Effects of Semaglutide Treatment on Psoriatic Lesions in Obese Patients with Type 2 Diabetes Mellitus: An Open-Label, Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Participants and Study Groups
2.2.1. Participants
2.2.2. Inclusion Criteria
2.2.3. Non-Inclusion Criteria
2.2.4. Criteria for Exclusion from the Study
2.2.5. Study Design
2.2.6. Treatment Group
2.2.7. Control Group
2.3. Clinical and Demographic Characteristics of Patients
2.4. Biochemical Analyses
2.5. Cytokine Quantification
2.6. Statistical Analysis
3. Results
4. Discussion
- Sample size: The study included only 31 participants, which may limit the generalizability of the findings to a broader population.
- Open-label design: Both the patients and the researchers were aware of the treatments being administered, therefore introducing potential for bias, as participants might have had heightened expectations for effectiveness of semaglutide, influencing their self-reported quality-of-life improvements.
- Limited duration of follow-up: The follow-up period in this study was only 12 weeks, which may not be sufficient to observe long-term effects or potential side effects of semaglutide on psoriasis and T2DM.
- Cytokines: The study measured the levels of several pro-inflammatory cytokines, including IL-1β, IL-6, IL-23, and CRP, as indicators of inflammation in psoriasis. While a significant reduction in IL-6 and CRP was observed in the semaglutide group, IL-1β and IL-23 did not show significant changes, and IL-17 was not detected at all. This inconsistency raises questions about the mechanisms by which semaglutide exerts its anti-inflammatory effects.
- Exclusion of other psoriasis treatments: The study excluded patients who were using other GLP-1 receptor agonists, corticosteroids, or other systemic therapies that could affect psoriasis. While this was necessary to isolate the effects of semaglutide, it also means that the results cannot be generalized to patients who are receiving combination therapies, which are common in clinical practice.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parisi, R.; Symmons, D.P.; Griffiths, C.E.; Ashcroft, D.M. Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) project team. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J. Investig. Dermatol. 2013, 133, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Boehncke, W.H.; Schön, M.P. Psoriasis. Lancet 2015, 386, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Prtina, A.; Rašeta Simović, N.; Milivojac, T.; Vujnić, M.; Grabež, M.; Djuric, D.; Stojiljković, M.P.; Soldat Stanković, V.; Čolić, M.J.; Škrbić, R. The Effect of Three-Month Vitamin D Supplementation on the Levels of Homocysteine Metabolism Markers and Inflammatory Cytokines in Sera of Psoriatic Patients. Biomolecules 2021, 11, 1865. [Google Scholar] [CrossRef] [PubMed]
- Pirowska, M.; Podolec, K.; Lipko-Godlewska, S.; Sułowicz, J.; Brzewski, P.; Obtułowicz, A.; Pastuszczak, M.; Wojas-Pelc, A. Level of inflammatory cytokines tumour necrosis factor α, interleukins 12, 23 and 17 in patients with psoriasis in the context of metabolic syndrome. Postepy Dermatol. Alergol. 2019, 36, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Parkes, M.; Barrett, J.C.; Prescott, N.J.; Tremelling, M.; Anderson, C.A.; Fisher, S.A.; Roberts, R.G.; Nimmo, E.R.; Cummings, F.R.; Soars, D.; et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat. Genet. 2007, 39, 830–832. [Google Scholar] [CrossRef] [PubMed]
- Balschun, D.; Wetzel, W.; Del Rey, A.; Pitossi, F.; Schneider, H.; Zuschratter, W.; Besedovsky, H.O. Interleukin-6: A cytokine to forget. FASEB J. 2004, 18, 1788–1790. [Google Scholar] [CrossRef]
- Bu, J.; Ding, R.; Zhou, L.; Chen, X.; Shen, E. Epidemiology of Psoriasis and Comorbid Diseases: A Narrative Review. Front. Immunol. 2022, 13, 880201. [Google Scholar] [CrossRef]
- Jindal, S.; Jindal, N. Psoriasis and cardiovascular diseases: A literature review to determine the causal relationship. Cureus 2018, 10, e2195. [Google Scholar] [CrossRef] [PubMed]
- Djuric, D.; Jakovljevic, V.; Zivkovic, V.; Srejovic, I. Homocysteine and homocysteine-related compounds: An overview of the roles in the pathology of the cardiovascular and nervous systems. Can. J. Physiol. Pharmacol. 2018, 96, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Gisondi, P.; Tessari, G.; Conti, A.; Piaserico, S.; Schianchi, S.; Peserico, A.; Giannetti, A.; Girolomoni, G. Prevalence of metabolic syndrome in patients with psoriasis: A hospital-based case control study. Br. J. Dermatol. 2007, 157, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Campanati, A.; Marani, A.; Martina, E.; Diotallevi, F.; Radi, G.; Offidani, A. Psoriasis as an Immune-Mediated and Inflammatory Systemic Disease: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2021, 9, 1511. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, L.; Du, Q.; Gong, X.; Tian, J. Exploring the molecular mechanism underlying the psoriasis and T2D by using microarray data analysis. Sci. Rep. 2023, 13, 19313. [Google Scholar] [CrossRef] [PubMed]
- Trouba, K.J.; Hamadeh, H.K.; Amin, R.P.; Germolec, D.R. Oxidative stress and its role in skin disease. Antioxid. Redox Signal. 2002, 4, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Jun, H.S. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control. Mediat. Inflamm. 2016, 2016, 3094642. [Google Scholar] [CrossRef]
- Tzanavari, T.; Giannogonas, P.; Karalis, K.P. TNF-alpha and obesity. Curr. Dir. Autoimmun. 2010, 11, 145–156. [Google Scholar]
- Drucker, D.J.; Rosen, C.F. Glucagon-like peptide-1 (GLP-1) receptor agonists, obesity and psoriasis: Diabetes meets dermatology. Diabetologia 2011, 54, 2741–2744. [Google Scholar] [CrossRef] [PubMed]
- Faurschou, A.; Knop, F.K.; Thyssen, J.P.; Zachariae, C.; Skov, L.; Vilsbøll, T. Improvement in psoriasis after treatment with the glucagon-like peptide-1 receptor agonist liraglutide. Acta Diabetol. 2014, 51, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Bajic, Z.; Sobot, T.; Amidzic, L.; Vojinovic, N.; Jovicic, S.; Gajic Bojic, M.; Djuric, D.M.; Stojiljkovic, M.P.; Bolevich, S.; Skrbic, R. Liraglutide Protects Cardiomyocytes against Isoprenaline-Induced Apoptosis in Experimental Takotsubo Syndrome. Biomedicines 2024, 12, 1207. [Google Scholar] [CrossRef] [PubMed]
- Bajić, Z.; Šobot, T.; Uletilović, S.; Mandić-Kovačević, N.; Cvjetković, T.; Malićević, U.; Ðukanović, Ð.; Duran, M.; Vesić, N.; Avram, S.; et al. Cardioprotective effects of liraglutide pretreatment on isoprenaline-induced myocardial injury in rats. Can. J. Physiol. Pharmacol. 2023, 101, 258–267. [Google Scholar]
- El-Shafey, M.; El-Agawy, M.S.E.; Eldosoky, M.; Ebrahim, H.A.; Elsherbini, D.M.A.; El-Sherbiny, M.; Asseri, S.M.; Elsherbiny, N.M. Role of Dapagliflozin and Liraglutide on Diabetes-Induced Cardiomyopathy in Rats: Implication of Oxidative Stress, Inflammation, and Apoptosis. Front. Endocrinol. 2022, 13, 862394. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, G.; Curatolo, S.; Busa, B.; Belfiore, A.; Gullo, D. Two birds one stone: Semaglutide is highly effective against severe psoriasis in a type 2 diabetic patient. Endocrinol. Diabetes Metab. Case Rep. 2021, 2021, 21-0007. [Google Scholar] [CrossRef]
- Malavazos, A.E.; Meregalli, C.; Sorrentino, F.; Vignati, A.; Dubini, C.; Scravaglieri, V.; Basilico, S.; Boniardi, F.; Spagnolo, P.; Malagoli, P.; et al. Semaglutide therapy decreases epicardial fat inflammation and improves psoriasis severity in patients affected by abdominal obesity and type-2 diabetes. Endocrinol. Diabetes Metab. Case Rep. 2023, 2023, 23-0017. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.; Chen, B.; Zhang, L. Efficacy of GLP-1rA, liraglutide, in plaque psoriasis treatment with type 2 diabetes: A systematic review and meta-analysis of prospective cohort and before-after studies. J. Dermatol. Treat. 2022, 33, 1299–1305. [Google Scholar] [CrossRef]
- Vata, D.; Tarcau, B.M.; Popescu, I.A.; Halip, I.A.; Patrascu, A.I.; Gheuca Solovastru, D.F.; Mocanu, M.; Chiriac, P.C.; Gheuca Solovastru, L. Update on Obesity in Psoriasis Patients. Life 2023, 13, 1947. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.; Zachariae, C.; Christensen, R.; Geiker, N.R.W.; Schaadt, B.K.; Stender, S.; Hansen, P.R.; Astrup, A.; Skov, L. Effect of weight loss on the severity of psoriasis: A randomized clinical study. JAMA Dermatol. 2013, 149, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.; Christensen, R.; Zachariae, C.; Geiker, N.R.; Schaadt, B.K.; Stender, S.; Hansen, P.R.; Astrup, A.; Skov, L. Long-term effects of weight reduction on the severity of psoriasis in a cohort derived from a randomised trial: A prospective observational follow-up study. Am. J. Clin. Nutr. 2016, 104, 259–265. [Google Scholar]
- Packer, M. Epicardial Adipose Tissue Inflammation Can Cause the Distinctive Pattern of Cardiovascular Disorders Seen in Psoriasis. Am. J. Med. 2020, 133, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zhang, A.; Li, D.; Wu, Y.; Wang, C.Z.; Wan, J.Y.; Yuan, C.S. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: Systematic review and network meta-analysis. BMJ 2024, 384, e076410. [Google Scholar] [CrossRef] [PubMed]
- Day, J.W.; Ottaway, N.; Patterson, J.T.; Gelfanov, V.; Smiley, D.; Gidda, J.; Findeisen, H.; Bruemmer, D.; Drucker, D.J.; Chaudhary, N.; et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 2009, 5, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes-state-of-the-art. Mol. Metab. 2021, 46, 101102. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Bhatta, M.; Davies, M.; Deanfield, J.E.; Garvey, W.T.; Jensen, C.; Kandler, K.; Kushner, R.F.; Rubino, D.M.; Kosiborod, M.N. Effects of once-weekly semaglutide 2.4 mg on C-reactive protein in adults with overweight or obesity (STEP 1, 2, and 3): Exploratory analyses of three randomised, double-blind, placebo-controlled, phase 3 trials. eClinicalMedicine 2022, 55, 101737. [Google Scholar] [CrossRef] [PubMed]
- Bray, J.J.H.; Foster-Davies, H.; Salem, A.; Hoole, A.L.; Obaid, D.R.; Halcox, J.P.J.; Stephens, J.W. Glucagon-like peptide-1 receptor agonists improve biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis of randomised controlled trials. Diabetes Obes. Metab. 2021, 23, 1806–1822. [Google Scholar] [CrossRef] [PubMed]
- Buysschaert, M.; Baeck, M.; Preumont, V.; Marot, L.; Hendrickx, E.; Van Belle, A.; Dumoutier, L. Improvement of psoriasis during glucagon-like peptide-1 analogue therapy in type 2 diabetes is associated with decreasing dermal γδ T-cell number: A prospective case-series study. Br. J. Dermatol. 2014, 171, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lin, L.; Chen, P.; Yu, Y.; Chen, S.; Chen, X.; Shao, Z. Treatment with liraglutide, a glucagon-like peptide-1 analogue, improves effectively the skin lesions of psoriasis patients with type 2 diabetes: A prospective cohort study. Diabetes Res. Clin. Pract. 2019, 150, 167–173. [Google Scholar] [CrossRef]
- Faurschou, A.; Pedersen, J.; Gyldenløve, M.; Poulsen, S.S.; Holst, J.J.; Thyssen, J.P.; Zachariae, C.; Vilsbøll, T.; Skov, L.; Knop, F.K. Increased expression of glucagon-like peptide-1 receptors in psoriasis plaques. Exp. Dermatol. 2013, 22, 150–152. [Google Scholar] [CrossRef]
- Dowlatshahi van der Voort, E.A.; Arends, L.R.; Nijsten, T. Markers of systemic inflammation in psoriasis: A systematic review and meta-analysis. Br. J. Dermatol. 2013, 169, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Lin, L.; Xu, X.; Zhang, Z.; Cai, W.; Shao, Z.; Chen, S.; Chen, X.; Weng, Q. Liraglutide improved inflammation via mediating IL-23/Th-17 pathway in obese diabetic mice with psoriasiform skin. J. Dermatol. Treat. 2021, 32, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Soderstrom, C.; Berstein, G.; Zhang, W.; Valdez, H.; Fitz, L.; Kuhn, M.; Fraser, S. Ultra-Sensitive Measurement of IL-17A and IL-17F in Psoriasis Patient Serum and Skin. AAPS J. 2017, 19, 1218–1222. [Google Scholar] [CrossRef]
- Liu, X.Q.; Zhou, P.L.; Yin, X.Y.; Wang, A.X.; Wang, D.H.; Yang, Y.; Liu, Q. Circulating inflammatory cytokines and psoriasis risk: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0293327. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.B.; Cicek, N.; Coskun, M.; Yegin, O.; Alpsoy, E. Serum and tissue levels of IL-17 in different clinical subtypes of psoriasis. Arch. Dermatol. Res. 2012, 304, 465–469. [Google Scholar] [CrossRef]
- Bai, B.; Chen, H. Metformin: A Novel Weapon Against Inflammation. Front. Pharmacol. 2021, 12, 622262. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Meng, X.; Song, Z. Homocysteine and psoriasis. Biosci. Rep. 2019, 39, BSR20190867. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Lee, H.J.; Lee, J.S.; Whang, K.U.; Park, Y.L.; Lee, S.Y.; Kim, H.J. Association between Homocysteine Levels and Psoriasis: A Meta-Analysis. Ann. Dermatol. 2019, 31, 378–386. [Google Scholar] [CrossRef]
- Ataseven, A.; Kesli, R.; Kurtipek, G.S.; Ozturk, P. Assessment of lipocalin 2, clusterin, soluble tumor necrosis factor receptor-1, interleukin-6, homocysteine, and uric acid levels in patients with psoriasis. Dis. Markers 2014, 2014, 541709. [Google Scholar] [CrossRef] [PubMed]
- Janati, S.; Behmanesh, M.A.; Najafzadehvarzi, H.; Kassani, A.; Athari, N.; Poormoosavi, S.M. Changes of Serum Level of Homocysteine and Oxidative Stress Markers by Metformin and Inositol in Infertile Women with Polycystic Ovary Syndrome: A Double Blind Randomized Clinical Trial Study. Int. J. Fertil. Steril. 2022, 16, 102–107. [Google Scholar] [PubMed]
Participants | Semaglutide N (%) | Control N (%) | p |
---|---|---|---|
Sex | |||
male | 12 (80) | 13 (81.25) | 1 |
female | 3 (20) | 3 (18.75) | |
Alcohol consumption | |||
Yes | 8 (61.5) | 10 (66.7) | 1 |
No | 5 (38.5) | 5 (33.3) | |
Smoking status | |||
Active smoker | 2 (15.4) | 5 (33.33) | 0.45 |
Ex-smoker | 7 (53.8) | 5 (33.33) | |
Non-smoker | 4 (30.8) | 5 (33.33) | |
Heart attack | |||
Yes | 1 (7.7) | 0 | 0.46 |
No | 12 (92.3) | 15 (100) | |
Stroke | |||
Yes | 0 | 0 | 1 |
No | 13 (100) | 15 (100) | |
Age | |||
mean ± SD | 58.6 ± 8.04 | 57.4 ± 13.02 | 0.7 |
BMI (F0) | |||
mean ± SD | 35.04 ± 5.9 | 36.2 ± 7.7 | 0.6 |
PASI score values (F0) | |||
mean ± SD | 20.75 ± 9.72 | 20.36 ± 8.72 | 0.9 |
DLQI score values | |||
mean ± SD | 13 ± 6.5 | 10.1 ± 4.1 | 0.14 |
Glucose (mmol/L) (F0) | 7.3 (2.75) | 5.95 (3.65) | 0.22 |
Cholesterol (mmol/L) (F0) | 5.15 ± 1.07 | 5.06 ± 1.07 | 0.81 |
HgbA1C (%) (F0) | 7.3 (0.35) | 4.95 (1.2) | 0.7 |
Semaglutide | Control | |||||
---|---|---|---|---|---|---|
Parameters | F0 | F1 | p | F0 | F1 | p |
Lipids | ||||||
Cholesterol (mmol/L) | 5.2 ± 1.1 | 4.6 ± 1.2 | 0.2 | 5.1 ± 1.1 | 5.1 ± 1.2 | 0.5 |
Triglycerides (mmol/L) | 1.8 (0.9) | 1.5 (1.5) | 0.3 | 1.6 ± 0.7 | 1.7 ± 1 | 0.4 |
HDL (mmol/L) | 1.1 ± 0.2 | 1.07 ± 0.3 | 0.4 | 1.2 ± 0.3 | 1.2 ± 0.4 | 0.9 |
LDL (mmol/L) | 3.6 ± 1 | 2.8 ± 0.9 | 0.03 * | 3.6 ± 1.2 | 3.4 ± 1 | 0.2 |
Glucoregulation | ||||||
Glucose (mmol/L) | 7.0 (3.2) | 6.3 (1.4) | 0.3 | 6.4 (3.7) | 6.1 (1.1) | 0.8 |
HbA1C (%) | 7.3 (0.2) | 6.1 (0.8) | 0.02 * | 7.2 (0.6) | 6.3 (1.7) | 0.001 ** |
Insulin (µIU/mL) | 11.4 ± 7.5 | 10.8 ± 6.7 | 0.7 | 11 (20.4) | 10.8 (8.7) | 0.2 |
Uric acid (µIU/mL) | 361.2 ± 97.9 | 358.6± 76.6 | 0.9 | 382.9 ± 83.2 | 399.2 ± 100.5 | 0.4 |
Homocysteine | 9.44 ± 2.21 | 10.91 ± 2.84 | 0.15 | 10.07 ± 2.27 | 12.32 ± 5.09 | 0.08 |
Semaglutide | Control | |||||
---|---|---|---|---|---|---|
Parameters | F0 | F1 | p | F0 | F1 | p |
Inflammatory | ||||||
CRP (mg/L) | 3.8 (3.1) | 1.9 (1.4) | 0.01 * | 9.6 ± 10.7 | 7.6 ± 8.3 | 0.5 |
IL-1β (pg/mL) | 0.8 (0.4) | 0.6 (1) | 0.3 | 0.5 (0.9) | 0.6 (0.6) | 0.9 |
IL-6 (pg/mL) | 3.5 (2.3) | 2.8 (1.1) | 0.05 * | 5.6 (12.2) | 2.3 (3.6) | 0.1 |
IL-23 (pg/mL) | 51.9 ± 30.2 | 41.2 ± 27.1 | 0.2 | 87.5 (59.1) | 51.6 (55.2) | 0.1 |
Parameters | F0/Semaglutide | F0/Control | p |
---|---|---|---|
CRP (mg/L) | 3.8 (3.1) | 4.8 (9.7) | 0.07 |
IL-23 (pg/mL) | 46.08 (47.9) | 87.5 (59.1) | 0.04 * |
Psoriasis Severity | Semaglutide F0 | Semaglutide F1 | p | Control F0 | Control F1 | p | ||||
---|---|---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | |||
Mild form of the disease | 0 | 0 | 6 | 100 | 0.01 * | 0 | 0 | 4 | 100 | 0.09 |
Moderately severe form and severe form of the disease | 13 | 65 | 7 | 35 | 15 | 57.7 | 11 | 42.3 |
DLQI Classes | Semaglutide F0 | Semaglutide F1 | p | Control F0 | Control F1 | p | ||||
---|---|---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | |||
No effect | 0 | 0 | 2 | 100 | 0.04 * | 0 | 0 | 2 | 100 | 0.7 |
Weak effect | 2 | 20 | 8 | 80 | 2 | 50 | 2 | 50 | ||
Moderate effect | 2 | 50 | 2 | 50 | 6 | 50 | 6 | 50 | ||
Strong effect | 9 | 90 | 1 | 10 | 7 | 58.3 | 5 | 41.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petković-Dabić, J.; Binić, I.; Carić, B.; Božić, L.; Umičević-Šipka, S.; Bednarčuk, N.; Dabić, S.; Šitum, M.; Popović-Pejičić, S.; Stojiljković, M.P.; et al. Effects of Semaglutide Treatment on Psoriatic Lesions in Obese Patients with Type 2 Diabetes Mellitus: An Open-Label, Randomized Clinical Trial. Biomolecules 2025, 15, 46. https://doi.org/10.3390/biom15010046
Petković-Dabić J, Binić I, Carić B, Božić L, Umičević-Šipka S, Bednarčuk N, Dabić S, Šitum M, Popović-Pejičić S, Stojiljković MP, et al. Effects of Semaglutide Treatment on Psoriatic Lesions in Obese Patients with Type 2 Diabetes Mellitus: An Open-Label, Randomized Clinical Trial. Biomolecules. 2025; 15(1):46. https://doi.org/10.3390/biom15010046
Chicago/Turabian StylePetković-Dabić, Jelena, Ivana Binić, Bojana Carić, Ljiljana Božić, Sanja Umičević-Šipka, Nataša Bednarčuk, Saša Dabić, Mirna Šitum, Snježana Popović-Pejičić, Miloš P. Stojiljković, and et al. 2025. "Effects of Semaglutide Treatment on Psoriatic Lesions in Obese Patients with Type 2 Diabetes Mellitus: An Open-Label, Randomized Clinical Trial" Biomolecules 15, no. 1: 46. https://doi.org/10.3390/biom15010046
APA StylePetković-Dabić, J., Binić, I., Carić, B., Božić, L., Umičević-Šipka, S., Bednarčuk, N., Dabić, S., Šitum, M., Popović-Pejičić, S., Stojiljković, M. P., & Škrbić, R. (2025). Effects of Semaglutide Treatment on Psoriatic Lesions in Obese Patients with Type 2 Diabetes Mellitus: An Open-Label, Randomized Clinical Trial. Biomolecules, 15(1), 46. https://doi.org/10.3390/biom15010046