Strain-Modulated Flexible Bio-Organic/Graphene/PET Sensors Based on DNA-Curcumin Biopolymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Extraction Protocols
2.2. Graphene Transfer and Device Fabrication
2.3. Characterization Techniques
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liao, X.; Liao, Q.; Yan, X.; Liang, Q.; Si, H.; Li, M.; Wu, H.; Cao, S.; Zhang, Y. Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv. Funct. Mater. 2015, 25, 2395–2401. [Google Scholar] [CrossRef]
- Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 2004, 101, 9966–9970. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hwang, D.; Yu, Z.; Takai, K.; Park, J.; Chen, T.; Ma, B.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, D.; Rahn, C.D.; Kier, W.M.; Walker, I.D. Soft robotics: Biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 2008, 5, 99–117. [Google Scholar] [CrossRef]
- Kwon, D.; Lee, T.-I.; Shim, J.; Ryu, S.; Kim, M.S.; Kim, S.; Kim, T.-S.; Park, I. Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer. ACS Appl. Mater. Interfaces 2016, 8, 16922–16931. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Guo, L.; Sun, Q.; Wang, Z.L. Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. Adv. Funct. Mater. 2019, 29, 18087. [Google Scholar] [CrossRef]
- Puneetha, P.; Mallem, S.P.R.; Bathalavaram, P.; Lee, J.-H.; Shim, J. Temperature dependence of the piezotronics effect in CdS nanospheres. Nano Energy 2021, 84, 105923. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, M.W.; Jo, Y.-R.; Kim, T.-Y.; Leem, Y.-C.; Kim, S.-W.; Kim, B.-J.; Park, S.-J. Crystal-structure-dependent piezotronic and piezo-phototronic effects of ZnO/ZnS core/shell nanowires for enhanced electrical transport and photosensing performance. ACS Appl. Mater. Interfaces 2018, 10, 28736–28744. [Google Scholar] [CrossRef] [PubMed]
- Puneetha, P.; Mallem, S.P.R.; Lee, Y.-W.; Shim, J. Strain-controlled flexible graphene/GaN/PDMS sensors based on the piezotronics effect. ACS Appl. Mater. Interfaces 2020, 12, 36660–36669. [Google Scholar] [CrossRef]
- Wang, R.; Sun, L.; Zhu, X.; Ge, W.; Li, H.; Li, Z.; Zhang, H.; Huang, Y.; Li, Z.; Zhang, Y.-F.; et al. Carbon nanotube-based strain sensors: Structures, fabrication, and applications. Adv. Mater. Technol. 2023, 8, 2200855. [Google Scholar] [CrossRef]
- Sakhaee-Pour, A.; Ahmadian, M.T.; Vafai, A. Potential application of single-layered graphene sheet as strain sensor. Solid State Commun. 2008, 147, 336–340. [Google Scholar] [CrossRef]
- Kumar, S.B.; Guo, J. Strain-induced conductance modulation in graphene grain boundary. Nano Lett. 2012, 12, 1362–1366. [Google Scholar] [CrossRef]
- Bubniene, U.S.; Ratautaite, V.; Ramanavicus, A.; Bucinskas, V. Conducting polymers for the design for tactile sensors. Polymer 2022, 14, 2984. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, H.; Wan, Q.; Gao, J. Recent development of conductive polymer composite-based strain sensors. J. Polym. Sci. 2023, 61, 3167–3185. [Google Scholar] [CrossRef]
- Lee, S.-W.; Choi, K.-J.; Kang, B.-H.; Lee, J.-S.; Kim, S.-W.; Kwon, J.-B.; Gopalan, S.-A.; Bae, J.-H.; Kim, E.-S.; Kwon, D.-H.; et al. Low dark current and improved detectivity of hybrid ultraviolet photodetector based on carbon-quantum-dots/zin-oxide-nanorod composites. Org. Electron. 2016, 39, 250–257. [Google Scholar] [CrossRef]
- Choi, J.-W.; Nam, Y.-S.; Lee, W.-H.; Kim, D.; Fujihira, M. Rectified photocurrent of the protein-based bio-photodiode. Appl. Phys. Lett. 2011, 79, 1570–1572. [Google Scholar] [CrossRef]
- Reddy, M.S.P.; Puneetha, P.T.; Lee, Y.-W.; Jeong, S.-H.; Park, C. DNA-CTMA/a-Si:H bio-hybrid photodiode: A light-sensitive photosensor. Org. Electron. 2017, 50, 435–442. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, D.-N. Sensitivity analysis for the mechanical properties of DNA bundles. J. Nanomater. 2016, 2016, 6287937. [Google Scholar] [CrossRef]
- Banchard, A.T.; Salaita, K. Emerging uses of DNA mechanical devices. Science 2019, 365, 1080–1081. [Google Scholar] [CrossRef]
- Steckl, A.J. DNA− a new material for photonics? Nat. Photonics 2007, 1, 3–5. [Google Scholar] [CrossRef]
- Reddy, M.S.P.; Kim, B.-J.; Jang, J.-S. Dual detection of ultraviolet and visible lights using DNA-CTMA/GaN photodiode with electrically different polarity. Opt. Express 2013, 22, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Subramanyam, G.; Dai, L.; Check, M.; Cambell, A.; Naik, R.; Grote, J.; Wang, Y. Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer. ACS Nano 2009, 3, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Porath, D.; Bazryadin, A.; de Varies, S.; Dekker, C. Direct measurement of electrical transport through DNA molecules. Nature 2000, 403, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Yakuphanoglu, F.; Hasar, H.; Al-Khedhairy, A.A. p-Si/DNA photoconductive diode for optical sensor applications. Synth. Met. 2011, 161, 2011–2016. [Google Scholar] [CrossRef]
- Gullu, O.; Turut, A. Photovoltaic and electronic properties of quercetin/p-InP solar cell. Sol. Energy Mater. Sol. Cell. 2008, 92, 1205–1210. [Google Scholar] [CrossRef]
- Reddy, M.S.P.; Lee, J.-H.; Jang, J.-S. Frequency dependent series resistance and interface states in Au/bio-organic/n-GaN Schottky structures based on DNA biopolymer. Synth. Met. 2013, 185–186, 167–171. [Google Scholar] [CrossRef]
- Ner, Y.; Grote, J.G.; Stuart, J.A.; Sotzing, G.A. White luminescence from multiple-dye-doped electronspun DNA nanofibers by fluorescence resonance energy transfer. Angew. Chem. Int. Ed. 2009, 48, 5134–5138. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.S.P.; Park, C.-H. Bright luminescence from pure DNA-curcumin-based phosphors for bio hybrid light-emitting diodes. Sci. Rep. 2016, 6, 32306. [Google Scholar] [CrossRef]
- Paranthaman, R.; Moses, J.A.; Anandharamakrishnan, C. Power X-ray diffraction conditions for screening curcumin in turmeric powder. J. Food Meas. Charact. 2022, 16, 1105–1113. [Google Scholar] [CrossRef]
- Singh, S. From exotic spice to modern drug? Cell 2007, 130, 765–768. [Google Scholar] [CrossRef] [PubMed]
- Pankongadisak, P.; Sangklin, S.; Chusinuan, P.; Suwantong, O.; Supaphal, P. The use of electrospun curcumn-loaded poly (L-lactic acid) fiber mats as wound dressing materials. J. Drug Deliv. Sci. Technol. 2019, 53, 101121. [Google Scholar] [CrossRef]
- Yakub, G.; Toncheva, A.; Manolova, N.; Rashkov, I. Curcumin-loaded poly (L-lactide-co-D, L-lactide) electrospun fibers: Preparation and antioxidant, anticoagulant, and antibacterial properties. J. Bioact. Compat. Polym. 2014, 29, 607–627. [Google Scholar] [CrossRef]
- Bera, R.; Sahoo, B.K.; Ghosh, K.S.; Dasgupta, S. Studies on the interaction of isoxazolcurcumin with calf thymus DNA. Int. J. Biol. Macromol. 2008, 42, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Prasad, S.; Kim, J.H.; Patchva, S.; Webb, L.J.; Priyadarsini, I.K.; Aggarwal, B.B. Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep. 2011, 28, 1935–1955. [Google Scholar] [CrossRef] [PubMed]
- Uicab, O.R.; Pat, A.M.; Aviles, F.; Toro, P.; Pedram, M.Y.; Uicab, R.G.; Avile, S.F. Influence of processing method on the mechanical and electrical properties of MWCNT/PET composites. J. Mater. 2013, 2013, 656372. [Google Scholar]
- Wang, P.; Zhang, D.; Zhang, L.; Fang, Y. The SERS study of graphene deposited by gold nanoparticles with 785 m excitation. Chem. Phys. Lett. 2013, 556, 146–150. [Google Scholar] [CrossRef]
- Nong, H.V.; Hung, L.X.; Thang, P.N.; Chinh, V.D.; Vu, L.V.; Dung, P.T.; Trung, T.V.; Nga, P.T. Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the northern Vietnam. Springer Plus 2016, 5, 1147. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Lin, J.; Wu, Y.; Feng, S.; Li, Y.; Yu, Y.; Xi, G.; Zeng, H.; Chen, R. Investigation on the interactions of lymphoma cells with paclitaxel by Raman spectroscopy. Spectroscopy 2011, 25, 23–32. [Google Scholar] [CrossRef]
- Ismail, E.H.; Sabry, D.Y.; Mahdy, H.; Khalil, M.M.H. Synthesis and characterization of some ternary metal complexes of curcumin with 1,10-phenanthroline and their anticancer applications. J. Sci. Res. 2014, 6, 509–519. [Google Scholar] [CrossRef]
- Chen, X.; Zou, L.-Q.; Niu, J.; Liu, W.; Peng, S.-F.; Liu, C.-M. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 2015, 20, 14293–14311. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.S.P.; Park, H.; Lee, J.-H. Residue-and-polymer-free graphene transfer: DNA-CTMA/graphene/GaN bio-hybrid photodiode for light-sensitive applications. Opt. Mater. 2018, 76, 302–307. [Google Scholar] [CrossRef]
- Ciplak, Z.; Yildiz, N.; Calimli, A. Investigation of graphene/Ag nanocomposites synthesis parameters for two different synthesis methods. Carbon Nanostruct. 2014, 23, 361–370. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, Z.; Li, H.; Wang, H.; Liu, C. Tuning electronic properties of blue phosphorene/graphene-like GaN Van der Waals heterostructures by vertical external electric field. Nanoscale Res. Lett. 2019, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Mallem, S.P.R.; Puneetha, P.; Lee, D.-Y.; Park, K.-I.; Kim, D.; An, S.-J.; Shim, J. Light-sensitive and strain-controlled flexible DNA/graphene/GaN bio-hybrid sensor based on the piezophototronic effect. Nano Energy 2023, 116, 108807. [Google Scholar] [CrossRef]
- Lee, S.; Yi, B.-J.; Chun, K.-Y.; Lee, J.; Kim, Y.T.; Cha, E.-J.; Kim, S.J. Chitosan-polypyrrole fiber for stain sensor. J. Nanosci. Nanotechnol. 2015, 15, 2537–2541. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Samad, Y.A.; Taha, T.; Cai, G.; Fu, S.-Y.; Liao, K. Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustain. Chem. Eng. 2016, 4, 4288–4295. [Google Scholar]
- Zhen, X.; Chen, X.; Kim, J.-K.; Lee, D.-W.; Li, X. Measurement of the gauge factor of few-layer graphene. J. Micro/Nanolithogr. MEMS MOEMS 2013, 12, 013009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallem, S.P.R.; Puneetha, P.; Lee, D.Y.; An, S.J. Strain-Modulated Flexible Bio-Organic/Graphene/PET Sensors Based on DNA-Curcumin Biopolymer. Biomolecules 2024, 14, 698. https://doi.org/10.3390/biom14060698
Mallem SPR, Puneetha P, Lee DY, An SJ. Strain-Modulated Flexible Bio-Organic/Graphene/PET Sensors Based on DNA-Curcumin Biopolymer. Biomolecules. 2024; 14(6):698. https://doi.org/10.3390/biom14060698
Chicago/Turabian StyleMallem, Siva Pratap Reddy, Peddathimula Puneetha, Dong Yeon Lee, and Sung Jin An. 2024. "Strain-Modulated Flexible Bio-Organic/Graphene/PET Sensors Based on DNA-Curcumin Biopolymer" Biomolecules 14, no. 6: 698. https://doi.org/10.3390/biom14060698
APA StyleMallem, S. P. R., Puneetha, P., Lee, D. Y., & An, S. J. (2024). Strain-Modulated Flexible Bio-Organic/Graphene/PET Sensors Based on DNA-Curcumin Biopolymer. Biomolecules, 14(6), 698. https://doi.org/10.3390/biom14060698