Apigenin Provides Structural Protection to Human Fibrinogen against Nitrosative Stress: Biochemical and Molecular Insights
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Human Fibrinogen and Apigenin Solutions
2.2. Treatment of Fibrinogen UsingApigenin and Peroxynitrite
2.3. Ultraviolet Spectroscopy
2.4. Tryptophan and Tyrosine Fluorescence Emission Studies
2.5. bis-ANS-Binding Fluorescence Studies
2.6. SDS-PAGE
2.7. Protein Carbonyl Content Estimation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolberg, A.S. Fibrinogen and fibrin: Synthesis, structure, and function in health and disease. J. Thromb. Haemost. JTH 2023, 21, 3005–3015. [Google Scholar] [CrossRef]
- Pieters, M.; Wolberg, A.S. Fibrinogen and fibrin: An illustrated review. Res. Pract. Thromb. Haemost. 2019, 3, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Chapin, J.C.; Hajjar, K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015, 29, 17–24. [Google Scholar] [CrossRef]
- May, J.E.; Wolberg, A.S.; Lim, M.Y. Disorders of Fibrinogen and Fibrinolysis. Hematol. Clin. North Am. 2021, 35, 1197–1217. [Google Scholar] [CrossRef] [PubMed]
- Davalos, D.; Akassoglou, K. Fibrinogen as a key regulator of inflammation in disease. Semin. Immunopathol. 2012, 34, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Surma, S.; Banach, M. Fibrinogen and Atherosclerotic Cardiovascular Diseases—Review of the Literature and Clinical Studies. Int. J. Mol. Sci. 2021, 23, 193. [Google Scholar] [CrossRef]
- Petersen, M.A.; Ryu, J.K.; Akassoglou, K. Fibrinogen in neurological diseases: Mechanisms, imaging and therapeutics. Nat. Rev. Neurosci. 2018, 19, 283–301. [Google Scholar] [CrossRef]
- Lee, S.J.; Jeong, J.H.; Heo, M.; Ju, S.; Yoo, J.-W.; Jeong, Y.Y.; Lee, J.D. Serum Fibrinogen as a Biomarker for Disease Severity and Exacerbation in Patients with Non-Cystic Fibrosis Bronchiectasis. J. Clin. Med. 2022, 11, 3948. [Google Scholar] [CrossRef]
- Duvoix, A.; Dickens, J.; Haq, I.; Mannino, D.; Miller, B.; Tal-Singer, R.; Lomas, D.A. Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease. Thorax 2013, 68, 670–676. [Google Scholar] [CrossRef]
- Szabó, C.; Ischiropoulos, H.; Radi, R. Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 2007, 6, 662–680. [Google Scholar] [CrossRef]
- Ahmad, R.; Rasheed, Z.; Ahsan, H. Biochemical and cellular toxicology of peroxynitrite: Implications in cell death and autoimmune phenomenon. Immunopharmacol. Immunotoxicol. 2009, 31, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, Z.; Altorbag, A.A.; Al-Bossier, A.S.; Alnasser, N.A.; Alkharraz, O.S.; Altuwayjiri, K.M.; Alobaid, A.S.; Alsaif, A.K.; Alanazi, Y.H.; Alghidani, B.A.; et al. Protective potential of thymoquinone against peroxynitrite induced modifications in histone H2A: In vitro studies. Int. J. Biol. Macromol. 2018, 112, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Alghasham, A.; Al Salloom, A.A.; Alghamadi, A.S.; Rasheed, Z. Impact of Anti-Peroxynitrite-Damaged-Thymidine-Monophosphate Antibodies on Disease Activity in Patients with Systemic Lupus Erythematosus. Nucleosides Nucleotides Nucleic Acids 2015, 34, 56–68. [Google Scholar] [CrossRef]
- Al-Shobaili, H.A.; Rasheed, Z. Mitochondrial DNA acquires immunogenicity on exposure to nitrosative stress in patients with vitiligo. Hum. Immunol. 2014, 75, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Ramdial, K.; Franco, M.C.; Estevez, A.G. Cellular mechanisms of peroxynitrite-induced neuronal death. Brain Res. Bull. 2017, 133, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Rasheed, Z.; Kaushal, E.; Singh, D.; Ahsan, H. Biochemical Evaluation of Human DNA-Lysine Photoadduct Treated with Peroxynitrite. Toxicol. Mech. Methods 2008, 18, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.S.; Zhang, J.; Rao, N.A. Peroxynitrite and oxidative damage in experimental autoimmune uveitis. Investig. Ophthalmol. Vis. Sci. 1997, 38, 1333–1339. [Google Scholar]
- Wang, M.; Firrman, J.; Liu, L.; Yam, K. A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota. BioMed Res. Int. 2019, 2019, 7010467. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Sadeer, N.B.; Hussain, M.; Mahwish; Alsagaby, S.A.; Imran, M.; Mumtaz, T.; Umar, M.; Tauseef, A.; Al Abdulmonem, W.; et al. Therapeutical properties of apigenin: A review on the experimental evidence and basic mechanisms. Int. J. Food Prop. 2023, 26, 1914–1939. [Google Scholar] [CrossRef]
- Kashyap, P.; Shikha, D.; Thakur, M.; Aneja, A. Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. J. Food Biochem. 2022, 46, e13950. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, T.; Su, J.; Zhao, Y.; Chenchen; Wang; Li, X. Apigenin attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage. J. Clin. Neurosci. 2017, 40, 157–162. [Google Scholar] [CrossRef]
- Rasheed, Z.; Alharbi, A.; Alrakebeh, A.; Almansour, K.; Almadi, A.; Almuzaini, A.; Salem, M.; Aloboody, B.; Alkobair, A.; Albegami, A.; et al. Thymoquinone provides structural protection of human hemoglobin against oxidative damage: Biochemical studies. Biochimie 2022, 192, 102–110. [Google Scholar] [CrossRef]
- Möller, M.; Denicola, A. Protein tryptophan accessibility studied by fluorescence quenching. Biochem. Mol. Biol. Educ. 2002, 30, 175–178. [Google Scholar] [CrossRef]
- Rasheed, Z.; Khan, M.W.A.; Ali, R. Hydroxyl radical modification of human serum albumin generated cross reactive antibodies. Autoimmunity 2006, 39, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Fan, D.; Li, S.; Zhang, H.; Perrett, S.; Zhou, J. Identification of a potential hydrophobic peptide binding site in the C-terminal arm of trigger factor. Protein Sci. 2007, 16, 1165–1175. [Google Scholar] [CrossRef]
- Al-Shobaili, H.A.; Rasheed, Z. Oxidized tyrosinase: A possible antigenic stimulus for non-segmental vitiligo autoantibodies. J. Dermatol. Sci. 2015, 79, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Radi, R. Peroxynitrite, a Stealthy Biological Oxidant. J. Biol. Chem. 2013, 288, 26464–26472. [Google Scholar] [CrossRef]
- Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA 2018, 115, 5839–5848. [Google Scholar] [CrossRef]
- Xu, K.; Yang, Y.; Lan, M.; Wang, J.; Liu, B.; Yan, M.; Wang, H.; Li, W.; Sun, S.; Zhu, K.; et al. Apigenin alleviates oxidative stress-induced myocardial injury by regulating SIRT1 signaling pathway. Eur. J. Pharmacol. 2023, 944, 175584. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, R.-R.; Xu, R.-H.; Wang, H.-H.; Feng, W.-S.; Zheng, X.-K. Naringenin and apigenin ameliorates corticosterone-induced depressive behaviors. Heliyon 2023, 9, e15618. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Zhou, H.Y.; Cho, S.Y.; Kim, Y.S.; Lee, Y.S.; Jeong, C.S. Anti-inflammatory mechanisms of apigenin: Inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Arch. Pharmacal Res. 2007, 30, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lang, F.; Zhang, H.; Xu, L.; Wang, Y.; Zhai, C.; Hao, E. Apigenin Alleviates Endotoxin-Induced Myocardial Toxicity by Modulating Inflammation, Oxidative Stress, and Autophagy. Oxidative Med. Cell. Longev. 2017, 2017, 2302896. [Google Scholar] [CrossRef] [PubMed]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef] [PubMed]
- Ciumărnean, L.; Milaciu, M.V.; Runcan, O.; Vesa, S.C.; Răchișan, A.L.; Negrean, V.; Perné, M.-G.; Donca, V.I.; Alexescu, T.-G.; Para, I.; et al. The effects of favonoids in cardiovascular diseases. Molecules 2020, 25, 4320. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, W. Apigenin protects against bleomycin-induced lung fibrosis in rats. Exp. Ther. Med. 2016, 11, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Becatti, M.; Mannucci, A.; Argento, F.R.; Gitto, S.; Vizzutti, F.; Marra, F.; Taddei, N.; Fiorillo, C.; Laffi, G. Super-Resolution Microscopy Reveals an Altered Fibrin Network in Cirrhosis: The Key Role of Oxidative Stress in Fibrinogen Structural Modifications. Antioxidants 2020, 9, 737. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.; Weisel, J.W.; Ischiropoulos, H. Functional impact of oxidative posttranslational modifications on fibrinogen and fibrin clots. Free. Radic. Biol. Med. 2013, 65, 411–418. [Google Scholar] [CrossRef]
- Suzuki, Y.J. Oxidant-Mediated Protein Amino Acid Conversion. Antioxidants 2019, 8, 50. [Google Scholar] [CrossRef]
- Stryer, L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin: A fluorescent probe of non-polar binding sites. J. Mol. Biol. 1965, 13, 482–495. [Google Scholar] [CrossRef] [PubMed]
- Gonos, E.S.; Kapetanou, M.; Sereikaite, J.; Bartosz, G.; Naparło, K.; Grzesik, M.; Sadowska-Bartosz, I. Origin and pathophysiology of protein carbonylation, nitration and chlorination in age-related brain diseases and aging. Aging 2018, 10, 868–901. [Google Scholar] [CrossRef] [PubMed]
- Dalle-Donne, I.; Giustarini, D.; Colombo, R.; Rossi, R.; Milzani, A. Protein carbonylation in human diseases. Trends Mol. Med. 2003, 9, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Weisel, J.W.; Litvinov, R.I. Fibrin Formation, Structure and Properties. Subcell. Biochem. 2017, 82, 405–456. [Google Scholar]
SN. | Comparative Assessment of Hypochromicity | Alteration at λmax (Hypo or Hyper-Chromicity) | % Protection on Hypochromicity by AP |
---|---|---|---|
1. | Native Fibrinogen v/s ONOO−-Fibrinogen | 35.7% hypochromicity | - |
2. | AP50-ONOO−-Fibrinogen v/s Native Fibrinogen | 23.9% hypochromicity | 32.8 |
3. | AP50-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen | 6.9% hyperchromicity | - |
4. | AP75-ONOO−-Fibrinogen v/s Native Fibrinogen | 20.5% hypochromicity | 42.6 |
5. | AP75-ONOO−-Fibrinogen v/s ONOOv-Fibrinogen | 8.9% hyperchromicity | - |
6. | AP100-ONOO−-Fibrinogen v/s Native Fibrinogen | 6.8% hypochromicity | 80.9 |
7. | AP100-ONOO−-Fibrinogen v/s ONOOv-Fibrinogen | 31.0% hyperchromicity | - |
| |||
---|---|---|---|
SN. | Comparative Assessment of Trp Residues | Trp-Fluorescence Alterations | % Protection by AP |
1. | Native Fibrinogen v/s ONOO−-Fibrinogen | 55.3% FI. decreased | - |
2. | AP50-ONOO−-Fibrinogen v/s Native Fibrinogen | 40.2% FI. decreased | 27.3 |
3. | AP50-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen | 25.2% FI. increased | - |
4. | AP75-ONOO−-Fibrinogen v/s Native Fibrinogen | 28.2% FI. decreased | 49.0 |
5. | AP75-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen | 37.7% FI. increased | - |
6. | AP100-ONOO−-Fibrinogen v/s Native Fibrinogen | 25.3% FI. decreased | 54.2 |
7. | AP100-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen | 44.0% FI. increased | - |
| |||
SN. | Comparative Assessment of Tyr-Trp Residues | Tyr-Trp-Fluorescence Alterations | % Protection by AP |
1. | Native Fibrinogen v/s ONOO−-Fibrinogen | 51.6% FI. decreased | - |
2. | AP50-ONOO−-Fibrinogen v/s Native Fibrinogen | 24.8% FI. decreased | 50.9 |
3. | AP50-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen | 35.6% FI. increased | - |
4. | AP75-ONOO−-Fibrinogen v/s Native Fibrinogen | 22.4% FI. decreased | 56.6 |
5. | AP75-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen | 37.6% FI. increased | - |
6. | AP100-ONOO−-Fibrinogen v/s Native Fibrinogen | 9.8% FI. decreased | 81.0 |
7. | AP100-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen | 46.7% FI. increased | - |
SN. | Comparative Assessment of Hydrophobicity | bis-ANS Binding Fluorescence | % Hydrophobic Protection by AP |
---|---|---|---|
1. | Native Fibrinogen v/s ONOO−-Fibrinogen | 21.2% FI. increased | - |
2. | AP50-ONOO−-Fibrinogen v/s Native Fibrinogen | 13.0% FI. increased | 38.7 |
3. | AP50-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen | 9.3% FI. decreased | - |
4. | AP75-ONOO−-Fibrinogen v/s Native Fibrinogen | 8.8% FI. increased | 58.5 |
5. | AP75-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen | 13.6% FI. decreased | - |
6. | AP100-ONOO−-Fibrinogen v/s Native Fibrinogen | 8.2% FI. increased | 61.3 |
7. | AP100-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen | 14.1% FI. decreased | - |
SN. | Comparative Assessment of Carbonylation | Alterations in Carbonyl Formation | % Protection of Carbonylation by AP |
---|---|---|---|
1. | Native Fibrinogen v/s ONOO−-Fibrinogen | 83.6% increased | - |
2. | AP50-ONOO−-Fibrinogen v/s Native Fibrinogen | 77.2% increased | 7.6 |
3. | AP50-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen | 28.1% decreased | - |
4. | AP75-ONOO−-Fibrinogen v/s Native Fibrinogen | 76.3% increased | 8.7 |
5. | AP75-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen | 30.9% decreased | - |
6. | AP100-ONOO−-Fibrinogen v/s Native Fibrinogen | 71.5% increased | 14.5 |
7. | AP100-ONOO−-Fibrinogen v/s ONOO−-Fibrinogen | 42.5% decreased | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farhana, A.; Alsrhani, A.; Khan, Y.S.; Salahuddin, M.; Sayeed, M.U.; Rasheed, Z. Apigenin Provides Structural Protection to Human Fibrinogen against Nitrosative Stress: Biochemical and Molecular Insights. Biomolecules 2024, 14, 576. https://doi.org/10.3390/biom14050576
Farhana A, Alsrhani A, Khan YS, Salahuddin M, Sayeed MU, Rasheed Z. Apigenin Provides Structural Protection to Human Fibrinogen against Nitrosative Stress: Biochemical and Molecular Insights. Biomolecules. 2024; 14(5):576. https://doi.org/10.3390/biom14050576
Chicago/Turabian StyleFarhana, Aisha, Abdullah Alsrhani, Yusuf Saleem Khan, Mohammad Salahuddin, Mohammed Ubaidullah Sayeed, and Zafar Rasheed. 2024. "Apigenin Provides Structural Protection to Human Fibrinogen against Nitrosative Stress: Biochemical and Molecular Insights" Biomolecules 14, no. 5: 576. https://doi.org/10.3390/biom14050576
APA StyleFarhana, A., Alsrhani, A., Khan, Y. S., Salahuddin, M., Sayeed, M. U., & Rasheed, Z. (2024). Apigenin Provides Structural Protection to Human Fibrinogen against Nitrosative Stress: Biochemical and Molecular Insights. Biomolecules, 14(5), 576. https://doi.org/10.3390/biom14050576