The Metabolism of Creatinine and Its Usefulness to Evaluate Kidney Function and Body Composition in Clinical Practice
Abstract
:1. Introduction
2. Creatinine Synthesis
3. Creatine Sources
3.1. Creatine from Exogenous Sources
3.1.1. In Foods
3.1.2. Cooked Meat
3.1.3. Creatine as a Dietary Supplement
3.2. Creatine from Endogenous Sources
4. Creatinine Metabolic Pool
4.1. Renal Clearence
4.2. Creatinine Transporters in Renal Proximal Tubules
4.3. Extrarenal Degradation of Creatinine by Gut Microbiota
5. Factors Affecting Serum Creatinine Concentration
5.1. Drugs That Increase Serum Creatinine Concentrations
5.1.1. Cimetidine
5.1.2. Trimethoprim
5.1.3. Salicylates
5.1.4. Abemaciclib
5.1.5. Integrase Inhibitors
5.1.6. Glucocorticoids
5.2. Sex
5.3. Race and Ethnicity
5.4. Physical Activity
5.5. Age
6. Biochemical Measurement in the Laboratory
Enzymatic Measurement
7. Evaluation of Glomerular Filtration Rate
8. Limitations of Serum Creatinine
9. Acute Increase in Serum Creatinine
Reflection Points
- Acute increase in serum creatinine (AKI) is a process in which treatment decisions must be made quickly; despite the problems of Crea interpretation, it remains the diagnostic axis for this disease. Therefore, besides SCr, assessing daily urine volume can narrow down the differential diagnosis, dividing AKI into oliguric (<500 mL) and non-oliguric causes. A careful history, physical examination, and basic laboratory tests often suffice for diagnosis.
- To improve diagnostic precision and therapeutic outcomes in AKI, a shift is needed from SCr-based staging alone to a more comprehensive approach. This includes integrating biomarkers, transcriptomic and proteomic data, and considering the pathophysiological and anatomical context of kidney injury [70,71].
- Despite its drawbacks, which have already been mentioned, SCr remains the most widely used biomarker in the diagnosis of CKD due to its low cost and rapid analysis in hospitals with limited resources. In these cases, the recommendation is to consider the clinical severity of the disease and recent changes in food consumption and medication for a better interpretation of eGFR.
10. Cystatin C
11. Factors Affecting Serum Cystatin C Levels
12. Practical Importance of Using the Difference (eGFR Cys C–eGFR Cr) or the Ratio (eGFR Cys C/eGFR Cr)
13. Utility of Creatinine as Body Composition Marker
13.1. Body Composition
13.2. Bioimpedance
13.3. Creatinine Kinetics and Creatinine Index
13.4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AASK | African American Study of Kidney Disease and Hypertension |
ADP | Adenosine diphosphate |
AGAT | L-arginine amino transferase |
Arg | Arginine |
ATP | Adenosine triphosphate |
BIA | Bioelectrical Impedance Analysis |
BMI | Body mass index |
CI | Creatinine index |
CK | Creatine kinase |
CKD | Chronic kidney disease |
CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration |
Cr | Creatinine |
CrCl | Creatinine clearance |
Crn | Creatine |
CysC | Cystatin C |
Da | Dalton |
DTG | Dolutegravir |
DEXA | Dual-Energy X-ray Absorptiometry |
eGFR | Estimated glomerular filtration rate |
ECW | Extracellular fluid |
ESPMT | N-ethyl-N-sulfopropyl-m-toluidine |
FFM | Fat-free mass |
GFR | Estimated glomerular filtration rate |
GAA | Guanidinoacetic acid |
GAMT | S-adenosyl-L-methionine methyltransferase |
Gly | Glycine |
GFRcys | Estimated glomerular filtration rate from cystatin C |
GFRcr | Estimated glomerular filtration rate from creatinine |
GFRcr-cys | Estimated glomerular filtration rate from creatinine and cystatin C |
HD | Hemodialysis |
ICW | Intracellular fluid |
kDa | Kilodalton |
KDIGO | Kidney Disease Improving Global Outcomes |
KDOQI | Kidney Disease Outcomes Quality Initiative |
LBM | Lean body mass |
MATE1 | Multidrug and toxin extrusion protein 1 |
MATE2-K | Kidney-specific multidrug and toxin extrusion protein 2 |
MDRD | Modification of diet in renal disease |
NADH | Nicotinamide adenine dinucleotide |
NGAL | Neutrophil gelatinase-associated lipocalin |
NHANES | National Health and Nutrition Examination Survey |
OAT2 | Organic anion transporter 2 |
OAT3 | Organic anion transporter 3 |
OCT2 | Organic cation transporter 2 |
OCT3 | Organic cation transporter 3 |
PD | Peritoneal dialysis |
SAM | S-adenosylmethionine |
SCr | Serum creatinine |
TBW | Total body water |
TDF | Tenofovir disoproxil fumarate |
UCr | Urinary creatinine concentration |
UCrE | Urinary creatinine excretion |
UK Biobank | UK Biobank Health Database |
UV | Ultraviolet |
μM | Micromolar |
References
- Levey, A.; Inker, L. Assessment of Glomerular Filtration Rate in Health and Disease: A State of the Art Review. Clin. Pharmacol. Ther. 2017, 102, 405–419. [Google Scholar] [CrossRef]
- Dodge, W.F. Comparison of Endogenous Creatinine Clearance With Inulin Clearance. Arch. Pediatr. Adolesc. Med. 1967, 113, 683. [Google Scholar] [CrossRef] [PubMed]
- Andreev, E.; Koopman, M.; Arisz, L. A rise in plasma creatinine that is not a sign of renal failure: Which drugs can be responsible? J. Intern. Med. 1999, 246, 247–252. [Google Scholar] [CrossRef]
- Mitch, W.E.; Collier, V.U.; Walser, M. Creatinine Metabolism in Chronic Renal Failure. Clin. Sci. 1980, 58, 327–335. [Google Scholar] [CrossRef]
- Clinical practice guidelines for nutrition in chronic renal failure. K/DOQI, National Kidney Foundation. Am. J. Kidney Dis. 2000, 35, S17–S104. [CrossRef]
- Kashani, K.; Rosner, M.H.; Ostermann, M. Creatinine: From physiology to clinical application. Eur. J. Intern. Med. 2020, 72, 9–14. [Google Scholar] [CrossRef]
- Kreider, R.; Jäger, R.; Purpura, M. Bioavailability, Efficacy, Safety, and Regulatory Status of Creatine and Related Compounds: A Critical Review. Nutrients 2022, 14, 1035. [Google Scholar] [CrossRef]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and Creatinine Metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef]
- Camara, A.A.; Arn, K.D.; Reimer, A.; Newburgh, L.H. The twenty-four hourly endogenous creatinine clearance as a clinical measure of the functional state of the kidneys. J. Lab. Clin. Med. 1951, 37, 743–763. [Google Scholar]
- Jacobsen, F.K.; Christensen, C.K.; Mogensen, C.E.; Andreasen, F.; Heilskov, N.S. Pronounced increase in serum creatinine concentration after eating cooked meat. BMJ 1979, 1, 1049–1050. [Google Scholar] [CrossRef]
- Mayersohn, M.; Conrad, K.; Achari, R. The influence of a cooked meat meal on creatinine plasma concentration and creatinine clearance. Br. J. Clin. Pharmacol. 1983, 15, 227–230. [Google Scholar] [CrossRef]
- Preiss, D.J.; Godber, I.M.; Lamb, E.J.; Dalton, R.N.; Gunn, I.R. The influence of a cooked-meat meal on estimated glomerular filtration rate. Ann. Clin. Biochem. Int. J. Lab. Med. 2007, 44, 35–42. [Google Scholar] [CrossRef]
- Rogerson, D. Vegan diets: Practical advice for athletes and exercisers. J. Int. Soc. Sports Nutr. 2017, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Trojian, T.H. Creatine Supplementation. Curr. Sports Med. Rep. 2013, 12, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, P.L.; Mahoney, E.T.; Cohn, K.A.; Sheradsky, L.F.; Green, B.A. Oral creatine supplementation enhances upper extremity work capacity in persons with cervical-level spinal cord injury. Arch. Phys. Med. Rehabil. 2002, 83, 19–23. [Google Scholar] [CrossRef]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.G.; Chilibeck, P.D.; Parise, G.; Candow, D.G.; Mahoney, D.; Tarnopolsky, M. Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med. Sci. Sports Exerc. 2003, 35, 1946–1955. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. The role of dietary creatine. Amino Acids 2016, 48, 1785–1791. [Google Scholar] [CrossRef] [PubMed]
- McMurray, M.D.; Trivax, J.E.; McCullough, P.A. Serum Cystatin C, Renal Filtration Function, and Left Ventricular Remodeling. Circ. Heart Fail. 2009, 2, 86–89. [Google Scholar] [CrossRef]
- Levey, A.S.; Perrone, R.D.; Madias, N.E. Serum Creatinine and Renal Function. Annu. Rev. Med. 1988, 39, 465–490. [Google Scholar] [CrossRef]
- Imamura, Y.; Murayama, N.; Okudaira, N.; Kurihara, A.; Okazaki, O.; Izumi, T.; Inoue, K.; Yuasa, H.; Kusuhara, H.; Sugiyama, Y. Prediction of Fluoroquinolone-Induced Elevation in Serum Creatinine Levels: A Case of Drug–Endogenous Substance Interaction Involving the Inhibition of Renal Secretion. Clin. Pharmacol. Ther. 2011, 89, 81–88. [Google Scholar] [CrossRef]
- Zhang, X.; Rule, A.D.; McCulloch, C.E.; Lieske, J.C.; Ku, E.; Hsu, C.Y. Tubular secretion of creatinine and kidney function: An observational study. BMC Nephrol. 2020, 21, 108. [Google Scholar] [CrossRef] [PubMed]
- Urakami, Y.; Kimura, N.; Okuda, M.; Inui, K.-I. Creatinine Transport by Basolateral Organic Cation Transporter hOCT2 in the Human Kidney. Pharm. Res. 2004, 21, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Tanihara, Y.; Masuda, S.; Sato, T.; Katsura, T.; Ogawa, O.; Inui, K.-I. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters. Biochem. Pharmacol. 2007, 74, 359–371. [Google Scholar] [CrossRef]
- Jones, J.D.; Burnett, P.C. Creatinine Metabolism in Humans with Decreased Renal Function: Creatinine Deficit. Clin. Chem. 1974, 20, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Blackwood, W.S.; Pickard, R.G.; Maudgal, D.P.; Lawrence, D.; Northfield, T.C. CIMETIDINE IN DUODENAL ULCER Controlled Trial. Lancet 1976, 308, 174–176. [Google Scholar] [CrossRef]
- Haggie, S.J.; Fermont, D.C.; Wyllie, J.H. Treatment of duodenal ulcer with cimetidine. Lancet 1976, 307, 983–984. [Google Scholar] [CrossRef]
- Dubb, J.W.; Stote, R.M.; Familiar, R.G.; Lee, K.; Alexander, F. Effect of cimetidine on renal function in normal man. Clin. Pharmacol. Ther. 1978, 24, 76–83. [Google Scholar] [CrossRef]
- Burt, H.J.; Neuhoff, S.; Almond, L.; Gaohua, L.; Harwood, M.D.; Jamei, M.; Rostami-Hodjegan, A.; Tucker, G.T.; Rowland-Yeo, K. Metformin and cimetidine: Physiologically based pharmacokinetic modelling to investigate transporter mediated drug–drug interactions. Eur. J. Pharm. Sci. 2016, 88, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Stehlé, T.; El Karoui, K.; Sakka, M.; Ismail, A.; Matignon, M.; Grimbert, P.; Canoui-Poitrine, F.; Prié, D.; Audard, V. Creatinine clearance after cimetidine administration in a new short procedure: Comparison with plasma and renal clearances of iohexol. Clin. Kidney J. 2020, 13, 587–596. [Google Scholar] [CrossRef]
- Kabat-Koperska, J.; Safranow, K.; Gołembiewska, E.; Domański, L.; Ciechanowski, K. Creatinine Clearance after Cimetidine Administration—Is It Useful in the Monitoring of the Function of Transplanted Kidney? Ren. Fail. 2007, 29, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Masters, P.A.; O’Bryan, T.A.; Zurlo, J.; Miller, D.Q.; Joshi, N. Trimethoprim-Sulfamethoxazole Revisited. Arch. Intern. Med. 2003, 163, 402. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.T.; First, M.R.; Myre, S.A.; Cacini, W. Effect of Co-trimoxazole and Sulfamethoxazole on Serum Creatinine in Normal Subjects. Ther. Drug Monit. 1982, 4, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Kastrup, J.; Petersen, P.; Bartram, R.; Hansen, J.M. The Effect of Trimethoprim on Serum Creatinine. Br. J. Urol. 1985, 57, 265–268. [Google Scholar] [CrossRef]
- Yokoyama, S.; Nakagawa, J.; Aiuchi, N.; Seito, T.; Niioka, T. Impact of trimethoprim on serum creatinine, sodium, and potassium concentrations in patients taking trimethoprim-sulfamethoxazole without changes in glomerular filtration rate. J. Clin. Pharm. Ther. 2022, 47, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Nakada, T.; Kudo, T.; Ito, K. Quantitative Consideration of Clinical Increases in Serum Creatinine Caused by Renal Transporter Inhibition. Drug Metab. Dispos. 2023, 51, 1114–1126. [Google Scholar] [CrossRef] [PubMed]
- D’Agati, V. Does aspirin cause acute or chronic renal failure in experimental animals and in humans? Am. J. Kidney Dis. 1996, 28, S24–S29. [Google Scholar] [CrossRef]
- Muther, R.S. Aspirin-Induced Depression of Glomerular Filtration Rate in Normal Humans: Role of Sodium Balance. Ann. Intern. Med. 1981, 94, 317. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.J. Acute effects of acetylsalicylic acid in patients with chronic renal insufficiency. Eur. J. Clin. Pharmacol. 1977, 11, 111–116. [Google Scholar] [CrossRef]
- Patnaik, A.; Rosen, L.S.; Tolaney, S.M.; Tolcher, A.W.; Goldman, J.W.; Gandhi, L.; Papadopoulos, K.P.; Beeram, M.; Rasco, D.W.; Hilton, J.F.; et al. Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non–Small Cell Lung Cancer, and Other Solid Tumors. Cancer Discov. 2016, 6, 740–753. [Google Scholar] [CrossRef]
- Sledge, G.W.; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; et al. MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2− Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. J. Clin. Oncol. 2017, 35, 2875–2884. [Google Scholar] [CrossRef]
- Chappell, J.C.; Turner, P.K.; Pak, Y.A.; Bacon, J.; Chiang, A.Y.; Royalty, J.; Hall, S.D.; Kulanthaivel, P.; Bonventre, J.V. Abemaciclib Inhibits Renal Tubular Secretion Without Changing Glomerular Filtration Rate. Clin. Pharmacol. Ther. 2019, 105, 1187–1195. [Google Scholar] [CrossRef]
- Eron, J.J.; Clotet, B.; Durant, J.; Katlama, C.; Kumar, P.; Lazzarin, A.; Poizot-Martin, I.; Richmond, G.; Soriano, V.; Ait-Khaled, M.; et al. Safety and Efficacy of Dolutegravir in Treatment-Experienced Subjects With Raltegravir-Resistant HIV Type 1 Infection: 24-Week Results of the VIKING Study. J. Infect. Dis. 2013, 207, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Raffi, F.; Jaeger, H.; Quiros-Roldan, E.; Albrecht, H.; Belonosova, E.; Gatell, J.M.; Baril, J.-G.; Domingo, P.; Brennan, C.; Almond, S.; et al. Once-daily dolutegravir versus twice-daily raltegravir in antiretroviral-naive adults with HIV-1 infection (SPRING-2 study): 96 week results from a randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 2013, 13, 927–935. [Google Scholar] [CrossRef]
- Lu, L.; Li, X.; Liu, X.; Han, Y.; Qiu, Z.; Song, X.; Li, Y.; Li, X.; Cao, W.; Li, T. Comparison of Renal Function Biomarkers of Serum Creatinine and Cystatin C in HIV-Infected People on Dolutegravir-Containing Therapy. Infect. Drug Resist. 2022, 15, 1695–1706. [Google Scholar] [CrossRef]
- Palich, R.; Tubiana, R.; Abdi, B.; Mestari, F.; Guiguet, M.; Imbert-Bismut, F.; Katlama, C.; Bonnefont–Rousselot, D.; Isnard-Bagnis, C. Plasma cystatin C as a marker for estimated glomerular filtration rate assessment in HIV-1-infected patients treated with dolutegravir-based ART. J. Antimicrob. Chemother. 2018, 73, 1935–1939. [Google Scholar] [CrossRef]
- Koteff, J.; Borland, J.; Chen, S.; Song, I.; Peppercorn, A.; Koshiba, T.; Cannon, C.; Muster, H.; Piscitelli, S.C. A phase 1 study to evaluate the effect of dolutegravir on renal function via measurement of iohexol and para-aminohippurate clearance in healthy subjects. Br. J. Clin. Pharmacol. 2013, 75, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.M. Clinical Pharmacology of Corticosteroids. Respir. Care 2018, 63, 655–670. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, B.A.C.; Prummel, M.F.; Weberc, J.A.; Wiersinga, W.M.; Arisz, L. Effect of Prednisone on Renal Function in Man. Nephron 1993, 65, 254–259. [Google Scholar] [CrossRef]
- James, G.D.; Sealey, J.E.; Alderman, M.; Ljungman, S.; Mueller, F.B.; Pecker, M.S.; Laragh, J.H. A Longitudinal Study of Urinary Creatinine and Creatinine Clearance in Normal Subjects: Race, Sex, and Age Differences. Am. J. Hypertens. 1988, 1, 124–131. [Google Scholar] [CrossRef]
- Köttgen, A.; Selvin, E.; Stevens, L.A.; Levey, A.S.; Van Lente, F.; Coresh, J. Serum cystatin C in the United States: The Third National Health and Nutrition Examination Survey (NHANES III). Am. J. Kidney Dis. 2008, 51, 385–394. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Yang, W.; Parikh, R.V.; Anderson, A.H.; Chen, T.K.; Cohen, D.L.; He, J.; Mohanty, M.J.; Lash, J.P.; Mills, K.T.; et al. Race, Genetic Ancestry, and Estimating Kidney Function in CKD. N. Engl. J. Med. 2021, 385, 1750–1760. [Google Scholar] [CrossRef]
- Goldwasser, P.; Aboul-Magd, A.; Maru, M. Race and creatinine excretion in chronic renal insufficiency. Am. J. Kidney Dis. 1997, 30, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Delgado, C.; Powe, N.R.; Chertow, G.M.; Grimes, B.; Johansen, K.L. Muscle Mass and Serum Creatinine Concentration by Race and Ethnicity among Hemodialysis Patients. J. Am. Soc. Nephrol. 2024, 35, 66–73. [Google Scholar] [CrossRef]
- Baxmann, A.C.; Ahmed, M.S.; Marques, N.C.; Menon, V.B.; Pereira, A.B.; Kirsztajn, G.M.; Heilberg, I.P. Influence of Muscle Mass and Physical Activity on Serum and Urinary Creatinine and Serum Cystatin C. Clin. J. Am. Soc. Nephrol. 2008, 3, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Beunders, R.; Bongers, C.C.W.G.; Pickkers, P. The effects of physical exercise on the assessment of kidney function. J. Appl. Physiol. 2020, 128, 1459–1460. [Google Scholar] [CrossRef]
- Swedko, P.J.; Clark, H.D.; Paramsothy, K.; Akbari, A. Serum creatinine is an inadequate screening test for renal failure in elderly patients. Arch. Intern. Med. 2003, 163, 356–360. [Google Scholar] [CrossRef] [PubMed]
- American Board of Internal Medicine. ABIM Laboratory Test Reference Ranges—January 2024. Available online: https://www.abim.org/Media/bfijryql/laboratory-reference-ranges.pdf (accessed on 18 July 2024).
- Pundir, C.S.; Kumar, P.; Jaiwal, R. Biosensing methods for determination of creatinine: A review. Biosens. Bioelectron. 2019, 126, 707–724. [Google Scholar] [CrossRef]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Peake, M.; Whiting, M. Measurement of serum creatinine--current status and future goals. Clin. Biochem. Rev. 2006, 27, 173–184. [Google Scholar] [PubMed]
- Levey, A.S.; Titan, S.M.; Powe, N.R.; Coresh, J.; Inker, L.A. Kidney Disease, Race, and GFR Estimation. Clin. J. Am. Soc. Nephrol. 2020, 15, 1203–1212. [Google Scholar] [CrossRef]
- Levey, A.; Coresh, J.; Greene, T.; Marsh, J.; Stevens, L.; Kusek, J.; Van Lente, F. Expressing the MDRD study equation for estimating GFR with IDMS traceable (gold standard) serum creatinine values. J. Am. Soc. Nephrol. 2005, 16, 69A. [Google Scholar]
- Johnson, R.J.; Feehally, J.; Floege, J.r. Comprehensive Clinical Nephrology, 6th ed.; Elsevier: Edinburgh, Scotland, 2019. [Google Scholar]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Blantz, R.C. Pathophysiology of pre-renal azotemia. Kidney Int. 1998, 53, 512–523. [Google Scholar] [CrossRef]
- Basile, D.P.; Anderson, M.D.; Sutton, T.A. Pathophysiology of Acute Kidney Injury. Compr. Physiol. 2012, 2, 1303. [Google Scholar] [CrossRef]
- Molitoris, B.A. Low-Flow Acute Kidney Injury: The Pathophysiology of Prerenal Azotemia, Abdominal Compartment Syndrome, and Obstructive Uropathy. Clin. J. Am. Soc. Nephrol. 2022, 17, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Nørregaard, R.; Mutsaers, H.A.M.; Frøkiær, J.; Kwon, T.H. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol. Rev. 2023, 103, 2827–2872. [Google Scholar] [CrossRef] [PubMed]
- Barasch, J.; Zager, R.; Bonventre, J.V. Acute kidney injury: A problem of definition. Lancet 2017, 389, 779–781. [Google Scholar] [CrossRef]
- Moore, P.K.; Hsu, R.K.; Liu, K.D. Management of Acute Kidney Injury: Core Curriculum 2018. Am. J. Kidney Dis. 2018, 72, 136–148. [Google Scholar] [CrossRef]
- Grubb, A.; Löfberg, H. Human gamma-trace, a basic microprotein: Amino acid sequence and presence in the adenohypophysis. Proc. Natl. Acad. Sci. USA 1982, 79, 3024–3027. [Google Scholar] [CrossRef]
- Abrahamson, M.; Olafsson, I.; Palsdottir, A.; Ulvsbäck, M.; Lundwall, Å.; Jensson, O.; Grubb, A. Structure and expression of the human cystatin C gene. Biochem. J. 1990, 268, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Abrahamson, M.; Barrett, A.J.; Salvesen, G.; Grubb, A. Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J. Biol. Chem. 1986, 261, 11282–11289. [Google Scholar] [CrossRef]
- Jacobsson, B.; Lignelid, H.; Bergerheim, U.S. Transthyretin and cystatin C are catabolized in proximal tubular epithelial cells and the proteins are not useful as markers for renal cell carcinomas. Histopathology 1995, 26, 559–564. [Google Scholar] [CrossRef]
- Nejat, M.; Pickering, J.W.; Walker, R.J.; Endre, Z.H. Rapid detection of acute kidney injury by plasma cystatin C in the intensive care unit. Nephrol. Dial. Transpl. 2010, 25, 3283–3289. [Google Scholar] [CrossRef]
- Grubb, A.O. Cystatin C-Properties and Use as Diagnostic Marker; Elsevier: Amsterdam, The Netherlands, 2001; pp. 63–99. [Google Scholar] [CrossRef]
- Kaseda, R.; Iino, N.; Hosojima, M.; Takeda, T.; Hosaka, K.; Kobayashi, A.; Yamamoto, K.; Suzuki, A.; Kasai, A.; Suzuki, Y.; et al. Megalin-mediated endocytosis of cystatin C in proximal tubule cells. Biochem. Biophys. Res. Commun. 2007, 357, 1130–1134. [Google Scholar] [CrossRef]
- Nejat, M.; Hill, J.V.; Pickering, J.W.; Edelstein, C.L.; Devarajan, P.; Endre, Z.H. Albuminuria increases cystatin C excretion: Implications for urinary biomarkers. Nephrol. Dial. Transplant. 2012, 27, iii96–iii103. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.C.; Lu, K.; Scherzer, R.; Lees, J.S.; Rutherford, E.; Mark, P.B.; Potok, O.A.; Rifkin, D.E.; Ix, J.H.; Shlipak, M.G.; et al. Cystatin C- and Creatinine-based Estimated GFR Differences: Prevalence and Predictors in the UK Biobank. Kidney Med. 2024, 6, 100796. [Google Scholar] [CrossRef]
- Jayagopal, V.; Keevil, B.G.; Atkin, S.L.; Jennings, P.E.; Kilpatrick, E.S. Paradoxical Changes in Cystatin C and Serum Creatinine in Patients with Hypo- and Hyperthyroidism. Clin. Chem. 2003, 49, 680–681. [Google Scholar] [CrossRef] [PubMed]
- Wiesli, P.; Schwegler, B.; Spinas, G.A.; Schmid, C. Serum cystatin C is sensitive to small changes in thyroid function. Clin. Chim. Acta 2003, 338, 87–90. [Google Scholar] [CrossRef]
- Fricker, M.; Wiesli, P.; Brändle, M.; Schwegler, B.; Schmid, C. Impact of thyroid dysfunction on serum cystatin C. Kidney Int. 2003, 63, 1944–1947. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Emara, M.; El Moselhi, H.; Shoker, A. Comparing Measures of Cystatin C in Human Sera by Three Methods. Am. J. Nephrol. 2009, 29, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Welle, S.; Thornton, C.; Totterman, S.; Forbes, G. Utility of creatinine excretion in body-composition studies of healthy men and women older than 60 y. Am. J. Clin. Nutr. 1996, 63, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.A.; Schmid, C.H.; Greene, T.; Li, L.; Beck, G.J.; Joffe, M.M.; Froissart, M.; Kusek, J.W.; Zhang, Y.; Coresh, J.; et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 2009, 75, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Grubb, A. Cystatin C as a Biomarker in Kidney Disease; Elsevier: Amsterdam, The Netherlands, 2011; pp. 291–312. [Google Scholar] [CrossRef]
- Grubb, A.; Lindström, V.; Jonsson, M.; Bäck, S.E.; Åhlund, T.; Rippe, B.; Christensson, A. Reduction in glomerular pore size is not restricted to pregnant women. Evidence for a new syndrome: ‘Shrunken pore syndrome’. Scand. J. Clin. Lab. Invest. 2015, 75, 333–340. [Google Scholar] [CrossRef]
- Åkesson, A.; Malmgren, L.; Leion, F.; Nyman, U.; Christensson, A.; Björk, J.; Grubb, A. Different ways of diagnosing selective glomerular hypofiltration syndromes such as shrunken pore syndrome and the associated increase in mortality. J. Intern. Med. 2024, 297, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Malmgren, L.; Öberg, C.; den Bakker, E.; Leion, F.; Siódmiak, J.; Åkesson, A.; Lindström, V.; Herou, E.; Dardashti, A.; Xhakollari, L.; et al. The complexity of kidney disease and diagnosing it—Cystatin C, selective glomerular hypofiltration syndromes and proteome regulation. J. Intern. Med. 2023, 293, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Deurenberg, P.; Wang, W.; Pietrobelli, A.; Baumgartner, R.N.; Heymsfield, S.B. Hydration of fat-free body mass: New physiological modeling approach. Am. J. Physiol.-Endocrinol. Metab. 1999, 276, E995–E1003. [Google Scholar] [CrossRef]
- Keshaviah, P.R.; Nolph, K.D.; Moore, H.L.; Prowant, B.; Emerson, P.F.; Meyer, M.; Twardowski, Z.J.; Khanna, R.; Ponferrada, L.; Collins, A. Lean body mass estimation by creatinine kinetics. J. Am. Soc. Nephrol. 1994, 4, 1475–1485. [Google Scholar] [CrossRef]
- Bhatla, B.; Moore, H.; Emerson, P.; Keshaviah, P.; Prowant, B.; Nolph, K.D.; Singh, A. Lean Body Mass Estimation by Creatinine Kinetics, Bioimpedance, and Dual Energy X-Ray Absorptiometry in Patients on Continuous Ambulatory Peritoneal Dialysis. ASAIO J. 1995, 41, M442–M446. [Google Scholar] [CrossRef] [PubMed]
- Canaud, B.; Garred, L.J.; Argiles, A.; Flavier, J.L.; Bouloux, C.; Mion, C. Creatinine kinetic modelling: A simple and reliable tool for the assessment of protein nutritional status in haemodialysis patients. Nephrol. Dial. Transpl. 1995, 10, 1405–1410. [Google Scholar]
- Canaud, B.; Ye, X.; Usvyat, L.; Kooman, J.; Van Der Sande, F.; Raimann, J.; Wang, Y.; Kotanko, P. Clinical and predictive value of simplified creatinine index used as muscle mass surrogate in end-stage kidney disease haemodialysis patients—Results from the international MONitoring Dialysis Outcome initiative. Nephrol. Dial. Transplant. 2020, 35, 2161–2171. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Iacone, R.; D’Elia, L.; Guida, B.; Barbato, A.; Scanzano, C.; Strazzullo, P. Validation of daily urinary creatinine excretion measurement by muscle-creatinine equivalence. J. Clin. Lab. Anal. 2018, 32, e22407. [Google Scholar] [CrossRef]
- Forbes, G.; Bruining, G. Urinary creatinine excretion and lean body mass. Am. J. Clin. Nutr. 1976, 29, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
Herring | 8.0 g/kg |
Red meats (Beef, veal, Lamb) | 5.0 g/kg |
Pork | 5.0 g/kg |
Liver | 4.5 g/kg |
Salmon | 4.5 g/kg |
Tuna | 4.0 g/kg |
Chicken | 4.0 g/kg |
Rabbit | 3..5 g/kg |
Cod | 3.0 g/kg |
Soy | 2.0 g/kg |
Formula | |
---|---|
CrCl | = UCr (mg/dL) * (Urine vol. 24 h mL/(1440 min)/SCr (mg/dL) |
Cockcroft–Gault | = [(140 − age) * weight in kg]/(72 * SCr * 0.85 (women) |
MDRD 4 | = (175 * SCr−1.154) * (age−0.203) * 1 (men) = (175 * SCr−1.154) * (age−0.203) * 0.742 (women) |
MDRD 6 | = (170 * SCr−0.999) * (age−0.176) * (BUN−0.17) * (albumin0.318) * 1 (men) = (170 * SCr−0.999) * (age−0.176) * (BUN−0.17) * (albumin0.318) * 0.762 (women) |
CKD-EPI | = 141 * (SCr/0.9)−1.209 * (0.993age) (men) = 144 * (SCr/0.9)−1.209 * (0.993age) (women) |
CKD-EPI CysC | = 133 * (sCysC/0.8)−1.328 * (0.996age) (men) = 133 * (sCysC/0.8)−1.328 * (0.996 age) * 0.932 (women) |
CKD-EPI CrCysC | = 135 * (SCr/0.9)−0.601 * (sCysC/0.8)−0.711 * (0.995age) (men) = 130 * (SCr/0.7)−0.601 * (sCysC/0.8)−0.711 * (0.995age) (women) |
Creatinine | Cystatin C | |
---|---|---|
Renal processing | Excreted by the kidneys, mainly via glomerular filtration. It undergoes tubular secretion [19]. | Freely filtered by the glomeruli. Reabsorbed and catabolized by renal proximal tubular cells. It does not undergo tubular secretion [78]. |
Factors that decrease it in serum | South Asian patients, aging, female sex, neuromuscular disease, malnutrition, and hyperthyroidism [50,85]. | Hypothyroidism [81,82,83]. |
Factors that increase it in serum | Black ethnicity, higher muscle mass, rhabdomyolysis, high-protein diet, supplements, steroid treatment, and various medications [3,10,11,28,49,55]. | Chronic inflammation, obesity, hyperthyroidism, and chronic smoking [86]. |
Price and processing time | USD 1; 15 min. | USD 10; 1 h. |
Advantages | Easier and more widely available technique. Healthcare professionals are more comfortable with its use. | Less influenced by diet, physical activity, or physiological factors [87]. |
High risk of death, heart failure, and cardiovascular atherosclerotic diseases—risks | It does not identify them. | It identifies them [60]. |
Clinical Indications | Recommendations |
---|---|
Body Habitus and Changes in Muscle Mass, Extreme Sport/Bodybuilder | eGFRcys if there are no comorbidities. |
Above-knee Amputation | eGFRcys if there are no other comorbidities. eGFRcr-cys if comorbidities exist. |
Obesity Class III | Use eGFRcr-cys. |
Lifestyle Factors (Low-protein diet, keto diet, vegetarian, high-protein diet, etc.) | eGFRcr if no changes to non-GFR determinants of SCr or no comorbid illness. |
Malnutrition | eGFRcr-cys may be less accurate, use mGFR. |
Muscle Wasting Diseases | eGFRcr-cys for routine evaluation. |
Steroids (Anabolic, Hormone) | Use eGFRcr-cys. |
Medications effects (Tubular Secretion Decrease) | eGFRcys if there are no other comorbidities. |
Acute Kidney Injury | Use eGFRcr. |
Initial approach to Glomerular Filtration Rate | Use eGFRcr. |
Formula | |
---|---|
Fat free mass | = 0.029 * Creatinine Production (mg/day) + 7.35 |
Creatinine Production (mg/day) | = Excretion + Metabolic Degradation |
Creatinine Excretion (mg/day) | = (Urine Volume) * (Urinary Creatinine) + (Dialysis Volume) * (Creatinine in Dialysis Liquid) |
Metabolic Degradation (mg/day) | = 0.38 * Serum Creatinine (mg/dL) * Total Body Weight (kg) |
Formula | |
---|---|
Edema-free lean body mass (kg) | = (0.029 kg/mg/24 h) * creatinine index (mg/24 h) + 7.38 kg |
Creatinine index (mg/24 h) | = Dialysate (or ultrafiltrate) * creatinine (mg/24 h) + urine creatinine (mg/24 h) + change in body creatinine pool (mg/24 h) + creatinine degradation (mg/24 h) |
Change in body creatinine pool (mg/24 h) | = Serum creatinine (mg/dL)f − [serum creatinine (mg/dL)i)] * [24/h/(time interval between the i and f measurements)] * [body weight (kg) * (0.50 L/kg)] |
Creatinine degradation rate (mg/24 h) | = 0.38 dL/kg/24 h * serum creatinine (mg/dL) * Body weight (kg) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila, M.; Mora Sánchez, M.G.; Bernal Amador, A.S.; Paniagua, R. The Metabolism of Creatinine and Its Usefulness to Evaluate Kidney Function and Body Composition in Clinical Practice. Biomolecules 2025, 15, 41. https://doi.org/10.3390/biom15010041
Ávila M, Mora Sánchez MG, Bernal Amador AS, Paniagua R. The Metabolism of Creatinine and Its Usefulness to Evaluate Kidney Function and Body Composition in Clinical Practice. Biomolecules. 2025; 15(1):41. https://doi.org/10.3390/biom15010041
Chicago/Turabian StyleÁvila, Marcela, Mariana G. Mora Sánchez, Alma Sofía Bernal Amador, and Ramón Paniagua. 2025. "The Metabolism of Creatinine and Its Usefulness to Evaluate Kidney Function and Body Composition in Clinical Practice" Biomolecules 15, no. 1: 41. https://doi.org/10.3390/biom15010041
APA StyleÁvila, M., Mora Sánchez, M. G., Bernal Amador, A. S., & Paniagua, R. (2025). The Metabolism of Creatinine and Its Usefulness to Evaluate Kidney Function and Body Composition in Clinical Practice. Biomolecules, 15(1), 41. https://doi.org/10.3390/biom15010041