Pharmacological Potential and Mechanisms of Bisbenzylisoquinoline Alkaloids from Lotus Seed Embryos
Abstract
1. Introduction
2. Antitumor Potential
3. Neuroprotective Potential
4. Anti-Inflammatory Potential
5. Anti-Hypertensive Potential
6. Anti-Fibrotic Potential
7. Antiarrhythmic Potential
8. Antioxidant Potential
9. Antidiabetic Potential
10. Other Potential
11. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bishayee, A.; Patel, P.A.; Sharma, P.; Thoutireddy, S.; Das, N. Lotus (Nelumbo nucifera Gaertn.) and Its Bioactive Phytocompounds: A Tribute to Cancer Prevention and Intervention. Cancers 2022, 14, 529. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, L.; Pan, C.; Xu, L.; Liu, Y.; Ke, W.; Yang, P. Transcriptomic Analysis of the Regulation of Rhizome Formation in Temperate and Tropical Lotus (Nelumbo nucifera). Sci. Rep. 2015, 5, 13059. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, M.; Guo, M. Research advances in traditional and modern use of Nelumbo nucifera: Phytochemicals, health promoting activities and beyond. Crit. Rev. Food Sci. Nutr. 2019, 59 (Suppl. S1), S189–S209. [Google Scholar] [CrossRef]
- Arooj, M.; Imran, S.; Inam-Ur-Raheem, M.; Rajoka, M.S.R.; Sameen, A.; Siddique, R.; Sahar, A.; Tariq, S.; Riaz, A.; Hussain, A.; et al. Lotus seeds (Nelumbinis semen) as an emerging therapeutic seed: A comprehensive review. Food Sci. Nutr. 2021, 9, 3971–3987. [Google Scholar] [CrossRef]
- Pharmacopoeia Commission of the Ministry of Public Health of the People’s Republic of China. Pharmacopoeia of the People’s Republic of China, 1990 ed.; People’s Medical Publishing House: Beijing, China, 1992. [Google Scholar]
- Zhao, X.; Zhao, R.; Yang, X.; Sun, L.; Bao, Y.; Shuai Liu, Y.; Blennow, A.; Liu, X. Recent advances on bioactive compounds, biosynthesis mechanism, and physiological functions of Nelumbo nucifera. Food Chem. 2023, 412, 135581. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, L.; Li, L.; Li, J.; Xu, L.; Feng, J.; Liu, Y. Digital Gene Expression Analysis Provides Insight into the Transcript Profile of the Genes Involved in Aporphine Alkaloid Biosynthesis in Lotus (Nelumbo nucifera). Front. Plant Sci. 2017, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Li, Q.; Shao, Q.; Wang, B.; Wei, Y. A general ionic liquid pH-zone-refining countercurrent chromatography method for separation of alkaloids from Nelumbo nucifera Gaertn. J. Chromatogr. A 2017, 1507, 63–71. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Mukherjee, D.; Maji, A.K.; Rai, S.; Heinrich, M. The sacred lotus (Nelumbo nucifera)—Phytochemical and therapeutic profile. J. Pharm. Pharmacol. 2009, 61, 407–422. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zheng, Y.; Jiao, D.; Chen, J.; Liu, X.; Xiong, S.; Chen, Q. Anlotinib Inhibits Cell Proliferation, Migration and Invasion via Suppression of c-Met Pathway and Activation of ERK1/2 Pathway in H446 Cells. Anticancer. Agents Med. Chem. 2021, 21, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Bian, R.; Li, Y.; Gao, Y.; Liu, Y.; Xu, Y.; Song, X.; Zhang, Y. Liensinine induces gallbladder cancer apoptosis and G2/M arrest by inhibiting ZFX-induced PI3K/AKT pathway. Acta Biochim. Biophys. Sin. 2019, 51, 607–614. [Google Scholar] [CrossRef]
- Yang, J.H.; Yu, K.; Si, X.K.; Li, S.; Cao, Y.J.; Li, W.; Zhang, J.X. Liensinine inhibited gastric cancer cell growth through ROS generation and the PI3K/AKT pathway. J. Cancer 2019, 10, 6431–6438. [Google Scholar] [CrossRef]
- Jia, F.; Liu, Y.; Dou, X.; Du, C.; Mao, T.; Liu, X. Liensinine Inhibits Osteosarcoma Growth by ROS-Mediated Suppression of the JAK2/STAT3 Signaling Pathway. Oxid. Med. Cell Longev. 2022, 2022, 8245614. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Ding, S.; Dong, X.; Shang, X.; Li, Y.; Xie, L.; Song, X.; Song, X. Liensinine Inhibits Cell Growth and Blocks Autophagic Flux in Nonsmall-Cell Lung Cancer. J. Oncol. 2022, 2022, 1533779. [Google Scholar] [CrossRef]
- Ma, B.; Shi, S.; Guo, W.; Zhang, H.; Zhao, Z.; An, H. Liensinine, a Novel and Food-Derived Compound, Exerts Potent Antihepatoma Efficacy via Inhibiting the Kv10.1 Channel. J. Agric. Food Chem. 2024, 72, 4689–4702. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Fan, X.; Liu, P.; Mi, Z.; Tan, H.; Rong, P. Liensinine reshapes the immune microenvironment and enhances immunotherapy by reprogramming metabolism through the AMPK-HIF-1α axis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2025, 44, 208. [Google Scholar] [CrossRef]
- Zhu, X.; Bao, W.; Xie, X.; Chen, B.; Li, R.; Zhao, J.; Wu, L.; Yu, Z.; Li, S.; Zhu, Q.; et al. Liensinine inhibits progression of intrahepatic cholangiocarcinoma by regulating TGF-β1/P-smad3 signaling through HIF-1a. Mol. Carcinog. 2024, 63, 772–784. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhu, S.; Wu, B.; Su, Y.; Wang, Q.; Lei, Y.; Shao, Q.; Gao, Y.; Gao, K.; Wu, G. CDK2 and CDK4 targeted liensinine inhibits the growth of bladder cancer T24 cells. Chem. Biol. Interact. 2023, 382, 110624. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.J.; Lee, S.K.; Park, K.K.; Son, S.H.; Kim, K.R.; Chung, W.Y. Liensinine and Nuciferine, Bioactive Components of Nelumbo nucifera, Inhibit the Growth of Breast Cancer Cells and Breast Cancer-Associated Bone Loss. Evid. Based Complement. Altern. Med. 2017, 2017, 1583185. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, W.; Zhou, J.; Xu, M.; Yuan, G. Investigation of G-quadruplex formation in the FGFR2 promoter region and its transcriptional regulation by liensinine. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 884–891. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, S.; Han, Q.; Chu, T.; Wang, H.; Yu, L.; Zhang, W.; Liu, J.; Liang, W.; Xue, J.; et al. Liensinine sensitizes colorectal cancer cells to oxaliplatin by targeting HIF-1α to inhibit autophagy. Phytomedicine 2024, 129, 155647. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, X.; Wu, T.; Li, B.; Liu, T.; Wang, R.; Liu, Q.; Liu, Z.; Gong, Y.; Shao, C. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci. Rep. 2015, 5, 12579. [Google Scholar] [CrossRef]
- Shu, G.; Yue, L.; Zhao, W.; Xu, C.; Yang, J.; Wang, S.; Yang, X. Isoliensinine, a Bioactive Alkaloid Derived from Embryos of Nelumbo nucifera, Induces Hepatocellular Carcinoma Cell Apoptosis through Suppression of NF-κB Signaling. J. Agric. Food Chem. 2015, 63, 8793–8803. [Google Scholar] [CrossRef] [PubMed]
- Shu, G.; Zhang, L.; Jiang, S.; Cheng, Z.; Wang, G.; Huang, X.; Yang, X. Isoliensinine induces dephosphorylation of NF-kB p65 subunit at Ser536 via a PP2A-dependent mechanism in hepatocellular carcinoma cells: Roles of impairing PP2A/I2PP2A interaction. Oncotarget 2016, 7, 40285–40296. [Google Scholar] [CrossRef]
- Hu, J.; Dai, S.; Yuan, M.; Li, F.; Xu, S.; Gao, L. Isoliensinine suppressed gastric cancer cell proliferation and migration by targeting TGFBR1 to regulate TGF-β-smad signaling pathways. Front. Pharmacol. 2024, 15, 1438161. [Google Scholar] [CrossRef]
- Li, H.L.; Cheng, Y.; Zhou, Z.W.; Long, H.Z.; Luo, H.Y.; Wen, D.D.; Cheng, L.; Gao, L.C. Isoliensinine induces cervical cancer cell cycle arrest and apoptosis by inhibiting the AKT/GSK3α pathway. Oncol. Lett. 2022, 23, 8. [Google Scholar] [CrossRef]
- Wu, M.J.; Chang, Y.T.; Chuang, T.Y.; Ko, W.S.; Lu, C.C.; Shieh, J.J. Targeting Mitophagy Using Isoliensinine as a Therapeutic Strategy for Renal Cell Carcinoma Treatment. Free Radic. Biol. Med. 2025, 233, 132–147. [Google Scholar] [CrossRef]
- Manogaran, P.; Anandan, A.; Vijaya Padma, V. Isoliensinine augments the therapeutic potential of paclitaxel in multidrug-resistant colon cancer stem cells and induced mitochondria-mediated cell death. J. Biochem. Mol. Toxicol. 2023, 37, e23395. [Google Scholar] [CrossRef]
- Kim, E.A.; Sung, E.G.; Song, I.H.; Kim, J.Y.; Sung, H.J.; Sohn, H.Y.; Park, J.Y.; Lee, T.J. Neferine-induced apoptosis is dependent on the suppression of Bcl-2 expression via downregulation of p65 in renal cancer cells. Acta Biochim. Biophys. Sin. 2019, 51, 734–742. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Zhang, J.; Yu, B.; Wang, W.; Jia, B.; Chang, J.; Liu, J. Neferine Exerts Ferroptosis-Inducing Effect and Antitumor Effect on Thyroid Cancer through Nrf2/HO-1/NQO1 Inhibition. J. Oncol. 2022, 2022, 7933775. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Chen, M.H.; Ying, C.P.; Chen, M.Y. Neferine induces p38 MAPK/JNK1/2 activation to modulate melanoma proliferation, apoptosis, and oxidative stress. Ann. Transl. Med. 2020, 8, 1643. [Google Scholar] [CrossRef]
- Zhong, P.C.; Liu, Z.W.; Xing, Q.C.; Chen, J.; Yang, R.P. Neferine inhibits the development of lung cancer cells by downregulating TGF-β to regulate MST1/ROS-induced pyroptosis. Kaohsiung, J. Med. Sci. 2023, 39, 1106–1118. [Google Scholar] [CrossRef]
- An, K.; Zhang, Y.; Liu, Y.; Yan, S.; Hou, Z.; Cao, M.; Liu, G.; Dong, C.; Gao, J.; Liu, G. Neferine induces apoptosis by modulating the ROS-mediated JNK pathway in esophageal squamous cell carcinoma. Oncol. Rep. 2020, 44, 1116–1126. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, X.; Li, Y.; Lu, S.; Lu, S.; Li, J.; Wang, Y.; Tian, X.; Wei, J.J.; Shao, C.; et al. Neferine induces autophagy of human ovarian cancer cells via p38 MAPK/JNK activation. Tumour Biol. 2016, 37, 8721–8729. [Google Scholar] [CrossRef]
- Nazim, U.M.; Yin, H.; Park, S.Y. Neferine treatment enhances the TRAIL-induced apoptosis of human prostate cancer cells via autophagic flux and the JNK pathway. Int. J. Oncol. 2020, 56, 1152–1161. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Pathak, N.; Thomas, A.; Bitla, S.; Kumar, R.; Munirathinam, G. Neferine Targets the Oncogenic Characteristics of Androgen-Dependent Prostate Cancer Cells via Inducing Reactive Oxygen Species. Int. J. Mol. Sci. 2023, 24, 14242. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Bakthavachalam, V.; Chinnapaka, S.; Venkatesan, R.; Samy, A.; Munirathinam, G. Neferine, an alkaloid from lotus seed embryo targets HeLa and SiHa cervical cancer cells via pro-oxidant anticancer mechanism. Phytother. Res. 2020, 34, 2366–2384. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, S.; Wang, T.; Shao, H.; Gao, J.; Wang, Y.; Ge, Y. Neferine inhibits MDA-MB-231 cells growth and metastasis by regulating miR-374a/FGFR-2. Chem. Biol. Interact. 2019, 309, 108716. [Google Scholar] [CrossRef]
- Ma, F.F.; Ma, R.H.; Thakur, K.; Zhang, J.G.; Cao, H.; Wei, Z.J.; Simal-Gandara, J. miRNA omics reveal neferine induces apoptosis through Ca(2+)mediated endoplasmic reticulum stress pathway in human endometrial cancer. Phytomedicine 2024, 134, 155988. [Google Scholar] [CrossRef]
- Awasthi, S.; Sharma, R.; Singhal, S.S.; Zimniak, P.; Awasthi, Y.C. RLIP76, a novel transporter catalyzing ATP-dependent efflux of xenobiotics. Drug Metab. Dispos. 2002, 30, 1300–1310. [Google Scholar] [CrossRef]
- Poornima, P.; Kumar, V.B.; Weng, C.F.; Padma, V.V. Doxorubicin induced apoptosis was potentiated by neferine in human lung adenocarcima, A549 cells. Food Chem. Toxicol. 2014, 68, 87–98. [Google Scholar] [CrossRef]
- Poornima, P.; Weng, C.F.; Padma, V.V. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest. Biofactors 2014, 40, 121–131. [Google Scholar] [CrossRef]
- Sivalingam, K.S.; Paramasivan, P.; Weng, C.F.; Viswanadha, V.P. Neferine Potentiates the Antitumor Effect of Cisplatin in Human Lung Adenocarcinoma Cells Via a Mitochondria-Mediated Apoptosis Pathway. J. Cell Biochem. 2017, 118, 2865–2876. [Google Scholar] [CrossRef]
- Liu, C.M.; Wu, Z.; Pan, B.; An, L.; Zhu, C.; Zhou, J.; Jiang, Y. The antiandrogenic effect of neferine, liensinine, and isoliensinine by inhibiting 5-α-reductase and androgen receptor expression via PI3K/AKT signaling pathway in prostate cancer. Pharmazie 2021, 76, 225–231. [Google Scholar] [CrossRef]
- Yang, L.; Xiong, Y.; Sun, Z.; Lin, X.; Ni, H. Neferine Inhibits 7,12-Dimethylbenz(a)anthracene-Induced Mammary Tumorigenesis by Suppression of Cell Proliferation and Induction of Apoptosis via Modulation of the PI3K/AKT/NF-κB Signaling Pathway. J. Environ. Pathol. Toxicol. Oncol. 2021, 40, 51–61. [Google Scholar] [CrossRef]
- Sivalingam, K.; Amirthalingam, V.; Ganasan, K.; Huang, C.Y.; Viswanadha, V.P. Neferine suppresses diethylnitrosamine-induced lung carcinogenesis in Wistar rats. Food Chem. Toxicol. 2019, 123, 385–398. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef]
- Meng, X.L.; Liu, S.Y.; Xue, J.S.; Gou, J.M.; Wang, D.; Liu, H.S.; Chen, C.L.; Xu, C.B. Protective effects of Liensinine, Isoliensinine, and Neferine on PC12 cells injured by amyloid-β. J. Food Biochem. 2022, 46, e14303. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.C.; Gao, Y.H.; Zhang, C.; Ma, B.T.; Lin, H.R.; Jiang, J.Y.; Xue, M.F.; Li, S.; Wang, H.B. Liensinine and neferine exert neuroprotective effects via the autophagy pathway in transgenic Caenorhabditis elegans. BMC Complement. Med. Ther. 2023, 23, 386. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.L.; Xue, J.S.; Su, S.J.; Gou, J.M.; Lu, J.; Chen, C.L.; Xu, C.B. Total alkaloids from the seed embryo of Nelumbo nucifera Gaertn. improve cognitive impairment in APP/PS1 mice and protect Aβ-damaged PC12 cells. Nutr. Neurosci. 2023, 26, 1243–1257. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.-L.; Zheng, L.-C.; Liu, J.; Gao, C.-C.; Qiu, M.-C.; Liu, Y.-Y.; Lu, J.; Wang, D.; Chen, C.-L. Inhibitory effects of three bisbenzylisoquinoline alkaloids on lipopolysaccharide-induced microglial activation. RSC Adv. 2017, 7, 18347–18357. [Google Scholar] [CrossRef]
- Li, T.; Zhai, Y.X.; Zheng, T.; Xu, B. Neferine exerts anti-inflammatory activity in BV-2 microglial cells and protects mice with MPTP-induced Parkinson’s disease by inhibiting NF-κB activation. Mol. Med. Rep. 2023, 28, 235. [Google Scholar] [CrossRef]
- Qiao, W.; Zang, Z.; Li, D.; Shao, S.; Li, Q.; Liu, Z. Liensinine ameliorates ischemia-reperfusion-induced brain injury by inhibiting autophagy via PI3K/AKT signaling. Funct. Integr. Genom. 2023, 23, 140. [Google Scholar] [CrossRef]
- Sengking, J.; Oka, C.; Yawoot, N.; Tocharus, J.; Chaichompoo, W.; Suksamrarn, A.; Tocharus, C. Protective Effect of Neferine in Permanent Cerebral Ischemic Rats via Anti-Oxidative and Anti-Apoptotic Mechanisms. Neurotox. Res. 2022, 40, 1348–1359. [Google Scholar] [CrossRef]
- Zhu, J.J.; Yu, B.Y.; Huang, X.K.; He, M.Z.; Chen, B.W.; Chen, T.T.; Fang, H.Y.; Chen, S.Q.; Fu, X.Q.; Li, P.J.; et al. Neferine Protects against Hypoxic-Ischemic Brain Damage in Neonatal Rats by Suppressing NLRP3-Mediated Inflammasome Activation. Oxid. Med. Cell Longev. 2021, 2021, 6654954. [Google Scholar] [CrossRef]
- Yeh, K.C.; Hung, C.F.; Lin, Y.F.; Chang, C.; Pai, M.S.; Wang, S.J. Neferine, a bisbenzylisoquinoline alkaloid of Nelumbo nucifera, inhibits glutamate release in rat cerebrocortical nerve terminals through 5-HT(1A) receptors. Eur. J. Pharmacol. 2020, 889, 173589. [Google Scholar] [CrossRef]
- Lin, T.Y.; Hung, C.Y.; Chiu, K.M.; Lee, M.Y.; Lu, C.W.; Wang, S.J. Neferine, an Alkaloid from Lotus Seed Embryos, Exerts Antiseizure and Neuroprotective Effects in a Kainic Acid-Induced Seizure Model in Rats. Int. J. Mol. Sci. 2022, 23, 4130. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, J.; Yang, R.; Duan, F.; Li, S.; Chen, X. Mitochondrial protective effect of neferine through the modulation of nuclear factor erythroid 2-related factor 2 signalling in ischaemic stroke. Br. J. Pharmacol. 2019, 176, 400–415. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Xie, Q.; Xu, F.; Shen, X.; Hao, Y.; Li, J.; Xu, H.; Peng, Q.; Kuang, W. Neferine alleviates chronic stress-induced depression by regulating monoamine neurotransmitter secretion and gut microbiota structure. Front. Pharmacol. 2022, 13, 974949. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, Q.; Lv, M.; Ma, W.; Sun, J.; Zhong, X.; Hu, R.; Ma, M.; Han, Z.; Zhang, W.; et al. Role of liensinine in sensitivity of activated macrophages to ferroptosis and in acute liver injury. Cell Death Discov. 2023, 9, 189. [Google Scholar] [CrossRef]
- Wang, C.; Zou, K.; Diao, Y.; Zhou, C.; Zhou, J.; Yang, Y.; Zeng, Z. Liensinine alleviates LPS-induced acute lung injury by blocking autophagic flux via PI3K/AKT/mTOR signaling pathway. Biomed. Pharmacother. 2023, 168, 115813. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Ma, F.; Xie, K.; Li, X.; Tan, X.; Xia, Y.; Wang, Y.; Dong, J. Liensinine alleviates mouse intestinal injury induced by sepsis through inhibition of oxidative stress, inflammation, and cell apoptosis. Int. Immunopharmacol. 2024, 127, 111335. [Google Scholar] [CrossRef]
- Wang, L.; Shao, T.; Liu, C.; Han, Z.; Zhang, S.; Dong, Y.; Han, T.; Cheng, B.; Ren, W. Liensinine inhibits IL-1β-stimulated inflammatory response in chondrocytes and attenuates papain-induced osteoarthritis in rats. Int. Immunopharmacol. 2024, 138, 112601. [Google Scholar] [CrossRef]
- Yang, C.C.; Hung, Y.L.; Ko, W.C.; Tsai, Y.J.; Chang, J.F.; Liang, C.W.; Chang, D.C.; Hung, C.F. Effect of Neferine on DNCB-Induced Atopic Dermatitis in HaCaT Cells and BALB/c Mice. Int. J. Mol. Sci. 2021, 22, 8237. [Google Scholar] [CrossRef]
- Zhong, Y.; He, S.; Huang, K.; Liang, M. Neferine suppresses vascular endothelial inflammation by inhibiting the NF-κB signaling pathway. Arch. Biochem. Biophys. 2020, 696, 108595. [Google Scholar] [CrossRef]
- Peng, Z.Y.; Zhang, S.D.; Liu, S.; He, B.M. Protective effect of neferine on endothelial cell nitric oxide production induced by lysophosphatidylcholine: The role of the DDAH-ADMA pathway. Can. J. Physiol. Pharmacol. 2011, 89, 289–294. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, J.; Yi, Y.; Wang, S.; He, Y.; Liu, Y.; Meng, K.; Wang, Y.; Ma, W. Isoliensinine suppresses chondrocytes pyroptosis against osteoarthritis via the MAPK/NF-κB signaling pathway. Int. Immunopharmacol. 2024, 143 Pt 3, 113589. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, X.; Lu, Y.; Wen, Y.; Xie, Q.; Yang, X.; He, S.; Guo, Z.; Li, J.; Shen, A.; et al. Neferine ameliorates hypertensive vascular remodeling modulating multiple signaling pathways in spontaneously hypertensive rats. Biomed. Pharmacother. 2023, 158, 114203. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, M.; Chen, L.; Chen, H.; Wu, J.; Xie, Q.; Lin, G.; Lian, D.; Peng, J.; Shen, A. Neferine attenuates hypertensive cardiomyocyte apoptosis and modulates key signaling pathways: An in vivo and in vitro study. Eur. J. Pharmacol. 2025, 994, 177393. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.H.; Zhang, Y.L.; Feng, X.L.; Wang, J.L.; Qian, J.Q. Effects of isoliensinine on angiotensin II-induced proliferation of porcine coronary arterial smooth muscle cells. J. Asian Nat. Prod. Res. 2006, 8, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Chen, D.; Zhu, Y.; Wang, M.; Zeng, J.; Zhang, L.; Cai, Q.; Lian, D.; Zhao, C.; Xu, Y.; et al. Liensinine improves AngII-induced vascular remodeling via MAPK/TGF-β1/Smad2/3 signaling. J. Ethnopharmacol. 2023, 317, 116768. [Google Scholar] [CrossRef]
- Xiao, X.; Luo, F.; Fu, M.; Jiang, Y.; Liu, S.; Liu, B. Evaluating the therapeutic role of selected active compounds in Plumula Nelumbinis on pulmonary hypertension via network pharmacology and experimental analysis. Front. Pharmacol. 2022, 13, 977921. [Google Scholar] [CrossRef]
- Ren, H.L.; Zhang, J.H.; Xiao, J.H. Benzylisoquinoline alkaloids inhibit lung fibroblast activation mainly via inhibiting TGF-β1/Smads and ERK1/2 pathway proteins. Heliyon 2023, 9, e16849. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X.; Chang, Q.; Xu, J.; Huang, Y.; Guo, Q.; Zhang, S.; Wang, W.; Chen, X.; Wang, J. Neferine, a bisbenzylisoquinline alkaloid attenuates bleomycin-induced pulmonary fibrosis. Eur. J. Pharmacol. 2010, 627, 304–312. [Google Scholar] [CrossRef]
- Lohanathan, B.P.; Rathinasamy, B.; Huang, C.Y.; Viswanadha, V.P. Neferine attenuates doxorubicin-induced fibrosis and hypertrophy in H9c2 cells. J. Biochem. Mol. Toxicol. 2022, 36, e23054. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.X.; Zhang, R.; Wang, H.S. Neferine mitigates angiotensin II-induced atrial fibrillation and fibrosis via upregulation of Nrf2/HO-1 and inhibition of TGF-β/p-Smad2/3 pathways. Aging 2024, 16, 8630–8644. [Google Scholar] [CrossRef]
- Xia, Y.; Guo, Y.; Zhou, J.; Fan, L.; Xie, J.; Wang, Y.; Du, H.; Ni, X. Neferine mediated TGF-β/ERK signaling to inhibit fibrosis in endometriosis. Am. J. Transl. Res. 2023, 15, 3240–3253. [Google Scholar]
- Liu, X.; Song, X.; Lu, J.; Chen, X.; Liang, E.; Liu, X.; Zhang, M.; Zhang, Y.; Du, Z.; Zhao, Y. Neferine inhibits proliferation and collagen synthesis induced by high glucose in cardiac fibroblasts and reduces cardiac fibrosis in diabetic mice. Oncotarget 2016, 7, 61703–61715. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Lian, D.; Wu, M.; Zhou, Y.; Fang, Y.; Zhang, S.; Zhang, W.; Yang, Y.; Li, R.; Chen, H.; et al. Isoliensinine Attenuates Renal Fibrosis and Inhibits TGF-β1/Smad2/3 Signaling Pathway in Spontaneously Hypertensive Rats. Drug Des. Devel Ther. 2023, 17, 2749–2762. [Google Scholar] [CrossRef]
- Li, G.R.; Li, X.G.; Lü, F.H. Effects of neferine on transmembrane potentials of guinea pig myocardium. Acta Pharmacol. Sin. 1989, 10, 406–410. [Google Scholar]
- Wang, C.; Chen, Y.F.; Quan, X.Q.; Wang, H.; Zhang, R.; Xiao, J.H.; Wang, J.L.; Zhang, C.T.; Xiang, J.Z.; Tang, Q. Effects of neferine on Kv4.3 channels expressed in HEK293 cells and ex vivo electrophysiology of rabbit hearts. Acta Pharmacol. Sin. 2015, 36, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, H.; Xiao, J.H.; Wang, J.L.; Xiang, J.Z.; Tang, Q. Inhibitory effects of neferine on Nav1.5 channels expressed in HEK293 cells. J. Huazhong Univ. Sci. Technol. Med. Sci. 2016, 36, 487–493. [Google Scholar] [CrossRef]
- Wan, J.; Zhao, L.; Xu, C.; Zhang, S.; Zhang, Z.; Zeng, C.; Chang, M.; Xiao, J.; Wang, J. Effects of neferine on the pharmacokinetics of amiodarone in rats. Biomed. Chromatogr. 2011, 25, 858–866. [Google Scholar] [CrossRef]
- Gu, D.F.; Li, X.L.; Qi, Z.P.; Shi, S.S.; Hu, M.Q.; Liu, D.M.; She, C.B.; Lv, Y.J.; Li, B.X.; Yang, B.F. Blockade of HERG K+ channel by isoquinoline alkaloid neferine in the stable transfected HEK293 cells. Naunyn Schmiedebergs Arch. Pharmacol. 2009, 380, 143–151. [Google Scholar] [CrossRef]
- Wang, J.L.; Nong, Y.; Jing, M.X. Effects of liensinine on haemodynamics in rats and the physiologic properties of isolated rabbit atria. Acta Pharm. Sinica 1992, 27, 881–885. [Google Scholar]
- Dong, Z.X.; Zhao, X.; Gu, D.F.; Shi, Y.Q.; Zhang, J.; Hu, X.X.; Hu, M.Q.; Yang, B.F.; Li, B.X. Comparative effects of liensinine and neferine on the human ether-a-go-go-related gene potassium channel and pharmacological activity analysis. Cell Physiol. Biochem. 2012, 29, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hu, L.; Zhang, Z.; Song, L.; Zhang, P.; Cao, Z.; Ma, J. Isoliensinine Eliminates Afterdepolarizations Through Inhibiting Late Sodium Current and L-Type Calcium Current. Cardiovasc. Toxicol. 2021, 21, 67–78. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Wang, R.; Li, S.; Yuan, Y. Neferine Exerts Antioxidant and Anti-Inflammatory Effects on Carbon Tetrachloride-Induced Liver Fibrosis by Inhibiting the MAPK and NF-κB/IκBα Pathways. Evid. Based Complement. Altern. Med. 2021, 2021, 4136019. [Google Scholar] [CrossRef]
- Qi, Z.; Wang, R.; Liao, R.; Xue, S.; Wang, Y. Neferine Ameliorates Sepsis-Induced Myocardial Dysfunction Through Anti-Apoptotic and Antioxidative Effects by Regulating the PI3K/AKT/mTOR Signaling Pathway. Front. Pharmacol. 2021, 12, 706251. [Google Scholar] [CrossRef]
- Lu, C.; Jiang, B.; Xu, J.; Zhang, X.; Jiang, N. Neferine protected cardiomyocytes against hypoxia/oxygenation injury through SIRT1/Nrf2/HO-1 signaling. J. Biochem. Mol. Toxicol. 2023, 37, e23398. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Jin, S.E.; Choi, R.J.; Kim, D.H.; Kim, Y.S.; Ryu, J.H.; Kim, D.W.; Son, Y.K.; Park, J.J.; Choi, J.S. Anti-amnesic activity of neferine with antioxidant and anti-inflammatory capacities, as well as inhibition of ChEs and BACE1. Life Sci. 2010, 87, 420–430. [Google Scholar] [CrossRef]
- Yin, S.; Ran, Q.; Yang, J.; Zhao, Y.; Li, C. Nootropic effect of neferine on aluminium chloride-induced Alzheimer’s disease in experimental models. J. Biochem. Mol. Toxicol. 2020, 34, e22429. [Google Scholar] [CrossRef]
- Khan, A.; Bai, H.; Khan, A.; Bai, Z. Neferine prevents ultraviolet radiation-induced skin photoaging. Exp. Ther. Med. 2020, 19, 3189–3196. [Google Scholar] [CrossRef]
- Long, H.Z.; Li, F.J.; Gao, L.C.; Zhou, Z.W.; Luo, H.Y.; Xu, S.G.; Dai, S.M.; Hu, J.D. Isoliensinine activated the Nrf2/GPX4 pathway to inhibit glutamate-induced ferroptosis in HT-22 cells. J. Biochem. Mol. Toxicol. 2024, 38, e23794. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yuan, S.; Fan, H.; Zhang, W.; Zhang, H. Liensinine alleviates sepsis-induced acute liver injury by inhibiting the NF-κB and MAPK pathways in an Nrf2-dependent manner. Chem. Biol. Interact. 2024, 396, 111030. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, Y.; Zhang, L.T.; Zeng, S.X.; Guo, Z.B.; Zheng, B.D. Protective effects of alkaloid compounds from Nelumbinis Plumula on tert-butyl hydroperoxide-induced oxidative stress. Molecules 2013, 18, 10285–10300. [Google Scholar] [CrossRef]
- Zhao, P.; Tian, D.; Song, G.; Ming, Q.; Liu, J.; Shen, J.; Liu, Q.H.; Yang, X. Neferine Promotes GLUT4 Expression and Fusion With the Plasma Membrane to Induce Glucose Uptake in L6 Cells. Front. Pharmacol. 2019, 10, 999. [Google Scholar] [CrossRef]
- Li, G.; Xu, H.; Zhu, S.; Xu, W.; Qin, S.; Liu, S.; Tu, G.; Peng, H.; Qiu, S.; Yu, S.; et al. Effects of neferine on CCL5 and CCR5 expression in SCG of type 2 diabetic rats. Brain Res. Bull. 2013, 90, 79–87. [Google Scholar] [CrossRef]
- Guan, G.; Han, H.; Yang, Y.; Jin, Y.; Wang, X.; Liu, X. Neferine prevented hyperglycemia-induced endothelial cell apoptosis through suppressing ROS/Akt/NF-κB signal. Endocrine 2014, 47, 764–771. [Google Scholar] [CrossRef]
- Yang, X.; Huang, M.; Yang, J.; Wang, J.; Zheng, S.; Ma, X.; Cai, J.; Deng, S.; Shu, G.; Yang, G. Activity of Isoliensinine in Improving the Symptoms of Type 2 Diabetic Mice via Activation of AMP-Activated Kinase and Regulation of PPARγ. J. Agric. Food Chem. 2017, 65, 7168–7178. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Ye, S.; Jiang, R.; Zhou, X.; Zhou, J.; Meng, S. Liensinine alleviates high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) through suppressing oxidative stress and inflammation via regulating TAK1/AMPK signaling. Int. Immunopharmacol. 2022, 104, 108306. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Wu, C.; Zhong, X.; Ma, E.; Peng, J.; Zhu, W.; Wo, D.; Ren, D.N. Liensinine prevents ischemic injury following myocardial infarction via inhibition of Wnt/β-catenin signaling activation. Biomed. Pharmacother. 2023, 162, 114675. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Y.; Feng, J.; Ling, M.; Wang, X. Unveiling the Potential of Nelumbo nucifera-Derived Liensinine to Target The Myostatin Protein and to Counteract Muscle Atrophy. J. Agric. Food Chem. 2024, 72, 2240–2249. [Google Scholar] [CrossRef]
- Deng, W.; Li, H.; Zhang, Y.; Lin, Y.; Chen, C.; Chen, J.; Huang, Y.; Zhou, Y.; Tang, Y.; Ding, J.; et al. Isoliensinine suppresses bone loss by targeted inhibition of RANKL-RANK binding. Biochem. Pharmacol. 2023, 210, 115463. [Google Scholar] [CrossRef]
- Liu, H.; Gu, R.; Huang, Q.; Liu, Y.; Liu, C.; Liao, S.; Feng, W.; Xie, T.; Zhao, J.; Xu, J.; et al. Isoliensinine Suppresses Osteoclast Formation Through NF-κB Signaling Pathways and Relieves Ovariectomy-Induced Bone Loss. Front. Pharmacol. 2022, 13, 870553. [Google Scholar] [CrossRef]
- Hongmei, H.; Maojun, Y.; Ting, L.I.; Dandan, W.; Ying, L.I.; Xiaochi, T.; Lu, Y.; Shi, G.U.; Yong, X.U. Neferine inhibits the progression of diabetic nephropathy by modulating the miR-17-5p/nuclear factor E2-related factor 2 axis. J. Tradit. Chin. Med. 2024, 44, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Xiao, X.; Dong, Y.; Yuan, C. Neferine alleviates ovalbumin-induced asthma via MAPK signaling pathways in mice. Allergol. Immunopathol. 2023, 51, 135–142. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Xiang, J.Z.; Yuan, H.; Liu, H.; Tang, Q.; Hao, H.Z.; Yin, Z.; Wang, J.; Ming, Z.Y. Neferine exerts its antithrombotic effect by inhibiting platelet aggregation and promoting dissociation of platelet aggregates. Thromb. Res. 2013, 132, 202–210. [Google Scholar] [CrossRef]
- Park, M.; Han, J.; Lee, H.J. Anti-Adipogenic Effect of Neferine in 3T3-L1 Cells and Primary White Adipocytes. Nutrients 2020, 12, 1858. [Google Scholar] [CrossRef]
- Kageyama, S.; Maejima, Y.; Morioka, Y.; Escareal, Z.; Sato, Y.; Namba, T. Neferine Attenuates Aging-Related Liver Dysfunction by Suppressing Cellular Aging via Mitochondrial Reactivation. Biol. Pharm. Bull. 2024, 47, 1953–1960. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Li, H.L.; Zhou, Z.W.; Long, H.Z.; Luo, H.Y.; Wen, D.D.; Cheng, L.; Gao, L.C. Isoliensinine: A Natural Compound with “Drug-Like” Potential. Front. Pharmacol. 2021, 12, 630385. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Wang, Y.; Shu, C.; Yu, J.; Chen, Y.; Li, Y.; Tao, R.; Yang, H.; Dou, L. Pharmacokinetics, bioavailability and metabolism of neferine in rat by LC-MS/MS and LC-HRMS. Biomed. Chromatogr. 2021, 35, e5193. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, M.; Yang, M.; Ogutu, C.; Li, J.; Deng, X. Lotus (Nelumbo nucifera) benzylisoquinoline alkaloids: Advances in chemical profiling, extraction methods, pharmacological activities, and biosynthetic elucidation. Veg. Res. 2024, 4, e005. [Google Scholar] [CrossRef]
- Yen, C.C.; Tung, C.W.; Chang, C.W.; Tsai, C.C.; Hsu, M.C.; Wu, Y.T. Potential Risk of Higenamine Misuse in Sports: Evaluation of Lotus Plumule Extract Products and a Human Study. Nutrients 2020, 12, 285. [Google Scholar] [CrossRef]
- Rangelov Kozhuharov, V.; Ivanov, K.; Ivanova, S. Higenamine in Plants as a Source of Unintentional Doping. Plants 2022, 11, 354. [Google Scholar] [CrossRef] [PubMed]
- Bharathi Priya, L.; Huang, C.Y.; Hu, R.M.; Balasubramanian, B.; Baskaran, R. An updated review on pharmacological properties of neferine-A bisbenzylisoquinoline alkaloid from Nelumbo nucifera. J. Food Biochem. 2021, 45, e13986. [Google Scholar] [CrossRef] [PubMed]
Alkaloid | Disease | Pathway |
---|---|---|
Liensinine | Acute liver injury | Inhibiting ferritinophagy and autophagosome-lysosome fusion |
Acute lung injury | Regulating PI3K/AKT/mTOR pathway, reducing LPS-induced acute lung injury and inflammatory factors | |
Intestinal injury | Inhibiting NF-κB phosphorylation and NLRP3 inflammasome synthesis | |
Chondrocyte inflammatory | Inhibiting NF-κB signaling pathway | |
Isoliensinine | Osteoarthritis | Inhibiting MAPK/NF-κB pathway activation, reducing extracellular matrix degradation, NLRP3, MMP 3 protein expression, and inflammation |
Neferine | Atopic dermatitis-like skin Inflammation | Decreasing phosphorylation of p38, JNK, and ERK proteins |
Vascular inflammatory | Inhibiting NF-κB signaling, reducing mRNA and protein expression of ICAM1 and VCAM1 | |
Human lysophosphatidylcholine-stimulated human umbilical vein endothelial cells | Regulating DDAH-ADM pathway by restoring DDAH activity, increasing NO concentration, and decreasing ADMA, ROS, and MDA levels |
Alkaloid | Disease | Pathway |
---|---|---|
Liensinine | Ang II-induced hypertension | Inhibits MAPK and TGF-β1/Smad2/3 signaling, reduces collagen deposition, and attenuates aortic wall thickening |
Isoliensinine | Ang II- induced proliferation | Antagonizes Ang II effects, downregulates PDGF-β, bFGF, proto-oncogenes and c-Fos/c-Myc, and inhibits VSMC proliferation |
Neferine | Pulmonary hypertension | Reduces RVSP, inhibits maladaptive right ventricular hypertrophy, restores extracellular matrix homeostasis, and suppresses proliferative signaling |
Hypertensive cardiomyocyte apoptosis | Inhibits activation of PI3K/AKT and TGF-β1/Smad2/3 signaling pathways | |
Hypertensive vascular remodeling | Reduces cardiomyocyte apoptosis, restores mitochondrial membrane potential, and decreases ROS accumulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, C.; Liao, Q.; Du, C. Pharmacological Potential and Mechanisms of Bisbenzylisoquinoline Alkaloids from Lotus Seed Embryos. Biomolecules 2025, 15, 1377. https://doi.org/10.3390/biom15101377
Liu Y, Wang C, Liao Q, Du C. Pharmacological Potential and Mechanisms of Bisbenzylisoquinoline Alkaloids from Lotus Seed Embryos. Biomolecules. 2025; 15(10):1377. https://doi.org/10.3390/biom15101377
Chicago/Turabian StyleLiu, Yan, Cong Wang, Qiong Liao, and Canwei Du. 2025. "Pharmacological Potential and Mechanisms of Bisbenzylisoquinoline Alkaloids from Lotus Seed Embryos" Biomolecules 15, no. 10: 1377. https://doi.org/10.3390/biom15101377
APA StyleLiu, Y., Wang, C., Liao, Q., & Du, C. (2025). Pharmacological Potential and Mechanisms of Bisbenzylisoquinoline Alkaloids from Lotus Seed Embryos. Biomolecules, 15(10), 1377. https://doi.org/10.3390/biom15101377