hydrogen sulfide/CSE pathways in the prevention of pre-eclampsia and fetal growth restriction. Pregnancy Hypertens. 2014, 4, 243–244. [Google Scholar] [CrossRef]
- Arbeille, P. Fetal arterial doppler-iugr and hypoxia. Eur. J. Obstet. Gynecol. Reprod. Biol. 1997, 75, 51–53. [Google Scholar] [CrossRef]
- Raghupathy, R. Th 1-type immunity is incompatible with successful pregnancy. Immunol. Today 1997, 18, 478–482. [Google Scholar] [CrossRef]
- La Rocca, C.; Carbone, F.; Longobardi, S.; Matarese, G. The immunology of pregnancy: Regulatory T cells control maternal immune tolerance toward the fetus. Immunol. Lett. 2014, 162, 41–48. [Google Scholar] [CrossRef]
- Yang, R.; Qu, C.; Zhou, Y.; Konkel, J.E.; Shi, S.; Liu, Y.; Chen, C.; Liu, S.; Liu, D.; Chen, Y.; et al. Hydrogen Sulfide Promotes Tet1- and Tet2-Mediated Foxp3 Demethylation to Drive Regulatory T Cell Differentiation and Maintain Immune Homeostasis. Immunity 2015, 43, 251–263. [Google Scholar] [CrossRef]
- Chen, W.; Jin, W.; Hardegen, N.; Lei, K.; Li, L.; Marinos, N.; Mcgrady, G.; Wahl, S.M. Conversion of peripheral cd4+cd25- naive t cells to cd4+cd25+ regulatory t cells by tgf-beta induction of transcription factor foxp3. J. Exp. Med. 2003, 198, 1875–1886. [Google Scholar] [CrossRef]
- Chavan, A.R.; Griffith, O.W.; Wagner, G.P. The inflammation paradox in the evolution of mammalian pregnancy: Turning a foe into a friend. Curr. Opin. Genet. Dev. 2017, 47, 24–32. [Google Scholar] [CrossRef]
- Wegmann, T.G.; Lin, H.; Guilbert, L.; Mosmann, T.R. Bidirectional cytokine interactions in the maternal-fetal relationship: Is successful pregnancy a th2 phenomenon? Immunol. Today 1993, 14, 353–356. [Google Scholar] [CrossRef]
- Singh, N.; Prasad, P.; Kumar, P.; Singh, L.C.; Das, B.; Rastogi, S. Does aberrant expression of cyclooxygenase-2 and prostaglandin-E2 receptor genes lead to abortion in Chlamydia trachomatis-infected women. J. Matern. Neonatal Med. 2015, 29, 1010–1015. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, A.-M.; Lin, Q.-D. Role of cyclooxygenase-2 signaling pathway dysfunction in unexplained recurrent spontaneous abortion. Chin. Med. J. 2010, 123, 1543–1547. [Google Scholar]
- Schumacher, A. Human chorionic gonadotropin as a pivotal endocrine immune regulator initiating and preserving fetal tol-erance. Int. J. Mol. Sci. 2017, 18, 2166. [Google Scholar] [CrossRef]
- Schumacher, A.; Heinze, K.; Witte, J.; Poloski, E.; Linzke, N.; Woidacki, K.; Zenclussen, A.C. Human Chorionic Gonadotropin as a Central Regulator of Pregnancy Immune Tolerance. J. Immunol. 2013, 190, 2650–2658. [Google Scholar] [CrossRef]
- Ban, Y.; Chang, Y.; Dong, B.; Kong, B.; Qu, X. Indoleamine 2,3-dioxygenase levels at the normal and recurrent spontaneous abortion fetal-maternal interface. J. Int. Med. Res. 2013, 41, 1135–1149. [Google Scholar] [CrossRef]
- Munn, D.H.; Zhou, M.; Attwood, J.T.; Bondarev, I.; Conway, S.J.; Marshall, B.; Brown, C.; Mellor, A.L. Prevention of Allogeneic Fetal Rejection by Tryptophan Catabolism. Science 1998, 281, 1191–1193. [Google Scholar] [CrossRef]
- Frumento, G.; Rotondo, R.; Tonetti, M.; Damonte, G.; Benatti, U.; Ferrara, G.B. Tryptophan-derived Catabolites Are Responsible for Inhibition of T and Natural Killer Cell Proliferation Induced by Indoleamine 2,3-Dioxygenase. J. Exp. Med. 2002, 196, 459–468. [Google Scholar] [CrossRef]
- Guo, P.-F.; Du, M.-R.; Wu, H.-X.; Lin, Y.; Jin, L.-P.; Li, D.-J. Thymic stromal lymphopoietin from trophoblasts induces dendritic cell–mediated regulatory TH2 bias in the decidua during early gestation in humans. Blood 2010, 116, 2061–2069. [Google Scholar] [CrossRef]
- Velicky, P.; Knöfler, M.; Pollheimer, J. Function and control of human invasive trophoblast subtypes: Intrinsic vs. maternal control. Cell Adhes. Migr. 2016, 10, 154–162. [Google Scholar] [CrossRef]
- Einarson, A.; Riordan, S. Smoking in pregnancy and lactation: A review of risks and cessation strategies. Eur. J. Clin. Pharmacol. 2009, 65, 325–330. [Google Scholar] [CrossRef]
- Jauniaux, E.; Burton, G.J. Morphological and biological effects of maternal exposure to tobacco smoke on the feto-placental unit. Early Hum. Dev. 2007, 83, 699–706. [Google Scholar] [CrossRef]
- Olmos-Ortiz, A.; Flores-Espinosa, P.; Díaz, L.; Velázquez, P.; Ramírez-Isarraraz, C.; Zaga-Clavellina, V. Immunoendocrine Dysregulation during Gestational Diabetes Mellitus: The Central Role of the Placenta. Int. J. Mol. Sci. 2021, 22, 8087. [Google Scholar] [CrossRef]
- Estienne, A.; Portela, V.M.; Choi, Y.; Zamberlam, G.; Boerboom, D.; Roussel, V.; Meinsohn, M.-C.; Brännström, M.; Curry, T.E.; Jo, M.; et al. The endogenous hydrogen sulfide generating system regulates ovulation. Free. Radic. Biol. Med. 2019, 138, 43–52. [Google Scholar] [CrossRef]
- Fontes, P.K.; dos Santos, E.C.; da Rocha, H.C.; de Lima, C.B.; Milazzotto, M.P. Metabolic stressful environment drives epigenetic modifications in oviduct epithelial cells. Theriogenology 2024, 215, 151–157. [Google Scholar] [CrossRef]
- Jeremy, J.Y.; Jones, R.A.; Koupparis, A.J.; Hotston, M.; Persad, R.; Angelini, G.D.; Shukla, N. Reactive oxygen species and erectile dysfunction: Possible role of NADPH oxidase. Int. J. Impot. Res. 2007, 19, 265–280. [Google Scholar] [CrossRef]
- Jeremy, J.Y.; Rowe, D.; Emsley, A.M.; Newby, A.C. Nitric oxide and the proliferation of vascular smooth muscle cells. Cardiovasc. Res. 1999, 43, 580–594. [Google Scholar] [CrossRef]
- Koupparis, A.J.; Jeremy, J.Y.; Muzaffar, S.; Persad, R.; Shukla, N. Sildenafil inhibits the formation of superoxide and the expression of gp47 nad[p]h oxidase induced by the thromboxane a2 mimetic, u46619, in corpus cavernosal smooth muscle cells. BJU Int. 2005, 96, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Shukla, N.; Jones, R.; Persad, R.; Angelini, G.D.; Jeremy, J.Y. Effect of sildenafil citrate and a nitric oxide donating sildenafil derivative, NCX 911, on cavernosal relaxation and superoxide formation in hypercholesterolaemic rabbits. Eur. J. Pharmacol. 2005, 517, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Muzaffar, S.; Shukla, N.; Bond, M.; Sala-Newby, G.; Angelini, G.D.; Newby, A.C.; Jeremy, J.Y. Acute inhibition of superoxide for-mation and rac1 activation by nitric oxide and iloprost in human vascular smooth muscle cells in response to the thromboxane a2 analogue, u46619. Prostaglandins Leukot. Essent. Fat. Acids 2008, 78, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Shukla, N.; Angelini, G.D.; Yim, A.P.C.; Johnson, J.L.; Jeremy, J.Y. Nitric oxide-donating aspirin (ncx 4016) inhibits neoin-timal thickening in a pig model of saphenous vein-carotid artery interposition grafting: A comparison with aspirin and mor-pholinosydnonimine (sin-1). J. Thorac. Cardiovasc. Surg. 2007, 134, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Hotston, M.; Jeremy, J.Y.; Bloor, J.; Greaves, N.S.; Persad, R.; Angelini, G.; Shukla, N. Homocysteine and copper interact to promote type 5 phosphodiesterase expression in rabbit cavernosal smooth muscle cells. Asian J. Androl. 2008, 10, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Muzaffar, S.; Jeremy, J.Y.; Angelini, G.D.; Stuart-Smith, K.; Shukla, N. Role of the endothelium and nitric oxide synthases in modulating superoxide formation induced by endotoxin and cytokines in porcine pulmonary arteries. Thorax 2003, 58, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Muzaffar, S.; Shukla, N.; Bond, M.; Newby, A.C.; Angelini, G.D.; Sparatore, A.; Del Soldato, P.; Jeremy, J.Y. Exogenous Hydrogen Sulfide Inhibits Superoxide Formation, NOX-1 Expression and Rac1 Activity in Human Vascular Smooth Muscle Cells. J. Vasc. Res. 2008, 45, 521–528. [Google Scholar] [CrossRef]
- Bibli, S.; Yang, G.; Zhou, Z.; Wang, R.; Topouzis, S.; Papapetropoulos, A. Role of cgmp in hydrogen sulfide signaling. Nitric Oxide Biol. Chem. 2015, 46, 7–13. [Google Scholar] [CrossRef]
- Song, Y.; Qu, Y.; Mao, C.; Zhang, R.; Jiang, D.; Sun, X. Post-translational modifications of Keap1: The state of the art. Front. Cell Dev. Biol. 2023, 11, 1332049. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.K.; Sikka, G.; Gazi, S.K.; Steppan, J.; Jung, S.M.; Bhunia, A.K.; Barodka, V.M.; Gazi, F.K.; Barrow, R.K.; Wang, R.; et al. Hydrogen Sulfide as Endothelium-Derived Hyperpolarizing Factor Sulfhydrates Potassium Channels. Circ. Res. 2011, 109, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Huang, Y.; Yu, W.; Chen, S.; Yao, Q.; Zhang, C.; Bu, D.; Tang, C.; Du, J.; Jin, H. Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide. Oncotarget 2017, 8, 31888–31900. [Google Scholar] [CrossRef] [PubMed]
Organ | Action | Mechanisms | Models | References |
---|---|---|---|---|
Penis | Promotion of erection | Activation of RhoA/ROCK pathway and KATP channel | HCC strips from transsexual procedures (n = 6) | [17] |
Activation of RhoA/ROCK pathway | Bilateral cavernous nerve injury rats (n = 18) | [19] | ||
Dependent on cAMP or cGMP | Rabbit CC strips (n = 5) | [47] | ||
Activation of BKCa channel | Anesthetized rat | [67] | ||
Increase eNOS expression | L-NAME-induced hypertensive rats (n = 40) | [68] | ||
Activation of sGC/cGMP pathway | HCC strips of men with ED (n = 50) | [81] | ||
Increase the levels of NO and HO activity | Diabetic rats (n = 90) | [82] | ||
Activation of NO/sGC/cGMP pathway | CSE−/− mice | [83] | ||
Activation of BKCa channel and Kv channel | Rat CC strips | [84] | ||
Activation of NO/sGC/cGMP pathway and KATP channel | STZ-diabetic rats (n = 10 or 12) | [85] | ||
Activation of RhoA/ROCK pathway | Mouse CC strips | [86] | ||
Improve vascular injury of CC | Inhibition of TGF-β1/Smad/CTGF pathway | STZ-diabetic rats | [77] | |
Prostate | Inhibition of CRPC | S-sulfhydrylation of AR | CSE knock-out and overexpression LNCaP; LNCaP-B | [54] |
Promotion of NE differentiation | Enhance the activity of Cav3.2 | LNCaP | [87] | |
Testis | Alleviate the apoptosis of testicular germ cells | Increase SOD activity and reduce Bax/Bcl-2 ratio | Heat exposure treated mice | [55] |
Reduce sperm motility | Activation of AMPK/Akt related pathways | Boar sperm;NH4Cl and/or Na2S treated mice | [88] | |
Activation of Keap1/Nrf2 signaling pathway | GC-2spd(ts) cells derived from mouse spermatocytes | [89] | ||
Reduction of iNOS, TNF-α, and Apaf-1 | Testicular torsion-induced I/R injury rat model (n = 38) | [90] | ||
Alleviate testosterone synthesis | Sulfhydrylation of PDE4A/8A and activation of cAMP/PKA pathway | LPS+ induced testosterone synthesis impairment model of mouse Leydig tumour cells | [91] | |
Increase sperm motility | Activation of CBS/H2S pathway | LPS− and diabetes-induced sperm dysfunction mice model;CBS+/− mice model | [92] | |
Scavenge ROS | Fe2+/ascorbate treated boar sperm | [93] | ||
Epididymis | Maintain quiescence of epididymal sperm | Activation of KATP channel and BKCa channel | Cauda epididymal epithelium cells | [56] |
Alleviate varicocele-induced epididymis injury | Activation of PI3K/Akt pathway | Experimental varicocele rat model (n = 60) | [94] | |
Vas deferens | Regulation of VD spontaneous contraction | Activation of L-Cys/H2S pathway | Human VDs from monorchidism surgery (n = 3); rat VDs (n = 20); mice VDs (n = 11) | [23] |
Activation of BKCa channel | Rat VDs | [24] | ||
Uterus | Abnormal contraction of uterus | Activation of L-Cys/CSE/H2S | L-Cys and sildenafil treated uterus collected from CSE−/− mice (n = 10). | [74] |
Activation of KATP channel | L-Cys treated Human myometrium (n = 6). | [95] | ||
Premature delivery | Inhibition of TLR4/NF-κB signaling pathway | LPS-induced C57BL/6 mice (n = 8). | [96] | |
IL-1β treated USMCs obtained from TL and TNL myometrium (n = 12). | ||||
Inhibition of ERK1/2 and NF-κB signaling pathway | LPS-induced BALB/c mice (n = 10). | [97] | ||
Promote uterine angiogenesis | Improve the expression of CBS | UA collected from female uterus (NP, n = 20; P, n = 10); | [62] | |
Phenylephrine-treated UA collected from SD mice (n = 8–10). | ||||
E2-treated HESCs isolated from human endometrial | [64] | |||
(POM, n = 9; pPRM, n = 13; sPRM, n = 4; Preg, n = 13). | ||||
ERT-treated UA isolated from ovx NP ewes (n = 3–5). | [98] | |||
E2-treated UASMCs isolated from late pregnant ewes (n = 3–5). | [99] | |||
Endometriosis | Activation of NF-κB | HESCs isolated from human endometrium (n = 21); Allogeneic endometrial fragment transplantation induced BABL/C mice (n = 6). | [100] | |
Decreased uterine fertility | Replenish the CBS | Ovary transplantation treated CBS−/− mice. | [101] | |
Placenta | Preeclampsia | Activation of CSE/H2S pathway | Placenta and plasma collected from women with PE and normotensive pregnant (n = 14); PAG-treated C57BL/6 pregnant mice. | [60] |
Activation of KATP channel | IUGR and PE placenta collected from female (n = 6 and 13). | [61] | ||
Promotion of NO synthesis | Hypoxia-treated placental explants; bicarbonate buffer treated healthy placenta (n = 8). | |||
Activation of L-cys/H2S pathway | Placenta collected from women with PE (n = 10); L-Cys treated SHR. | [102] | ||
Inhibition of SFlt-1 expression | Placenta obtained from woman with PE (n = 19); | [59] | ||
NaHS and L-Cys treated syncytiotrophoblasts. | ||||
Placenta collected from women with PE (n = 18); | [103] | |||
NaHS and L-Cys treated cytotrophoblasts | ||||
Inhibition of TLR4 expression | Plasma collected from women with PE (n = 30); | [104] | ||
DOCA-salt and LPS treated SD pregnant rats (n = 6). | ||||
Activation of VEGF expression | Placenta obtained from women with PE (n = 19); NaHS and L-Cys treated explants and trophoblasts isolated from healthy placentas. | [105] | ||
Activation of PI3K/Akt1/eNOS and ERK1/2 signaling pathway | NaHS-treated oFPAECs isolated from sheep placental arteries. | [106] | ||
BCA and CHH treated HTR-8/SVneo. | ||||
Promotion of embryo implantation | Inhibition of CFTR expression | AOAA or PAG treated pregnant KM rat (n = 3); | [107] | |
NaHS-treated MEECs isolated from KM female rat. | ||||
Intrauterine fetal growth restriction | Activation of CSE/H2S pathway | HR-induced SVA collected from human IUGR placentas (n = 34). | [108] | |
Recurrent spontaneous abortion | Activation of CBS/H2S pathway | AOAA and PAG treated C57BL/6 mice; GYY4137 and NaHS treated CBS+/−♀ mice; | [109] | |
NaHS or L-Cys treated HTR8/SVneo and JEG3 cells. | ||||
Promotion placental development | Elevation of Nrf2 expression | Cigarette smoke induced SD pregnancy rats. | [110] | |
Gestational diabetes | Inhibition of NLPR3 | Placenta collected from pregnant women with GDM (n = 16); | [111] | |
NaHS or L-Cys treated HTR-8/SVneo. | ||||
Ovary | Promotion of ovulation | Elevation of CBS and CSE expression | PMSG-treated granulosa cells isolated from ICR mice ovary. | [112] |
Fallopian tube | Promotion of tubal transport | Activation of H2S signaling pathway | NaHS or L-Cys treated fallopian tubes collected from female (n = 7 or 5); | [26] |
AOAA-treated C57BL/6J mice and BALB/c mice (n = 22). | ||||
Vagina | Sexual response | Activation of CAMP, NO-cGMP, KATP signaling pathway | NaHS-treated Vaginal isolated from white rabbits (n = 12). | [16] |
Activation of CSE/H2S pathway | NaHS-treated SD rats (n = 10); NaHS-treated VK2/E6E7. | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Mao, C.; Xie, Y.; Zhong, Q.; Zhang, R.; Jiang, D.; Song, Y. Therapeutic Potential of Hydrogen Sulfide in Reproductive System Disorders. Biomolecules 2024, 14, 540. https://doi.org/10.3390/biom14050540
Sun X, Mao C, Xie Y, Zhong Q, Zhang R, Jiang D, Song Y. Therapeutic Potential of Hydrogen Sulfide in Reproductive System Disorders. Biomolecules. 2024; 14(5):540. https://doi.org/10.3390/biom14050540
Chicago/Turabian StyleSun, Xutao, Caiyun Mao, Ying Xie, Qing Zhong, Rong Zhang, Deyou Jiang, and Yunjia Song. 2024. "Therapeutic Potential of Hydrogen Sulfide in Reproductive System Disorders" Biomolecules 14, no. 5: 540. https://doi.org/10.3390/biom14050540
APA StyleSun, X., Mao, C., Xie, Y., Zhong, Q., Zhang, R., Jiang, D., & Song, Y. (2024). Therapeutic Potential of Hydrogen Sulfide in Reproductive System Disorders. Biomolecules, 14(5), 540. https://doi.org/10.3390/biom14050540