Improving Identification of Drug-Target Binding Sites Based on Structures of Targets Using Residual Graph Transformer Network
Abstract
:1. Introduction
- (1)
- RGTsite employed a residual 1D-CNN along with the pre-trained model ProtT5 to extract the local and global sequence features from the target. These sequence features were then combined with the physicochemical properties of amino acid residues to construct comprehensive feature representations for each vertex in a target chain graph. Additionally, RGTsite incorporated six-dimensional edge features. These enhancements further strengthened the representational capacity of graph.
- (2)
- Building upon the standard GTN, we introduced a residual technique to aggregate edge features into the vertex features, forming a novel residual GTN. This innovation allowed for a more thorough capture of structural information.
- (3)
- On multiple benchmark datasets, RGTsite exhibited the superior performance compared to the state-of-the-art methods, despite class imbalance, in terms of Matthews Correlation Coefficient (MCC) and F1-score (F1). Furthermore, we conducted interpretability analysis for RGTsite through the specific cases, which further validated the efficiency and effectiveness of RGTsite as a tool for drug-target binding sites identification.
2. Materials and Methods
2.1. Proposed Model
2.2. Datasets
2.3. Feature Representation
2.4. Residual Graph Transformer Network
2.5. Model Training
2.6. Evaluation Metrics
3. Results
3.1. Performance Comparison Between RGTsite and State-of-the-Art Methods
3.2. Impact of Three Types of Features That Make up the Vertex Features on the Model’s Performance
3.3. Residual 1D-CNN Helps Improve the Model’s Performance
3.4. Residual Graph Transformer Network Is Beneficial for Identifying Binding Sites
3.5. Case Study
3.6. Interpretability Analysis of RGTsite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, O.; Zhang, J.; Jin, J.; Zhang, X.; Hu, R.; Shen, C.; Cao, H.; Du, H.; Kang, Y.; Deng, Y.; et al. ResGen Is a Pocket-Aware 3D Molecular Generation Model Based on Parallel Multiscale Modelling. Nat. Mach. Intell. 2023, 5, 1020–1030. [Google Scholar] [CrossRef]
- Vemula, D.; Jayasurya, P.; Sushmitha, V.; Kumar, Y.N.; Bhandari, V. CADD, AI and ML in Drug Discovery: A Comprehensive Review. Eur. J. Pharm. Sci. 2023, 181, 106324. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Pan, X.; Shen, H.-B. A Comprehensive Survey on Protein-Ligand Binding Site Prediction. Curr. Opin. Struct. Biol. 2024, 86, 102793. [Google Scholar] [CrossRef] [PubMed]
- Jakubec, D.; Skoda, P.; Krivak, R.; Novotny, M.; Hoksza, D. PrankWeb 3: Accelerated Ligand-Binding Site Predictions for Experimental and Modelled Protein Structures. Nucleic Acids Res. 2022, 50, W593–W597. [Google Scholar] [CrossRef] [PubMed]
- McGreig, J.E.; Uri, H.; Antczak, M.; Sternberg, M.J.E.; Michaelis, M.; Wass, M.N. 3DLigandSite: Structure-Based Prediction of Protein–Ligand Binding Sites. Nucleic Acids Res. 2022, 50, W13–W20. [Google Scholar] [CrossRef] [PubMed]
- Nazem, F.; Ghasemi, F.; Fassihi, A.; Rasti, R.; Dehnavi, A.M. A GU-Net-Based Architecture Predicting Ligand–Protein-Binding Atoms. J. Med. Signals Sens. 2023, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Piazza, I.; Beaton, N.; Bruderer, R.; Knobloch, T.; Barbisan, C.; Chandat, L.; Sudau, A.; Siepe, I.; Rinner, O.; De Souza, N.; et al. A Machine Learning-Based Chemoproteomic Approach to Identify Drug Targets and Binding Sites in Complex Proteomes. Nat. Commun. 2020, 11, 4200. [Google Scholar] [CrossRef] [PubMed]
- Laurie, A.T.R.; Jackson, R.M. Q-SiteFinder: An Energy-Based Method for the Prediction of Protein-Ligand Binding Sites. Bioinformatics 2005, 21, 1908–1916. [Google Scholar] [CrossRef]
- Heo, L.; Shin, W.-H.; Lee, M.S.; Seok, C. GalaxySite: Ligand-Binding-Site Prediction by Using Molecular Docking. Nucleic Acids Res. 2014, 42, W210–W214. [Google Scholar] [CrossRef] [PubMed]
- Le Guilloux, V.; Schmidtke, P.; Tuffery, P. Fpocket: An Open Source Platform for Ligand Pocket Detection. BMC Bioinform. 2009, 10, 168. [Google Scholar] [CrossRef]
- Kochnev, Y.; Durrant, J.D. FPocketWeb: Protein Pocket Hunting in a Web Browser. J. Cheminform. 2022, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Rao, B.; Yu, X.; Bai, J.; Hu, J. E2EATP: Fast and High-Accuracy Protein–ATP Binding Residue Prediction via Protein Language Model Embedding. J. Chem. Inf. Model. 2024, 64, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Stepniewska-Dziubinska, M.M.; Zielenkiewicz, P.; Siedlecki, P. Improving Detection of Protein-Ligand Binding Sites with 3D Segmentation. Sci. Rep. 2020, 10, 5035. [Google Scholar] [CrossRef]
- Krivák, R.; Hoksza, D. P2Rank: Machine Learning Based Tool for Rapid and Accurate Prediction of Ligand Binding Sites from Protein Structure. J. Cheminform. 2018, 10, 39. [Google Scholar] [CrossRef]
- Naderi, M.; Lemoine, J.M.; Govindaraj, R.G.; Kana, O.Z.; Feinstein, W.P.; Brylinski, M. Binding Site Matching in Rational Drug Design: Algorithms and Applications. Brief. Bioinform. 2019, 20, 2167–2184. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Zhang, X.; Zhang, X.; Xu, D.; Wang, G. MCANet: Shared-Weight-Based MultiheadCrossAttention Network for Drug–Target Interaction Prediction. Brief. Bioinform. 2023, 24, bbad082. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhao, H.; Zheng, K.; Wang, J. HyperAttentionDTI: Improving Drug–Protein Interaction Prediction by Sequence-Based Deep Learning with Attention Mechanism. Bioinformatics 2022, 38, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Feng, P.; Li, S.; Lv, S.; Wen, M.; Li, Y. GNN—DDAS: Drug Discovery for Identifying Anti-schistosome Small Molecules Based on Graph Neural Network. J. Comput. Chem. 2024, 45, 2825–2834. [Google Scholar] [CrossRef]
- Ranjan, A.; Bess, A.; Alvin, C.; Mukhopadhyay, S. MDF-DTA: A Multi-Dimensional Fusion Approach for Drug-Target Binding Affinity Prediction. J. Chem. Inf. Model. 2024, 64, 4980–4990. [Google Scholar] [CrossRef] [PubMed]
- Zhong, K.-Y.; Wen, M.-L.; Meng, F.-F.; Li, X.; Jiang, B.; Zeng, X.; Li, Y. MMDTA: A Multimodal Deep Model for Drug-Target Affinity with a Hybrid Fusion Strategy. J. Chem. Inf. Model. 2024, 64, 2878–2888. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhong, K.-Y.; Meng, P.-Y.; Li, S.-J.; Lv, S.-Q.; Wen, M.-L.; Li, Y. MvGraphDTA: Multi-View-Based Graph Deep Model for Drug-Target Affinity Prediction by Introducing the Graphs and Line Graphs. BMC Biol. 2024, 22, 182. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Wang, X. Improved Prediction of Protein Ligand-Binding Sites Using Random Forests. Protein Pept. Lett. 2011, 18, 1212–1218. [Google Scholar] [CrossRef]
- Wong, G.Y.; Leung, F.H.F.; Ling, S.H. Predicting Protein-Ligand Binding Site Using Support Vector Machine with Protein Properties. IEEE/ACM Trans. Comput. Biol. Bioinf. 2013, 10, 1517–1529. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, K.; Lv, H.; Zhang, H.; Wang, S.; Huang, J. SmoPSI: Analysis and Prediction of Small Molecule Binding Sites Based on Protein Sequence Information. Comput. Math. Methods Med. 2019, 2019, 1926156. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Xu, Y.; Zhao, Y. SXGBsite: Prediction of Protein–Ligand Binding Sites Using Sequence Information and Extreme Gradient Boosting. Genes 2019, 10, 965. [Google Scholar] [CrossRef]
- Aggarwal, R.; Gupta, A.; Chelur, V.; Jawahar, C.V.; Priyakumar, U.D. DeepPocket: Ligand Binding Site Detection and Segmentation Using 3D Convolutional Neural Networks. J. Chem. Inf. Model. 2022, 62, 5069–5079. [Google Scholar] [CrossRef] [PubMed]
- Kozlovskii, I.; Popov, P. Protein–Peptide Binding Site Detection Using 3D Convolutional Neural Networks. J. Chem. Inf. Model. 2021, 61, 3814–3823. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-Binding Site Predictor Using 3D-Convolutional Neural Networks. Bioinformatics 2017, 33, 3036–3042. [Google Scholar] [CrossRef] [PubMed]
- Crampon, K.; Bourrasset, C.; Baud, S.; Steffenel, L.A. SGPocket: A New Graph Convolutional Neural Network forLigand-Protein Binding Site Prediction. Curr. Med. Chem. CMC 2024, 31. [Google Scholar] [CrossRef]
- Evteev, S.A.; Ereshchenko, A.V.; Ivanenkov, Y.A. SiteRadar: Utilizing Graph Machine Learning for Precise Mapping of Protein–Ligand-Binding Sites. J. Chem. Inf. Model. 2023, 63, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Singha, M.; Pu, L.; Srivastava, G.; Ramanujam, J.; Brylinski, M. GraphSite: Ligand Binding Site Classification with Deep Graph Learning. Biomolecules 2022, 12, 1053. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Jiang, Y.; Wei, L.; Ma, Q.; Ren, Z.; Yuan, Q.; Wei, D.-Q. DeepProSite: Structure-Aware Protein Binding Site Prediction Using ESMFold and Pretrained Language Model. Bioinformatics 2023, 39, btad718. [Google Scholar] [CrossRef]
- Kandel, J.; Tayara, H.; Chong, K.T. PUResNet: Prediction of Protein-Ligand Binding Sites Using Deep Residual Neural Network. J. Cheminform. 2021, 13, 65. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Lemoine, J.M.; Shawky, A.-E.-M.A.; Singha, M.; Pu, L.; Yang, S.; Ramanujam, J.; Brylinski, M. BionoiNet: Ligand-Binding Site Classification with off-the-Shelf Deep Neural Network. Bioinformatics 2020, 36, 3077–3083. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, P.; Tu, S.; Xu, L. RefinePocket: An Attention-Enhanced and Mask-Guided Deep Learning Approach for Protein Binding Site Prediction. IEEE/ACM Trans. Comput. Biol. Bioinf. 2023, 20, 3314–3321. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for Clustering the next-Generation Sequencing Data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, Z.; Rao, B.; Thafar, M.A.; Arif, M. Improving Protein-Protein Interaction Prediction Using Protein Language Model and Protein Network Features. Anal. Biochem. 2024, 693, 115550. [Google Scholar] [CrossRef]
- Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rehawi, G.; Wang, Y.; Jones, L.; Gibbs, T.; Feher, T.; Angerer, C.; Steinegger, M.; et al. ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 7112–7127. [Google Scholar] [CrossRef] [PubMed]
- Steinegger, M.; Mirdita, M.; Söding, J. Protein-Level Assembly Increases Protein Sequence Recovery from Metagenomic Samples Manyfold. Nat. Methods 2019, 16, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Suzek, B.E.; Wang, Y.; Huang, H.; McGarvey, P.B.; Wu, C.H.; the UniProt Consortium. UniRef Clusters: A Comprehensive and Scalable Alternative for Improving Sequence Similarity Searches. Bioinformatics 2015, 31, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Ridnik, T.; Ben-Baruch, E.; Zamir, N.; Noy, A.; Friedman, I.; Protter, M.; Zelnik-Manor, L. Asymmetric Loss For Multi-Label Classification. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; pp. 82–91. [Google Scholar]
- Chen, K.; Mizianty, M.J.; Kurgan, L. Prediction and Analysis of Nucleotide-Binding Residues Using Sequence and Sequence-Derived Structural Descriptors. Bioinformatics 2012, 28, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.-J.; Hu, J.; Yang, J.; Shen, H.-B.; Tang, J.; Yang, J.-Y. Designing Template-Free Predictor for Targeting Protein-Ligand Binding Sites with Classifier Ensemble and Spatial Clustering. IEEE/ACM Trans. Comput. Biol. Bioinf. 2013, 10, 994–1008. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, Y.; Zhang, Y.; Yu, D.-J. ATPbind: Accurate Protein–ATP Binding Site Prediction by Combining Sequence-Profiling and Structure-Based Comparisons. J. Chem. Inf. Model. 2018, 58, 501–510. [Google Scholar] [CrossRef]
- Xia, C.-Q.; Pan, X.; Shen, H.-B. Protein–Ligand Binding Residue Prediction Enhancement through Hybrid Deep Heterogeneous Learning of Sequence and Structure Data. Bioinformatics 2020, 36, 3018–3027. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zheng, L.-L.; Bai, Y.-S.; Zhang, K.-W.; Yu, D.-J.; Zhang, G.-J. Accurate Prediction of Protein-ATP Binding Residues Using Position-Specific Frequency Matrix. Anal. Biochem. 2021, 626, 114241. [Google Scholar] [CrossRef]
- Yang, J.; Roy, A.; Zhang, Y. Protein–Ligand Binding Site Recognition Using Complementary Binding-Specific Substructure Comparison and Sequence Profile Alignment. Bioinformatics 2013, 29, 2588–2595. [Google Scholar] [CrossRef]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein Structure and Function Prediction. Nat. Methods 2015, 12, 7–8. [Google Scholar] [CrossRef]
- Wu, J.-S.; Liu, Y.; Ge, F.; Yu, D.-J. Prediction of Protein-ATP Binding Residues Using Multi-View Feature Learning via Contextual-Based Co-Attention Network. Comput. Biol. Med. 2024, 172, 108227. [Google Scholar] [CrossRef] [PubMed]
Datasets | Sequences | Training Set | Test Set | Samples in Training Set | Samples in Test Set | ||||
---|---|---|---|---|---|---|---|---|---|
Positive Samples | Negative Samples | Positive-Negative Ratio | Positive Samples | Negative Samples | Positive-Negative Ratio | ||||
PATP-429 | 429 | 388 | 41 | 5657 | 142,086 | 1:25.12 | 674 | 14,159 | 1:21.01 |
PATP-1930 | 1930 | 1930 | 41 | 32,695 | 709,747 | 1:21.71 | 674 | 14,159 | 1:21.01 |
PATP-NW30 | 1964 | 1861 | 103 | 30,550 | 813,587 | 1:26.63 | 1552 | 42,034 | 1:28.08 |
Type | Feature | Description | Dimension |
---|---|---|---|
Physicochemical features | Residue type | ‘A’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘V’, ‘W’, ‘Y’, ‘X’ | 21 |
Residue molecular weight | molecular weight values | 1 | |
Residue pKa | pKa values | 1 | |
Residue pKb | pKb values | 1 | |
Residue pKx | pKx values | 1 | |
Residue hydrophobicity (pH = 2) | hydrophobicity values with pH = 2 | 1 | |
Residue hydrophobicity (pH = 7) | hydrophobicity values with pH = 7 | 1 | |
Residue max_distance | max_distance value of all atoms within the residue | 1 | |
Residue min_distance | min_distance value of all atoms within the residue | 1 | |
Residue CA-O distance | distance values | 1 | |
Residue O-N distance | distance values | 1 | |
Residue N-C distance | distance values | 1 | |
Phi angle (φ angle) | 0 or Phi values | 1 | |
Psi angle (ψ angle) | 0 or Psi values | 1 | |
Omega angle (ω angle) | 0 or Omega values | 1 | |
Chi1 angle (χ1 angle) | 0 or Chi1 values | 1 | |
Edge features | Edge connection | 0 or 1 | 1 |
Distance | distance between the atoms | 1 | |
Distance | distance between the Center Position | 1 | |
Minimum residue distance | min_distance between all residues | 1 | |
Maximum residue distance | max_distances between all residues | 1 | |
Similarity | calculating the cosine similarity of the angle between the vectors of two residues | 1 |
Model | Sen (%) | Spe (%) | Acc (%) | Pre (%) | F1 (%) | MCC |
---|---|---|---|---|---|---|
NsitePred | 46.74 | 97.70 | 95.39 | 49.22 | 47.95 | 0.456 |
TargetS | 51.63 | 98.89 | 96.47 | 68.91 | 59.03 | 0.580 |
ATPseq | 54.45 | 99.27 | 97.24 | 78.09 | 64.16 | 0.639 |
DELIA (seq) | 55.00 | N/A | N/A | 71.50 | 62.17 | 0.612 |
DeepATPseq | 57.24 | 99.22 | 97.32 | 77.71 | 65.92 | 0.655 |
E2EATP (388) | 60.39 | 98.93 | 97.18 | 72.81 | 66.02 | 0.649 |
E2EATP (1930) | 65.58 | 98.73 | 97.22 | 71.06 | 68.21 | 0.668 |
RGTsite (388) | 60.53 | 99.43 | 97.66 | 83.44 | 70.16 | 0.699 |
RGTsite (1930) | 66.02 | 99.09 | 97.59 | 77.53 | 71.31 | 0.703 |
Model | Sen (%) | Spe (%) | Acc (%) | Pre (%) | F1 (%) | MCC |
---|---|---|---|---|---|---|
COACH (ITA) | 58.16 | 98.59 | 96.76 | 66.33 | 61.98 | 0.604 |
COACH (AF2) | 68.69 | 98.05 | 96.72 | 62.65 | 65.53 | 0.639 |
ATPbind (ITA) | 62.31 | 98.85 | 97.19 | 72.04 | 66.82 | 0.656 |
ATPbind (AF2) | 59.05 | 99.19 | 97.36 | 77.58 | 67.06 | 0.664 |
DELIA (ITA) | 62.17 | 98.67 | 97.01 | 69.03 | 65.42 | 0.640 |
DELIA (AF2) | 62.46 | 98.82 | 97.17 | 71.60 | 66.72 | 0.654 |
RGTsite (388) | 60.53 | 99.43 | 97.66 | 83.44 | 70.16 | 0.699 |
RGTsite (1930) | 66.02 | 99.09 | 97.59 | 77.53 | 71.31 | 0.703 |
Model | Sen (%) | Spe (%) | Acc (%) | Pre (%) | F1 (%) | MCC |
---|---|---|---|---|---|---|
DeepATPseq | 35.76 | 99.58 | 97.31 | 75.82 | 48.60 | 0.510 |
ATPseq | 33.38 | 99.11 | 96.77 | 58.13 | 42.41 | 0.425 |
COACH (AF2) | 55.67 | 98.16 | 96.65 | 52.87 | 54.24 | 0.525 |
ATPbind (AF2) | 43.23 | 99.44 | 97.43 | 73.89 | 54.55 | 0.553 |
DELIA (AF2) | 44.59 | 98.89 | 96.96 | 59.81 | 51.09 | 0.501 |
E2EATP (NW30) | 50.64 | 99.05 | 97.32 | 66.22 | 57.39 | 0.566 |
RGTsite (NW30) | 52.00 | 99.21 | 97.53 | 70.98 | 60.02 | 0.595 |
Model | A | B | C | Sen (%) | Spe (%) | Acc (%) | Pre (%) | F1 (%) | MCC |
---|---|---|---|---|---|---|---|---|---|
Variant 1 | √ | × | × | 82.49 | 92.14 | 91.70 | 33.31 | 47.46 | 0.492 |
Variant 2 | × | √ | × | 64.09 | 99.10 | 97.51 | 77.28 | 70.07 | 0.691 |
Variant 3 | × | × | √ | 83.38 | 91.94 | 91.55 | 33.00 | 47.29 | 0.492 |
Variant 4 | √ | √ | × | 56.23 | 99.70 | 97.73 | 90.02 | 69.22 | 0.692 |
Variant 5 | √ | × | √ | 81.90 | 96.16 | 95.51 | 50.36 | 62.37 | 0.621 |
Variant 6 | × | √ | √ | 58.31 | 99.57 | 97.69 | 86.56 | 69.68 | 0.699 |
RGTsite | √ | √ | √ | 66.02 | 99.09 | 97.59 | 77.53 | 71.31 | 0.703 |
Model | Sen (%) | Spe (%) | Acc (%) | Pre (%) | F1 (%) | MCC |
---|---|---|---|---|---|---|
RNN | 61.87 | 98.32 | 96.66 | 63.66 | 62.75 | 0.610 |
1D-CNN | 54.01 | 99.81 | 97.73 | 93.09 | 68.36 | 0.700 |
RGTsite | 66.02 | 99.09 | 97.59 | 77.53 | 71.31 | 0.703 |
Model | Sen (%) | Spe (%) | Acc (%) | Pre (%) | F1 (%) | MCC |
---|---|---|---|---|---|---|
GCN | 53.12 | 98.85 | 96.77 | 68.71 | 59.92 | 0.588 |
GAT | 1.00 | 0.00 | 4.54 | 4.54 | 8.69 | N/A |
GIN | 56.53 | 98.73 | 96.81 | 67.91 | 61.70 | 0.603 |
GraphSAGE | 60.24 | 99.23 | 97.46 | 78.83 | 68.29 | 0.677 |
GTN | 57.86 | 99.53 | 97.63 | 85.34 | 68.97 | 0.692 |
RGTsite | 66.02 | 99.09 | 97.59 | 77.53 | 71.31 | 0.703 |
Target_Chain_Name | True_Label_0 | Predicted_Label_0 | True_Label_1 | Predicted_Label_1 | F1 (%) | MCC |
---|---|---|---|---|---|---|
2BEK_A | 238 | 238 | 19 | 19 | 100 | 1 |
1OJL_E | 289 | 289 | 15 | 15 | 93.33 | 0.93 |
1Y56_A | 472 | 465 | 21 | 28 | 85.71 | 0.86 |
1N5I_A | 210 | 207 | 4 | 7 | 72.73 | 0.751 |
3HAV_A | 286 | 287 | 13 | 12 | 96 | 0.959 |
1Y8Q_B | 621 | 620 | 19 | 20 | 92.31 | 0.921 |
1A49_A | 516 | 514 | 14 | 16 | 93.33 | 0.934 |
2HS0_A | 570 | 563 | 33 | 40 | 82.19 | 0.815 |
1ESQ_A | 269 | 267 | 15 | 17 | 87.5 | 0.869 |
1YID_B | 340 | 333 | 11 | 18 | 68.97 | 0.7 |
1NSF_A | 253 | 253 | 20 | 20 | 80 | 0.784 |
1QHG_A | 714 | 705 | 10 | 19 | 68.97 | 0.721 |
1H4Q_B | 462 | 461 | 15 | 16 | 77.42 | 0.767 |
1KVK_A | 379 | 375 | 16 | 20 | 83.33 | 0.831 |
1JJV_A | 194 | 194 | 12 | 12 | 91.67 | 0.912 |
1MJH_A | 142 | 141 | 20 | 21 | 92.68 | 0.917 |
3K5H_A | 383 | 383 | 20 | 20 | 95 | 0.947 |
2Z08_A | 118 | 114 | 19 | 23 | 85.71 | 0.837 |
3MEY_A | 328 | 329 | 18 | 17 | 97.14 | 0.97 |
3C5E_A | 551 | 547 | 19 | 23 | 90.48 | 0.906 |
Model | Sen (%) | Spe (%) | Acc (%) | Pre (%) | F1 (%) | MCC |
---|---|---|---|---|---|---|
RGTsite | 87.15 | 98.79 | 98.34 | 73.96 | 80.01 | 0.794 |
Model | Dataset | Acc (%) | Pre (%) | F1 (%) | MCC | AUC |
---|---|---|---|---|---|---|
DeepProSite | Pro_Test_60 | 84.2% | 50.1% | 47.0% | 0.379 | 0.813 |
RGTsite | 84.2% | 49.8% | 46.1% | 0.370 | 0.710 | |
DeepProSite | Pro_Test_315 | 80.4% | 37.8% | 45.7% | 0.355 | 0.805 |
RGTsite | 86.9% | 56.6% | 43.5% | 0.378 | 0.722 |
Target_Chain_Name | Epochs | TN | FN | FP | TP | F1 (%) | MCC |
---|---|---|---|---|---|---|---|
1OJL_E | 20 | 262 | 1 | 27 | 14 | 50 | 0.533 |
40 | 281 | 0 | 8 | 15 | 78.95 | 0.796 | |
60 | 285 | 1 | 4 | 14 | 84.85 | 0.844 | |
83 | 288 | 1 | 1 | 14 | 93.33 | 0.93 | |
2Z08_A | 20 | 83 | 1 | 35 | 18 | 50 | 0.462 |
40 | 105 | 2 | 13 | 17 | 69.39 | 0.656 | |
60 | 112 | 2 | 6 | 17 | 80.95 | 0.78 | |
83 | 113 | 1 | 5 | 18 | 85.71 | 0.837 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, S.-Q.; Zeng, X.; Su, G.-P.; Du, W.-F.; Li, Y.; Wen, M.-L. Improving Identification of Drug-Target Binding Sites Based on Structures of Targets Using Residual Graph Transformer Network. Biomolecules 2025, 15, 221. https://doi.org/10.3390/biom15020221
Lv S-Q, Zeng X, Su G-P, Du W-F, Li Y, Wen M-L. Improving Identification of Drug-Target Binding Sites Based on Structures of Targets Using Residual Graph Transformer Network. Biomolecules. 2025; 15(2):221. https://doi.org/10.3390/biom15020221
Chicago/Turabian StyleLv, Shuang-Qing, Xin Zeng, Guang-Peng Su, Wen-Feng Du, Yi Li, and Meng-Liang Wen. 2025. "Improving Identification of Drug-Target Binding Sites Based on Structures of Targets Using Residual Graph Transformer Network" Biomolecules 15, no. 2: 221. https://doi.org/10.3390/biom15020221
APA StyleLv, S.-Q., Zeng, X., Su, G.-P., Du, W.-F., Li, Y., & Wen, M.-L. (2025). Improving Identification of Drug-Target Binding Sites Based on Structures of Targets Using Residual Graph Transformer Network. Biomolecules, 15(2), 221. https://doi.org/10.3390/biom15020221