Next Article in Journal
Insight into the Association between Slitrk Protein and Neurodevelopmental and Neuropsychiatric Conditions
Previous Article in Journal
Advances in Immunomodulatory Mesoporous Silica Nanoparticles for Inflammatory and Cancer Therapies
Previous Article in Special Issue
A Systematic Review on the Role of Matrix Metalloproteinases in the Pathogenesis of Inguinal Hernias
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Matrix Metalloproteinases in Health and Disease 3.0

1
Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
2
Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
Biomolecules 2024, 14(9), 1059; https://doi.org/10.3390/biom14091059
Submission received: 31 July 2024 / Revised: 15 August 2024 / Accepted: 20 August 2024 / Published: 26 August 2024
(This article belongs to the Special Issue Matrix Metalloproteinases in Health and Disease 3.0)
Matrix metalloproteinases (MMPs) are members of an enzyme family that are critical for maintaining tissue allostasis. MMPs can catalyze the normal turnover of the extracellular matrix together with other metalloproteinases, such as the ADAMs (a disintegrin and metalloproteinase) and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motif) families. MMP activity is also regulated by a group of endogenous proteins called tissue inhibitors of metalloproteinases (TIMPs). All these proteins have a pivotal role in normal physiological processes involving extracellular matrix remodeling, such as wound healing, embryogenesis, angiogenesis, bone remodeling, immunity, and the female reproductive cycle. An imbalance in the expression or activity of MMPs can also have important consequences for diseases such as cancer, cardiovascular disease, peripheral vascular disease, chronic leg ulcers, multiple sclerosis, and others [1,2,3,4].
The aim of this Special Issue is to explore the most recent findings in this field that may have an impact on healthcare systems.
In this Special Issue, Zingaropoli et al. [5] showed a positive correlation between TIMP-1 and chest CT scores, thus highlighting its potential use as a marker of fibrotic burden from COVID-19 pneumonia. Plümers et al. [6] showed that MMPs contribute to the calcification phenotype in pseudoxanthoma elasticum, an inherited autosomal recessively genetic defect, dysregulating extracellular matrix remodeling. Skrzypiec-Spring et al. [7] showed that the protective effect of simvastatin on systolic function in the acute ischemia–reperfusion model seems not to be related to reduced MMP-2 activation. Esposito et al. [8] reviewed the role of MMPs in the era of cystic fibrosis transmembrane conductance regulator modulators. Marcianò et al. [9] reviewed all the updated evidence for a possible role of MMPs in pain and the effects of their modulation. Kim et al. [10] reviewed the relationships between MMP and glaucoma. Li et al. [11] reviewed the mechanism and role of the ADAMTS family in osteoarthritis, and they found that ADAMTS may be a potential therapeutic target in osteoarthritis. Bracale et al. [12] conducted a systematic review of the role of matrix metalloproteinases in the pathogenesis of inguinal hernias. Serraino et al. conducted two systematic reviews, one on metalloproteinases and hypertrophic cardiomyopathy [13] and the other on metalloproteinases in cardiac surgery [14], highlighting the importance of the MMP system in cardiovascular disease.
Currently, targeting metalloproteinase regulation and their effects seems to be an evidence-based medicine tool used to counteract multiple pathophysiological mechanisms that underlie a wide range of human diseases [15,16,17,18,19,20,21,22,23].
In conclusion, our efforts should be focused on improving our understanding of the pathophysiological phenomena around metalloproteinases to improve diagnostic and treatment options and to deliver optimal care to patients.

Conflicts of Interest

The author denies any conflicts of interest with respect to the present manuscript.

References

  1. Costa, D.; Ielapi, N.; Minici, R.; Bevacqua, E.; Ciranni, S.; Cristodoro, L.; Torcia, G.; Di Taranto, M.D.; Bracale, U.M.; Andreucci, M.; et al. Metalloproteinases between History, Health, Disease, and the Complex Dimension of Social Determinants of Health. J. Vasc. Dis. 2023, 2, 282–298. [Google Scholar] [CrossRef]
  2. Costa, D.; Scalise, E.; Ielapi, N.; Bracale, U.M.; Andreucci, M.; Serra, R. Metalloproteinases as Biomarkers and Sociomarkers in Human Health and Disease. Biomolecules 2024, 14, 96. [Google Scholar] [CrossRef]
  3. Serra, R.; Gallelli, L.; Butrico, L.; Buffone, G.; Caliò, F.G.; De Caridi, G.; Massara, M.; Barbetta, A.; Amato, B.; Labonia, M.; et al. From varices to venous ulceration: The story of chronic venous disease described by metalloproteinases. Int. Wound J. 2017, 14, 233–240. [Google Scholar] [CrossRef]
  4. Busceti, M.T.; Grande, R.; Amato, B.; Gasbarro, V.; Buffone, G.; Amato, M.; Gallelli, L.; Serra, R.; De Franciscis, S. Pulmonary embolism, metalloproteinases and neutrophil gelatinase associated lipocalin. Acta Phlebol. 2013, 14, 115–121. [Google Scholar]
  5. Zingaropoli, M.A.; Latronico, T.; Pasculli, P.; Masci, G.M.; Merz, R.; Ciccone, F.; Dominelli, F.; Del Borgo, C.; Lichtner, M.; Iafrate, F.; et al. Tissue Inhibitor of Matrix Metalloproteinases-1 (TIMP-1) and Pulmonary Involvement in COVID-19 Pneumonia. Biomolecules 2023, 13, 1040. [Google Scholar] [CrossRef] [PubMed]
  6. Plümers, R.; Lindenkamp, C.; Osterhage, M.R.; Knabbe, C.; Hendig, D. Matrix Metalloproteinases Contribute to the Calcification Phenotype in Pseudoxanthoma Elasticum. Biomolecules 2023, 13, 672. [Google Scholar] [CrossRef]
  7. Skrzypiec-Spring, M.; Sapa-Wojciechowska, A.; Rak-Pasikowska, A.; Kaczorowski, M.; Bil-Lula, I.; Hałoń, A.; Szeląg, A. The Protective Effect of Simvastatin on the Systolic Function of the Heart in the Model of Acute Ischemia and Reperfusion Is Due to Inhibition of the RhoA Pathway and Independent of Reduction of MMP-2 Activity. Biomolecules 2022, 12, 1291. [Google Scholar] [CrossRef]
  8. Esposito, R.; Mirra, D.; Spaziano, G.; Panico, F.; Gallelli, L.; D’Agostino, B. The Role of MMPs in the Era of CFTR Modulators: An Additional Target for Cystic Fibrosis Patients? Biomolecules 2023, 13, 350. [Google Scholar] [CrossRef]
  9. Marcianò, G.; Vocca, C.; Rania, V.; Citraro, R.; De Sarro, G.; Gallelli, L. Metalloproteases in Pain Generation and Persistence: A Possible Target? Biomolecules 2023, 13, 268. [Google Scholar] [CrossRef]
  10. Kim, M.H.; Lim, S.-H. Matrix Metalloproteinases and Glaucoma. Biomolecules 2022, 12, 1368. [Google Scholar] [CrossRef]
  11. Li, T.; Peng, J.; Li, Q.; Shu, Y.; Zhu, P.; Hao, L. The Mechanism and Role of ADAMTS Protein Family in Osteoarthritis. Biomolecules 2022, 12, 959. [Google Scholar] [CrossRef] [PubMed]
  12. Bracale, U.; Peltrini, R.; Iacone, B.; Martirani, M.; Sannino, D.; Gargiulo, A.; Corcione, F.; Serra, R.; Bracale, U.M. A Systematic Review on the Role of Matrix Metalloproteinases in the Pathogenesis of Inguinal Hernias. Biomolecules 2023, 13, 1123. [Google Scholar] [CrossRef] [PubMed]
  13. Serraino, G.F.; Jiritano, F.; Costa, D.; Ielapi, N.; Napolitano, D.; Mastroroberto, P.; Bracale, U.M.; Andreucci, M.; Serra, R. Metalloproteinases and Hypertrophic Cardiomyopathy: A Systematic Review. Biomolecules 2023, 13, 665. [Google Scholar] [CrossRef] [PubMed]
  14. Serraino, G.F.; Jiritano, F.; Costa, D.; Ielapi, N.; Battaglia, D.; Bracale, U.M.; Mastroroberto, P.; Andreucci, M.; Serra, R. Metalloproteinases in Cardiac Surgery: A Systematic Review. Biomolecules 2023, 13, 113. [Google Scholar] [CrossRef] [PubMed]
  15. Kose, T.; Antal, A.; Gunel, T. Expression of MMP2, MMP9, TIMP2 and TIMP3 genes in aortic dissection. Exp. Ther. Med. 2024, 28, 360. [Google Scholar] [CrossRef]
  16. Li, Y.; Xue, J.; Zhang, W.; Wang, Y.; Wang, W. ADAM15 in Fibroblasts: Improving the Matrix Remodeling by Blocking the Action of Transforming Growth Factor-β1. Ann. Clin. Lab. Sci. 2024, 54, 363–370. [Google Scholar]
  17. Jhilta, A.; Jadhav, K.; Singh, R.; Ray, E.; Kumar, A.; Singh, A.K.; Verma, R.K. Breaking the Cycle: Matrix Metalloproteinase Inhibitors as an Alternative Approach in Managing Tuberculosis Pathogenesis and Progression. ACS Infect. Dis. 2024, 10, 2567–2583. [Google Scholar] [CrossRef]
  18. Chauhan, R.; Malhotra, L.; Gupta, A.; Dagar, G.; Mendiratta, M.; Masoodi, T.; Hashem, S.; Al Marzooqi, S.; Das, D.; Uddin, S.; et al. Bergenin inhibits growth of human cervical cancer cells by decreasing Galectin-3 and MMP-9 expression. Sci. Rep. 2024, 14, 15287. [Google Scholar] [CrossRef]
  19. Roney, M.; Uddin, M.N.; Fasihi Mohd Aluwi, M.F. Comprehending the pharmacological mechanism of marine phenolic acids in bladder cancer therapy against matrix metalloproteinase 9 protein by integrated network pharmacology and in-silico approaches. Comput. Biol. Chem. 2024, 112, 108149. [Google Scholar] [CrossRef]
  20. Grenell, A.; Singh, C.; Raju, M.; Wolk, A.; Dalvi, S.; Jang, G.F.; Crabb, J.S.; Hershberger, C.E.; Manian, K.V.; Hernandez, K.; et al. Tissue Inhibitor of Metalloproteinase 3 (TIMP3) mutations increase glycolytic activity and dysregulate glutamine metabolism in RPE cells. Mol. Metab. 2024, 88, 101995. [Google Scholar] [CrossRef]
  21. Mohsin, F.; Javaid, S.; Tariq, M.; Mustafa, M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int. Immunopharmacol. 2024, 139, 112713. [Google Scholar] [CrossRef] [PubMed]
  22. Fang, F.; Wang, B.; Lu, X.; Wang, L.; Chen, X.; Wang, G.; Yang, Y. miR-126a-5p inhibits H1N1-induced inflammation and matrix protease secretion in lung fibroblasts by targeting ADAMTS-4. Arch. Virol. 2024, 169, 164. [Google Scholar] [CrossRef] [PubMed]
  23. Li, D.; Cho, M.S.; Gonzalez-Delgado, R.; Liang, X.; Dong, J.F.; Cruz, M.A.; Ma, Q.; Afshar-Kharghan, V. The effect of ADAMTS13 on graft-versus-host disease. J. Cell. Mol. Med. 2024, 28, e18457. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Serra, R. Matrix Metalloproteinases in Health and Disease 3.0. Biomolecules 2024, 14, 1059. https://doi.org/10.3390/biom14091059

AMA Style

Serra R. Matrix Metalloproteinases in Health and Disease 3.0. Biomolecules. 2024; 14(9):1059. https://doi.org/10.3390/biom14091059

Chicago/Turabian Style

Serra, Raffaele. 2024. "Matrix Metalloproteinases in Health and Disease 3.0" Biomolecules 14, no. 9: 1059. https://doi.org/10.3390/biom14091059

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop