The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins
Abstract
:1. Introduction
2. Molecular Etiology of Cataract and the Paradox of High Cys Content
2.1. Thermodynamic and Kinetic Stability of βγ-Crystallins
2.2. Aggregation Propensity of γ-Crystallins
3. Evolutionary and Structural Analysis of Chordate βγ-Crystallins
3.1. Lack of Cys Conservation in βγ-Crystallins
3.2. Phylogenetic Clustering of γ-Crystallins
3.3. Structural Analysis of Crystallin Homologs
4. Discussion
4.1. Evolutionary Pressure for Low Light Scattering by Lens γ-Crystallins over a Lifetime
4.2. Evolutionary Pressure for High Optical Power of Lens γ-Crystallins
4.3. Synergies between Sulfur-Containing and Aromatic Residues in Lens γ-Crystallins
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miseta, A.; Csutora, P. Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol. Biol. Evol. 2000, 17, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Villanueva, A.; Reyes-Vivas, H.; Oria-Hernández, J. Comparison of cysteine content in whole proteomes across the three domains of life. PLoS ONE 2023, 18, e0294268. [Google Scholar] [CrossRef] [PubMed]
- Bessette, P.H.; Aslund, F.; Beckwith, J.; Georgiou, G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. USA 1999, 96, 13703–13708. [Google Scholar] [CrossRef] [PubMed]
- Lobstein, J.; Emrich, C.A.; Jeans, C.; Faulkner, M.; Riggs, P.; Berkmen, M. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb. Cell Fact. 2012, 11, 753. [Google Scholar] [CrossRef] [PubMed]
- Bakalova, R.; Zhelev, Z.; Aoki, I.; Saga, T. Tissue Redox Activity as a Hallmark of Carcinogenesis: From Early to Terminal Stages of Cancer. Clin. Cancer Res. 2013, 19, 2503–2517. [Google Scholar] [CrossRef] [PubMed]
- Jorgenson, T.C.; Zhong, W.X.; Oberley, T.D. Redox Imbalance and Biochemical Changes in Cancer. Cancer Res. 2013, 73, 6118–6123. [Google Scholar] [CrossRef] [PubMed]
- Tasdogan, A.; Ubellacker, J.M.; Morrison, S.J. Redox Regulation in Cancer Cells during Metastasis. Cancer Discov. 2021, 11, 2682–2692. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Jedrychowski, M.P.; Schweppe, D.K.; Huttlin, E.L.; Yu, Q.; Heppner, D.E.; Li, J.; Long, J.; Mills, E.L.; Szpyt, J.; et al. A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging. Cell 2020, 180, 968–983. [Google Scholar] [CrossRef]
- Maldonado, E.; Morales-Pison, S.; Urbina, F.; Solari, A. Aging Hallmarks and the Role of Oxidative Stress. Antioxidants 2023, 12, 651. [Google Scholar] [CrossRef]
- Wishart, T.F.L.; Flokis, M.; Shu, D.Y.; Das, S.J.; Lovicu, F.J. Hallmarks of lens aging and cataractogenesis. Exp. Eye Res. 2021, 210, 108709. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention, V.H.I. 2019. Available online: https://www.cdc.gov/visionhealth/vehss/project/index.html (accessed on 27 March 2024).
- Mencucci, R.; Stefanini, S.; Favuzza, E.; Cennamo, M.; De Vitto, C.; Mossello, E. Beyond vision:Cataract and health status in old age, a narrative review. Front. Med. 2023, 10, 1110383. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.E.; Klein, R.; Lee, K.E. Incidence of age-related cataract: The Beaver Dam Eye Study. Arch. Ophthalmol. 1998, 116, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Wride, M.A. Lens fibre cell differentiation and organelle loss: Many paths lead to clarity. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1219–1233. [Google Scholar] [CrossRef] [PubMed]
- Lynnerup, N.; Kjeldsen, H.; Heegaard, S.; Jacobsen, C.; Heinemeier, J. Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life. PLoS ONE 2008, 3, e1529. [Google Scholar] [CrossRef] [PubMed]
- Wistow, G. The human crystallin gene families. Hum. Genom. 2012, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, J. Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 1992, 89, 10449–10453. [Google Scholar] [CrossRef] [PubMed]
- Sprague-Piercy, M.A.; Rocha, M.A.; Kwok, A.O.; Martin, R.W. α-crystallins in the vertebrate eye lens: Complex oligomers and molecular chaperones. Annu. Rev. Phys. Chem. 2020, 72, 143–163. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Brown, P.H.; Magone, M.T.; Schuck, P. The molecular refractive function of lens γ-crystallins. J. Mol. Biol. 2011, 411, 680–699. [Google Scholar] [CrossRef]
- Wistow, G.; Piatigorsky, J. Recruitment of Enzymes as Lens Structural Proteins. Science 1987, 236, 1554–1556. [Google Scholar] [CrossRef]
- Sampaleanu, L.M.; Davidson, A.R.; Graham, C.; Wistow, G.J.; Howell, P.L. Domain exchange experiments in duck delta-crystallins: Functional and evolutionary implications. Protein Sci. 1999, 8, 529–537. [Google Scholar] [CrossRef]
- Vendra, V.P.R.; Khan, I.; Chandani, S.; Muniyandi, A.; Balasubramanian, D. Gamma crystallins of the human eye lens. Biochim. Biophys. Acta BBA Gen. Subj. 2016, 1860, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Bloemendal, H.; de Jong, W.; Jaenicke, R.; Lubsen, N.H.; Slingsby, C.; Tardieu, A. Ageing and vision: Structure, stability and function of lens crystallins. Prog. Biophys. Mol. Biol. 2004, 86, 407–485. [Google Scholar] [CrossRef]
- Rocha, M.A.; Sprague-Piercy, M.A.; Kwok, A.O.; Roskamp, K.W.; Martin, R.W. Chemical properties determine solubility and stability in βγ-crystallins of the eye lens. ChemBioChem 2021, 22, 1329–1346. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Bateman, O.A.; Jaenicke, R.; Slingsby, C. Mutation of interfaces in domain-swapped human βB2-crystallin. Protein Sci. 2007, 16, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Whitley, M.J.; Gronenborn, A.M. Human βB2-crystallin forms a face-en-face dimer in solution: An integrated NMR and SAXS study. Structure 2017, 25, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Rolland, A.D.; Takata, T.; Donor, M.T.; Lampi, K.J.; Prell, J.S. Eye lens β-crystallins are predicted by native ion mobility-mass spectrometry and computations to form compact higher-ordered heterooligomers. Structure 2023, 31, P1052–P1064. [Google Scholar] [CrossRef] [PubMed]
- D’Alessio, G. The evolution of monomeric and oligomeric βγ-type crystallins. Eur. J. Biochem. 2002, 269, 3122–3130. [Google Scholar] [CrossRef] [PubMed]
- Piatigorsky, J.; Wistow, G. The recruitment of crystallins: New functions precede gene duplication. Science 1991, 252, 1078–1079. [Google Scholar] [CrossRef] [PubMed]
- Lou, M.F. Redox regulation in the lens. Prog. Retin. Eye Res. 2003, 22, 657–682. [Google Scholar] [CrossRef]
- Spector, A.; Roy, D. Disulfide-linked high molecular weight protein associated with human cataract. Proc. Natl. Acad. Sci. USA 1978, 75, 3244–3248. [Google Scholar] [CrossRef]
- Serebryany, E.; Thorn, D.C.; Quintanar, L. Redox chemistry of lens crystallins: A system of cysteines. Exp. Eye Res. 2021, 211, 108707. [Google Scholar] [CrossRef] [PubMed]
- Truscott, R.J.W.; Augusteyn, R.C. Oxidative changes in human lens proteins during senile nuclear cataract formation. Biochim. Biophys. Acta BBA Protein Struct. 1977, 492, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.H.; Truscott, R.J. An impediment to glutathione diffusion in older normal human lenses: A possible precondition for nuclear cataract. Exp. Eye Res. 1998, 67, 587–595. [Google Scholar] [CrossRef]
- Hains, P.G.; Truscott, R.J. Proteomic analysis of the oxidation of cysteine residues in human age-related nuclear cataract lenses. Biochim. Biophys. Acta 2008, 1784, 1959–1964. [Google Scholar] [CrossRef]
- Fan, X.; Zhou, S.; Wang, B.; Hom, G.; Guo, M.; Li, B.; Yang, J.; Vaysburg, D.; Monnier, V.M. Evidence of Highly Conserved beta-Crystallin Disulfidome that Can be Mimicked by In Vitro Oxidation in Age-related Human Cataract and Glutathione Depleted Mouse Lens. Mol. Cell Proteom. 2015, 14, 3211–3223. [Google Scholar] [CrossRef] [PubMed]
- Serebryany, E.; Woodard, J.C.; Adkar, B.V.; Shabab, M.; King, J.A.; Shakhnovich, E.I. An Internal Disulfide Locks a Misfolded Aggregation-prone Intermediate in Cataract-linked Mutants of Human γD-Crystallin. J. Biol. Chem. 2016, 291, 19172–19183. [Google Scholar] [CrossRef] [PubMed]
- Serebryany, E.; Yu, S.; Trauger, S.A.; Budnik, B.; Shakhnovich, E.I. Dynamic disulfide exchange in a crystallin protein in the human eye lens promotes cataract-associated aggregation. J. Biol. Chem. 2018, 293, 17997–18009. [Google Scholar] [CrossRef] [PubMed]
- Norton-Baker, B.; Mehrabi, P.; Kwok, A.O.; Roskamp, K.W.; Rocha, M.A.; Sprague-Piercy, M.A.; von Stetten, D.; Miller, R.J.D.; Martin, R.W. Deamidation of the human eye lens protein γS-crystallin accelerates oxidative aging. Structure 2022, 30, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Serebryany, E.; Chowdhury, S.; Woods, C.N.; Thorn, D.C.; Watson, N.E.; McClelland, A.; Klevit, R.E.; Shakhnovich, E.I. A native chemical chaperone in the human eye lens. eLife 2022, 11, e76923. [Google Scholar] [CrossRef]
- Quintanar, L.; Dominguez-Calva, J.A.; Serebryany, E.; Rivillas-Acevedo, L.; Haase-Pettingell, C.; Amero, C.; King, J.A. Copper and Zinc Ions Specifically Promote Nonamyloid Aggregation of the Highly Stable Human γ-D Crystallin. ACS Chem. Biol. 2016, 11, 263–272. [Google Scholar] [CrossRef]
- Dominguez-Calva, J.A.; Perez-Vazquez, M.L.; Serebryany, E.; King, J.A.; Quintanar, L. Mercury-induced aggregation of human lens γ-crystallins reveals a potential role in cataract disease. J. Biol. Inorg. Chem. 2018, 23, 1105–1118. [Google Scholar] [CrossRef]
- Palomino-Vizcaino, G.; Domínguez-Calva, J.A.; Martínez-Jurado, E.; Schuth, N.; Rodríguez-Meza, O.; Serebryany, E.; King, J.A.; Kroll, T.; Costas, M.; Quintanar, L. Free radical chemistry in copper-induced aggregation of human lens γ-crystallins and its relevance to cataract disease. J. Am. Chem. Soc. 2023, 145, 6781–6797. [Google Scholar] [CrossRef] [PubMed]
- Roskamp, K.W.; Kozlyuk, N.; Sengupta, S.; Bierma, J.C.; Martin, R.W. Divalent cations and the divergence of βγ-crystallin function. Biochemistry 2019, 58, 4505–4518. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Bello, V.; Martinez-Seoane, J.; Fernández-Silva, A.; Amero, C. Zinc and copper ions induce aggregation of human β-crystallins. Molecules 2022, 27, 2970. [Google Scholar] [CrossRef]
- Lapko, V.N.; Smith, D.L.; Smith, J.B. Methylation and carbamylation of human γ-crystallins. Protein Sci. 2003, 12, 1762–1774. [Google Scholar] [CrossRef] [PubMed]
- Schafheimer, N.; Wang, Z.; Schey, K.; King, J. Tyrosine/Cysteine Cluster Sensitizing Human γD-Crystallin to Ultraviolet Radiation-Induced Photoaggregation in Vitro. Biochemistry 2014, 53, 979–990. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, W.; Mortuza, S.M.; Li, Y.; Zhang, Y. DeepMSA: Constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins. Bioinformatics 2020, 36, 2105–2112. [Google Scholar] [CrossRef]
- Zheng, W.; Wuyun, Q.; Li, Y.; Zhang, C.; Freddolino, P.L.; Zhang, Y. Improving deep learning protein monomer and complex structure prediction using DeepMSA2 with huge metagenomics data. Nat. Methods 2024, 21, 279–289. [Google Scholar] [CrossRef]
- Batrinos, M.L. The length of life and eugeria in classical Greece. Hormones 2008, 7, 82–83. [Google Scholar] [CrossRef]
- Gurven, M.; Kaplan, H. Longevity among hunter-gatherers: A cross-cultural examination. Popul. Dev. Rev. 2007, 33, 321–365. [Google Scholar] [CrossRef]
- Hawkes, K.; Coxworth, J.E. Grandmothers and the evolution of human longevity: A review of findings and future directions. Evol. Anthr. 2013, 22, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, D.E.; Kistner, T.M.; Richard, D.; Lee, I.M.; Baggish, A.L. The active grandparent hypothesis: Physical activity and the evolution of extended human healthspans and lifespans. Proc. Natl. Acad. Sci. USA 2021, 118, e2107621118. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ferrone, F.A.; Wetzel, R. Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. USA 2002, 99, 11884–11889. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, W.D. The moulding of senescence by natural selection. J. Theor. Biol. 1966, 12, 12–45. [Google Scholar] [CrossRef] [PubMed]
- Brune, D.; Andrade-Navarro, M.A.; Mier, P. Proteome-wide comparison between the amino acid composition of domains and linkers. BMC Res. Notes 2018, 11, 117. [Google Scholar] [CrossRef]
- Kiss, A.J.; Mirarefi, A.Y.; Ramakrishnan, S.; Zukoski, C.F.; DeVries, A.L.; Cheng, C.-H.C. Cold-stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman. J. Exp. Biol. 2004, 207, 4633–4649. [Google Scholar] [CrossRef]
- Kingsley, C.N.; Bierma, J.; Pham, V.; Martin, R.W. The γS-crystallin proteins from the Antarctic Nototheniid toothfish: A model system for investigating differential resistance to chemical and thermal denaturation. J. Phys. Chem. B 2014, 118, 13544–13553. [Google Scholar] [CrossRef]
- Bierma, J.C.; Roskamp, K.W.; Ledray, A.P.; Kiss, A.J.; Cheng, C.H.C.; Martin, R.W. Controlling liquid-liquid phase separation in cold-adapted crystallin proteins from the Antarctic toothfish. J. Mol. Biol. 2018, 430, 5151–5168. [Google Scholar] [CrossRef]
- Benedek, G.B.; Clark, J.I.; Serrallach, E.N.; Young, C.Y.; Mengel, L.; Sauke, T.; Bagg, A.; Benedek, K. Light scattering and reversible cataracts in the calf and human lens. Philos. Trans. R. Soc. A 1979, 293, 329–340. [Google Scholar]
- Zheng, W.; Wuyun, Q.; Li, Y.; Liu, Q.; Zhou, X.; Zhu, Y.; Freddolino, P.L.; Zhang, Y. Integrating Deep Learning Potentials with I-TASSER for Single- and Multi-Domain Protein Structure Prediction. 2024; submitted. Available online: https://zhanggroup.org/D-I-TASSER/(accessed on 27 March 2024).
- Serebryany, E.; King, J.A. The βγ-crystallins: Native state stability and pathways to aggregation. Prog. Biophys. Mol. Biol. 2014, 115, 32–41. [Google Scholar] [CrossRef]
- Kosinski-Collins, M.S.; King, J. In vitro unfolding, refolding, and polymerization of human γD crystallin, a protein involved in cataract formation. Protein Sci. 2003, 12, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; King, J. Contributions of aromatic pairs to the folding and stability of long-lived human γD-crystallin. Protein Sci. 2011, 20, 513–528. [Google Scholar] [CrossRef] [PubMed]
- Mills-Henry, I.A.; Thol, S.L.; Kosinski-Collins, M.S.; Serebryany, E.; King, J.A. Kinetic Stability of Long-Lived Human Lens γ-Crystallins and Their Isolated Double Greek Key Domains. Biophys. J. 2019, 117, 269–280. [Google Scholar] [CrossRef]
- Mills, I.A.; Flaugh, S.L.; Kosinski-Collins, M.S.; King, J.A. Folding and stability of the isolated Greek key domains of the long-lived human lens proteins γD-crystallin and γS-crystallin. Protein Sci. 2007, 16, 2427–2444. [Google Scholar] [CrossRef]
- Purkiss, A.G.; Bateman, O.A.; Wyatt, K.; Wilmarth, P.A.; David, L.L.; Wistow, G.J.; Slingsby, C. Biophysical properties of γC-crystallin in human and mouse eye lens: The role of molecular dipoles. J. Mol. Biol. 2007, 372, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Bateman, O.A.; Sarra, R.; van Genesen, S.T.; Kappe, G.; Lubsen, N.H.; Slingsby, C. The stability of human acidic beta-crystallin oligomers and hetero-oligomers. Exp. Eye Res. 2003, 77, 409–422. [Google Scholar] [CrossRef]
- Takata, T.; Oxford, J.T.; Brandon, T.R.; Lampi, K.J. Deamidation alters the structure and decreases the stability of human lens betaA3-crystallin. Biochemistry 2007, 46, 8861–8871. [Google Scholar] [CrossRef]
- Sen, A.C.; Chakrabarti, B. Effect of acetylation by aspirin on the thermodynamic stability of lens crystallins. Exp. Eye Res. 1990, 51, 701–709. [Google Scholar] [CrossRef]
- Lampi, K.J.; Wilmarth, P.A.; Murray, M.R.; David, L.L. Lens beta-crystallins: The role of deamidation and related modifications in aging and cataract. Prog. Biophys. Mol. Biol. 2014, 115, 21–31. [Google Scholar] [CrossRef]
- Su, S.; Liu, P.; Zhang, H.; Li, Z.J.; Song, Z.; Zhang, L.; Chen, S. Proteomic Analysis of Human Age-related Nuclear Cataracts and Normal Lens Nuclei. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4182–4191. [Google Scholar] [CrossRef]
- Ramkumar, S.; Fan, X.; Wang, B.; Yang, S.; Monnier, V.M. Reactive cysteine residues in the oxidative dimerization and Cu2+ induced aggregation of human γD-crystallin: Implications for age-related cataract. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 3595–3604. [Google Scholar] [CrossRef] [PubMed]
- Delaye, M.; Tardieu, A. Short-range order of crystallin proteins accounts for eye lens transparency. Nature 1983, 302, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Klein, B.E.; Klein, R.; Tomany, S.C. Relation of ocular trauma to cortical, nuclear, and posterior subcapsular cataracts: The Beaver Dam Eye Study. Br. J. Ophthalmol. 2002, 86, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.P.; Colyer, M.H.; Weichel, E.D.; Stutzman, R.D. Traumatic cataracts secondary to combat ocular trauma. J. Cataract. Refract. Surg. 2015, 41, 1693–1698. [Google Scholar] [CrossRef] [PubMed]
- Ao, M.; Li, X.; Qiu, W.; Hou, Z.; Su, J.; Wang, W. The impact of age-related cataracts on colour perception, postoperative recovery and related spectra derived from test of hue perception. BMC Ophthalmol. 2019, 19, 56. [Google Scholar] [CrossRef] [PubMed]
- Pande, A.; Pande, J.; Asherie, N.; Lomakin, A.; Ogun, O.; King, J.; Benedek, G.B. Crystal cataracts: Human genetic cataract caused by protein crystallization. Proc. Natl. Acad. Sci. USA 2001, 98, 6116–6120. [Google Scholar] [CrossRef]
- Lee, S.; Mahler, B.; Toward, J.; Jones, B.; Wyatt, K.; Dong, L.J.; Wistow, G.; Wu, Z.R. A Single Destabilizing Mutation (F9S) Promotes Concerted Unfolding of an Entire Globular Domain in γS-Crystallin. J. Mol. Biol. 2010, 399, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Boatz, J.C.; Whitley, M.J.; Li, M.; Gronenborn, A.M.; van der Wel, P.C. Cataract-associated P23T γD-crystallin retains a native-like fold in amorphous-looking aggregates formed at physiological pH. Nat. Commun. 2017, 8, 15137. [Google Scholar] [CrossRef] [PubMed]
- Serebryany, E.; King, J.A. Wild-type human γD-crystallin promotes aggregation of its oxidation-mimicking, misfolding-prone W42Q mutant. J. Biol. Chem. 2015, 290, 11491–11503. [Google Scholar] [CrossRef]
- Serebryany, E.; Takata, T.; Erickson, E.; Schafheimer, N.; Wang, Y.; King, J.A. Aggregation of Trp > Glu point mutants of human γ-D crystallin provides a model for hereditary or UV-induced cataract. Protein Sci. 2016, 25, 1115–1128. [Google Scholar] [CrossRef]
- Diessner, E.M.; Freites, J.A.; Tobias, D.J.; Butts, C.T. Network Hamiltonian Models for Unstructured Protein Aggregates, with Application to γD-Crystallin. J. Phys. Chem. B 2023, 127, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Calva, J.A.; Haase-Pettingell, C.; Serebryany, E.; King, J.A.; Quintanar, L. A Histidine Switch for Zn-Induced Aggregation of γ-Crystallins Reveals a Metal-Bridging Mechanism That Is Relevant to Cataract Disease. Biochemistry 2018, 57, 4959–4962. [Google Scholar] [CrossRef] [PubMed]
- Roskamp, K.W.; Azim, S.; Kassier, G.; Norton-Baker, B.; Sprague-Piercy, M.A.; Miller, R.J.D.; Martin, R.W. Human γS-crystallin copper binding helps buffer against aggregation caused by oxidative damage. Biochemistry 2020, 59, 2371–2385. [Google Scholar] [CrossRef] [PubMed]
- Roskamp, K.W.; Montelongo, D.M.; Anorma, C.D.; Bandak, D.N.; Chua, J.A.; Malecha, K.; Martin, R.W. Thermal-, pH-, and UV-induced aggregation of human γS-crystallin and its aggregation-prone G18V variant. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2397–2405. [Google Scholar] [CrossRef]
- Moran, S.D.; Zhang, T.O.; Decatur, S.M.; Zanni, M.T. Amyloid fiber formation in human γD-Crystallin induced by UV-B photodamage. Biochemistry 2013, 52, 6169–6181. [Google Scholar] [CrossRef] [PubMed]
- Ansari, R.R.; Datiles, M.B., 3rd. Use of dynamic light scattering and Scheimpflug imaging for the early detection of cataracts. Diabetes Technol. Ther. 1999, 1, 159–168. [Google Scholar] [CrossRef]
- Sarangi, S.; Minaeva, O.; Ledoux, D.M.; Parsons, D.S.; Moncaster, J.A.; Black, C.A.; Hollander, J.; Tripodis, Y.; Clark, J.I.; Hunter, D.G.; et al. In vivo quasi-elastic light scattering detects molecular changes in the lenses of adolescents with Down syndrome. Exp. Eye Res. 2024, 241, 109818. [Google Scholar] [CrossRef] [PubMed]
- Moncaster, J.A.; Moir, R.D.; Burton, M.A.; Chadwick, O.; Minaeva, O.; Alvarez, V.E.; Ericsson, M.; Clark, J.I.; McKee, A.C.; Tanzi, R.E.; et al. Alzheimer’s disease amyloid-beta pathology in the lens of the eye. Exp. Eye Res. 2022, 221, 108974. [Google Scholar] [CrossRef] [PubMed]
- Alperstein, A.M.; Ostrander, J.S.; Zhang, T.O.; Zanni, M.T. Amyloid found in human cataracts with two-dimensional infrared spectroscopy. Proc. Natl. Acad. Sci. USA 2019, 116, 6602–6607. [Google Scholar] [CrossRef]
- Costello, M.J.; Burette, A.; Weber, M.; Metlapally, S.; Gilliland, K.O.; Fowler, W.C.; Mohamed, A.; Johnsen, S. Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts. Exp. Eye Res. 2012, 101, 72–81. [Google Scholar] [CrossRef]
- Zigman, S.; Lerman, S. A Cold Precipitable Protein in the Lens. Nature 1964, 203, 662–663. [Google Scholar] [CrossRef] [PubMed]
- Vecchi, G.; Sormanni, P.; Mannini, B.; Vandelli, A.; Tartaglia, G.G.; Dobson, C.M.; Hartl, F.U.; Vendruscolo, M. Proteome-wide observation of the phenomenon of life on the edge of solubility. Proc. Natl. Acad. Sci. USA 2020, 117, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
- de Graff, A.M.; Hazoglou, M.J.; Dill, K.A. Highly Charged Proteins: The Achilles’ Heel of Aging Proteomes. Structure 2016, 24, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.W.N.; Lim, N.C.H.; Peters, C.; Back, K.C.; Bourgeois, B.; Pirolt, F.; Richter, B.; Peschek, J.; Puk, O.; Amarie, O.V.; et al. Imbalances in the eye lens proteome are linked to cataract formation. Nat. Struct. Mol. Biol. 2021, 28, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Hains, P.G.; Truscott, R.J. Post-translational modifications in the nuclear region of young, aged, and cataract human lenses. J. Proteome Res. 2007, 6, 3935–3943. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, L.S.; Schey, K.L. Proteomic characterization of the human lens and Cataractogenesis. Expert. Rev. Proteom. 2021, 18, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, R.A.; Clark, J.I. Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens. J. Biol. Chem. 2022, 298, 102537. [Google Scholar] [CrossRef] [PubMed]
- Borchman, D.; Yappert, M.C. Age-related lipid oxidation in human lenses. Investig. Ophthalmol. Vis. Sci. 1998, 39, 1053–1058. [Google Scholar]
- Deeley, J.M.; Hankin, J.A.; Friedrich, M.G.; Murphy, R.C.; Truscott, R.J.W.; Mitchell, T.W.; Blanksby, S.J. Sphingolipid distribution changes with age in the human lens. J. Lipid Res. 2010, 51, 2753–2760. [Google Scholar] [CrossRef]
- Bejarano, E.; Weinberg, J.; Clark, M.; Taylor, A.; Rowan, S.; Whitcomb, E.A. Redox Regulation in Age-Related Cataracts: Roles for Glutathione, Vitamin C, and the NRF2 Signaling Pathway. Nutrients 2023, 15, 3375. [Google Scholar] [CrossRef]
- Thorn, D.C.; Grosas, A.B.; Mabbitt, P.D.; Ray, N.J.; Jackson, C.J.; Carver, J.A. The Structure and Stability of the Disulfide-Linked γS-Crystallin Dimer Provide Insight into Oxidation Products Associated with Lens Cataract Formation. J. Mol. Biol. 2019, 431, 483–497. [Google Scholar] [CrossRef] [PubMed]
- Vetter, C.J.; Thorn, D.C.; Wheeler, S.G.; Mundorff, C.; Halverson, K.; Wales, T.E.; Shinde, U.; Engen, J.R.; David, L.L.; Carver, J.A.; et al. Cumulative deamidations of the major lens protein γS-crystallin increase its aggregation during unfolding and oxidation. Protein Sci. 2020, 29, 1945–1963. [Google Scholar] [CrossRef]
- Kaiser, C.J.O.; Peters, C.; Schmid, P.W.N.; Stavropoulou, M.; Zou, J.; Dahiya, V.; Mymrikov, E.V.; Rockel, B.; Asami, S.; Haslbeck, M.; et al. The structure and oxidation of the eye lens chaperone αA-crystallin. Nat. Struct. Mol. Biol. 2019, 26, 1141–1150. [Google Scholar] [CrossRef]
- Srikanthan, D.; Bateman, O.A.; Purkiss, A.G.; Slingsby, C. Sulfur in human crystallins. Exp. Eye Res. 2004, 79, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Truscott, R.J. Age-related nuclear cataract-oxidation is the key. Exp. Eye Res. 2005, 80, 709–725. [Google Scholar] [CrossRef]
- Shu, D.Y.; Chaudhary, S.; Cho, K.S.; Lennikov, A.; Miller, W.P.; Thorn, D.C.; Yang, M.; McKay, T.B. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023, 13, 187. [Google Scholar] [CrossRef]
- Aravind, P.; Rajini, B.; Sharma, Y.; Sankaranarayanan, R. Crystallization and preliminary X-ray crystallographic investigations on a βγ-crystallin domain of absent in melanoma 1 (AIM1), a protein from Homo sapiens. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2006, 62, 282–284. [Google Scholar] [CrossRef]
- Pierscionek, B.; Smith, G.; Augusteyn, R.C. The refractive increments of bovine α-, β- and γ-crystallins. Vis. Res. 1987, 27, 1539–1541. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef] [PubMed]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and Sequence Analysis Tools Services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef] [PubMed]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.J.; Amode, M.R.; Aneja, A.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2023. Nucleic Acids Res. 2023, 51, D933–D941. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Bateman, A.; Brooksbank, C.; Freeberg, M.; Harrison, M.; Hartley, M.; Keane, T.; Kleywegt, G.; Leach, A.; Levchenko, M.; et al. EMBL’s European Bioinformatics Institute (EMBL-EBI) in 2022. Nucleic Acids Res. 2023, 51, D9–D17. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.W.; Ahamed, A.; Aslam, R.; Alako, B.T.F.; Burgin, J.; Buso, N.; Courtot, M.; Fan, J.; Gupta, D.; Haseeb, M.; et al. The European Nucleotide Archive in 2020. Nucleic Acids Res. 2021, 49, D82–D85. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize Implements and Enhances Circular Visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef] [PubMed]
- Galili, T. Dendextend: An R Package for Visualizing, Adjusting and Comparing Trees of Hierarchical Clustering. Bioinformatics 2015, 31, 3718–3720. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, P.C.J.; Keating, J.N. Early vertebrate evolution. Front. Palaeontol. 2014, 57, 879–893. [Google Scholar] [CrossRef]
- Smith, N.C.; Rise, M.L.; Christian, S.L. A comparison of the innate and adaptive immune systems in cartilaginous fish, ray-finned fish, and lobe-finned fish. Front. Immunol. 2019, 10, 2292. [Google Scholar] [CrossRef]
- Kappe, G.; Purkiss, A.G.; Genesen, S.T.v.; Slingsby, C.; Lubsen, N.H. Explosive expansion of βγ-crystallin genes in the ancestral vertebrate. J. Mol. Evol. 2010, 71, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Jaenicke, R.; Slingsby, C. Lens crystallins and their microbial homologs: Structure, stability, and function. Crit. Rev. Biochem. Mol. Biol. 2001, 36, 435–499. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Krishnan, B.; Srivastava, S.S.; Sharma, Y. Microbial βγ-crystallins. Prog. Biophys. Mol. Biol. 2014, 115, 42–51. [Google Scholar] [CrossRef]
- Shimeld, S.M.; Purkiss, A.G.; Dirks, R.P.H.; Bateman, O.A.; Slingsby, C.; Lubsen, N.H. Urochordate βγ-crystallin and the evolutionary origin of the vertebrate eye lens. Curr. Biol. 2005, 15, 1684–1689. [Google Scholar] [CrossRef]
- Wang, J.; Zuo, X.; Yu, P.; Byeon, I.J.; Jung, J.; Wang, X.; Dyba, M.; Seifert, S.; Schwieters, C.D.; Gronenborn, A.M.; et al. Determination of multicomponent protein structures in solution using global orientation and shape restraints. J. Am. Chem. Soc. 2009, 131, 10507–10515. [Google Scholar] [CrossRef]
- Mahler, B.; Chen, Y.; Ford, J.; Thiel, C.; Wistow, G.; Wu, Z. Structure and dynamics of the fish eye lens protein, γM7-crystallin. Biochemistry 2013, 52, 3579–3587. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef]
- Meng, E.C.; Goddard, T.D.; Pettersen, E.F.; Couch, G.S.; Pearson, Z.J.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 2023, 32, e4792. [Google Scholar] [CrossRef]
- Basak, A.; Bateman, O.; Slingsby, C.; Pande, A.; Asherie, N.; Ogun, O.; Benedek, G.B.; Pande, J. High-resolution X-ray crystal structures of human γD crystallin (1.25 Å) and the R58H mutant (1.15 Å) associated with aculeiform cataract. J. Mol. Biol. 2003, 328, 1137–1147. [Google Scholar] [CrossRef]
- Anderson, D.M.; Nye-Wood, M.G.; Rose, K.L.; Donaldson, P.J.; Grey, A.C.; Schey, K.L. MALDI imaging mass spectrometry of β- and γ-crystallins in the ocular lens. J. Mass. Spectrom. 2020, 55, e4473. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, Y.; Rezabkova, L.; Wu, Z.; Wistow, G.; Schuck, P. Solution properties of γ-crystallins: Hydration of fish and mammal γ-crystallins. Protein Sci. 2014, 23, 88–99. [Google Scholar] [CrossRef]
- Donaldson, P.J.; Chen, Y.; Petrova, R.S.; Grey, A.C.; Lim, J.C. Regulation of lens water content: Effects on the physiological optics of the lens. Prog. Retin. Eye Res. 2023, 95, 101152. [Google Scholar] [CrossRef]
- Pierscionek, B.K.; Regini, J.W. The gradient index lens of the eye: An opto-biological synchrony. Prog. Retin. Eye Res. 2012, 31, 332–349. [Google Scholar] [CrossRef]
- McMeekin, T.L.; Wilensky, M.; Groves, M.L. Refractive indices of proteins in relation to amino acid composition and specific volume. Biochem. Biophys. Res. Commun. 1962, 7, 151–156. [Google Scholar] [CrossRef]
- Zhao, H.; Brown, P.H.; Schuck, P. On the distribution of protein refractive index increments. Biophys. J. 2011, 100, 2309–2317. [Google Scholar] [CrossRef]
- Khago, D.; Bierma, J.C.; Roskamp, K.W.; Kozlyuk, N.; Martin, R.W. Protein refractive index increment Is determined by conformation as well as composition. J. Phys. Condens. Matter 2018, 30, 435101. [Google Scholar] [CrossRef]
- Mahendiran, K.; Elie, C.; Nebel, J.C.; Ryan, A.; Pierscionek, B.K. Primary sequence contribution to the optical function of the eye lens. Sci. Rep. 2014, 4, 5195. [Google Scholar] [CrossRef] [PubMed]
- Reid, K.S.C.; Lindley, P.F.; Thornton, J.M. Sulphur-aromatic interactions in proteins. FEBS Lett. 1985, 190, 209–213. [Google Scholar] [CrossRef]
- Kojasoy, V.; Tantillo, D.J. Impacts of noncovalent interactions involving sulfur atoms on protein stability, structure, folding, and bioactivity. Org. Biomol. Chem. 2023, 21, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Levenson, R.; DeMartini, D.G.; Morse, D.E. Molecular mechanism of reflectin’s tunable biophotonic control: Opportunities and limitations for new optoelectronics. Apl. Mater. 2017, 5, 104801. [Google Scholar] [CrossRef]
- Weininger, S.; Neudorf, M.; Groger, S.; Plato, E.; Broneske, R.; Saalwachter, K.; Weininger, U.; Balbach, J. Early Stage UV-B Induced Molecular Modifications of Human Eye Lens γD-Crystallin. Macromol. Biosci. 2023, 23, e2200526. [Google Scholar] [CrossRef] [PubMed]
- Gammelgaard, S.K.; Petersen, S.B.; Haselmann, K.F.; Nielsen, P.K. Direct Ultraviolet Laser-Induced Reduction of Disulfide Bonds in Insulin and Vasopressin. Acs Omega 2020, 5, 7962–7968. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.A.; Nyathi, Y.; Horrell, S.; von Stetten, D.; Axford, D.; Owen, R.L.; Beddard, G.; Pearson, A.R.; Ginn, H.M.; Yorke, B.A. An ultraviolet-driven rescue pathway for oxidative stress to eye lens protein human gamma-D crystallin. Commun. Chem. 2024, 7, 81. [Google Scholar] [CrossRef]
Organism | Protein | UniProt ID | Method | Length | Cys (no./%) | Met (no./%) |
---|---|---|---|---|---|---|
Branchiostoma floridae | S-crystallin | C3YKG6_BRAFL | 1 | 128 | 6/4.7 | 4/3.1 |
Ciona intestinalis | Βγ-crystallin | F6Q2R9_CIOIN | 3 | 84 | 0/0 | 0/0 |
Eptatretus burgeri | Βγ-crystallin | A0A8C4N311_EPTBU | 3 | 153 | 7/4.6 | 3/2.0 |
Petromyzon marinus | γS-crystallin | S4REP0_PETMA | 3 | 176 | 9/5.1 | 8/4.5 |
Danio rerio | γS1-crystallin | E9QE97_DANRE | 1 | 178 | 8/4.5 | 2/1.1 |
Danio rerio | γS2-crystallin | Q5XTP1_DANRE | 1 | 174 | 8/4.6 | 2/1.1 |
Latimeria chalumnae | γS-crystallin | H2ZWR5_LATCH | 3 | 178 | 7/3.9 | 6/3.4 |
Ornithorhynchus anatinus | γS-crystallin | F6SLN9_ORNAN | 1 | 178 | 6/3.4 | 3/1.7 |
Macropus fuliginosus | γS-crystallin | CRYGS_MACFL | 4 | 178 | 8/4.5 | 4/2.2 |
Mus musculus | γS-crystallin | CRYGS_MOUSE | 1 | 178 | 7/3.9 | 4/2.2 |
Bos taurus | γS-crystallin | CRYGS_BOVIN | 1 | 178 | 6/3.4 | 6/3.4 |
Homo sapiens | γS-crystallin | CRYGS_HUMAN | 1 | 178 | 7/3.9 | 5/2.8 |
Anolis carolinensis | γS-crystallin | A0A803TS30_ANOCA | 1 | 179 | 5/2.8 | 5/2.8 |
Alligator mississippiensis | γS-crystallin | A0A151NH35_ALLMI | 2 | 182 | 7/3.8 | 4/2.2 |
Gallus gallus | γS-crystallin | A0A8V0ZYD9_CHICK | 1 | 175 | 7/4.0 | 3/1.7 |
Macropus fuliginosis | γD-crystallin | CRGD_MACFL | 4 | 174 | 8/4.6 | 8/4.6 |
Mus musculus | γD-crystallin | CRGD_MOUSE | 1 | 174 | 7/4.0 | 7/4.0 |
Bos taurus | γD-crystallin | CRGD_BOVIN | 4 | 174 | 5/2.9 | 5/2.9 |
Homo sapiens | γD-crystallin | CRGD_HUMAN | 1 | 174 | 6/3.4 | 5/2.9 |
Alligator mississippiensis | γD-crystallin | A0A151N9E2_ALLMI | 2 | 175 | 6/3.4 | 7/4.0 |
Xenopus laevis | γ-crystallin 1 | CRG1_XENLA | 2 | 175 | 5/2.9 | 5/2.9 |
Xenopus laevis | γ-crystallin 2 | CRG2_XENLA | 4 | 175 | 7/4.0 | 6/3.4 |
Xenopus laevis | γ-crystallin 3 | CRG3_XENLA | 2 | 175 | 6/2.4 | 5/2.9 |
Xenopus laevis | γ-crystallin 4 | A0A8J0U6M7_XENLA | 1 | 175 | 7/4.0 | 6/3.4 |
Xenopus laevis | γ-crystallin 5 | A0A8J0U8K1_XENLA | 1 | 175 | 6/3.4 | 5/2.9 |
Chiloscyllium indicum | γS1-crystallin | CRGS1_CHIID | 4 | 173 | 7/4.0 | 10/5.8 |
Chiloscyllium indicum | γS2-crystallin | CRGS2_CHIID | 2 | 173 | 6/3.5 | 9/5.2 |
Chiloscyllium indicum | γM2-crystallin | CRGM2_CHIID | 4 | 176 | 8/4.5 | 9/5.1 |
Latimeria chalumnae | γM2-crystallin | H3B445_LATCH | 3 | 176 | 9/5.1 | 4/2.3 |
Danio rerio | γS3-crystallin | Q5XTN7_DANRE | 1 | 183 | 6/3.3 | 7/3.8 |
Danio rerio | γS4-crystallin | Q5XTN2_DANRE | 1 | 176 | 7/4.0 | 2/1.1 |
Chiloscyllium indicum | γM1-crystallin | CRGM1_CHIID | 4 | 120 | 10/8.3 | 27/22.5 |
Danio rerio | γM1-crystallin | Q5XTN6_DANRE | 1 | 178 | 8/4.5 | 19/10.7 |
Danio rerio | γM2-crystallin | A0A8N7TEM3_DANRE | 1 | 174 | 10/5.7 | 22/12.6 |
Danio rerio | γM2a-crystallin | Q4ZHG3_DANRE | 1 | 181 | 10/5.5 | 24/13.3 |
Danio rerio | γM2c-crystallin | Q5XTP2_DANRE | 1 | 175 | 10/5.7 | 22/12.6 |
Danio rerio | γM2d1-crystallin | B0S6M3_DANRE | 2 | 175 | 10/5.7 | 23/13.1 |
Danio rerio | γM3-crystallin | Q5XTM9_DANRE | 1 | 174 | 10/5.7 | 13/7.5 |
Danio rerio | γM4-crystallin | Q5XTN5_DANRE | 1 | 174 | 9/5.2 | 10/5.7 |
Danio rerio | γM5-crystallin | Q5XJ63_DANRE | 1 | 177 | 11/6.2 | 12/6.8 |
Danio rerio | γM6-crystallin | Q5XTN4_DANRE | 2 | 177 | 7/4.0 | 11/6.2 |
Danio rerio | γM7-crystallin | Q5XTN3_DANRE | 1 | 174 | 8/4.6 | 16/9.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serebryany, E.; Martin, R.W.; Takahashi, G.R. The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins. Biomolecules 2024, 14, 594. https://doi.org/10.3390/biom14050594
Serebryany E, Martin RW, Takahashi GR. The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins. Biomolecules. 2024; 14(5):594. https://doi.org/10.3390/biom14050594
Chicago/Turabian StyleSerebryany, Eugene, Rachel W. Martin, and Gemma R. Takahashi. 2024. "The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins" Biomolecules 14, no. 5: 594. https://doi.org/10.3390/biom14050594
APA StyleSerebryany, E., Martin, R. W., & Takahashi, G. R. (2024). The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins. Biomolecules, 14(5), 594. https://doi.org/10.3390/biom14050594