The Role of Non-Human Sialic Acid Neu5Gc-Containing Glycoconjugates in Human Tumors: A Review of Clinical and Experimental Evidence
Abstract
:1. Introduction
2. Occurrence of Neu5Gc-Containing Glycoconjugates in Human Tissues
2.1. Expression of Neu5Gc in Fetal and Normal Adult Tissues
2.2. Expression of Neu5Gc-Containing Glycoconjugates in Human Tumors
Refs. | Molecule | Tissue Type | Methods | Neu5Gc Positivity Pos/Total (%) |
---|---|---|---|---|
[41] | Neu5Gc-GM3 | Frozen tissues | MS/TLC | Breast carcinoma = 8/12 (66.7) |
[36] | Neu5Gc-GM3 | Frozen tissues | IHC with 14F7 mAb | Breast carcinoma = 18/18 (100) Cutaneous melanoma = 10/10 (100) |
[14] | Neu5Gc-containing gangliosides | Frozen tissues | TLC | Colon adenocarcinoma = 7/16 (43.7) |
[17] | Neu5Gc-GM2 | Frozen tissues | IHC | Colon adenocarcinoma = 14/16 (87.5) Breast carcinoma = 6/12 (50.0) |
[47] | Neu5Gc-GM2 | Frozen tissues | IHC with MK2-34 mAb | Germ cell tumors = 10/107 (9.3) |
[49] | Neu5Gc | Frozen tissues | IHC with Hu/Ch 2-7 and 6-1 mAbs | Hepatocellular carcinoma = 9/17 (52.9) |
[46] | Neu5Gc-containing gangliosides | Frozen tissues | TLC | Cutaneous melanoma = 6/11 (54.5) |
[45] | HD3 | Cells from fresh tissues | MIT/TLC | Gastric adenocarcinoma = 9/16 (56.3) Breast carcinoma = 8/14 (57.1) Colorectal tumor = 3/12 (25.0) Leukemia = 5/10 (50.0) |
[51] | Neu5Gc-GM3 | Frozen tissues | IHC with 14F7 mAb | Lung carcinoma = 18/18 (100) |
Refs | Molecule | Methods | Neu5Gc Positivity. Pos/Total (%) |
---|---|---|---|
[6] | Neu5Gc-containing gangliosides | IHC with GMR8 mAb | NSCLC = 86/93 (93.5) |
[33] | Neu5Gc-containing gangliosides | IHC with P3 mAb | Breast carcinoma = 12/12 (100) |
[48] | Neu5Gc | IHC with anti-HD Ab | Cutaneous melanoma = 7/11 (63.6) |
[37] | Neu5Gc-GM3 | IHC with 14F7 mAb | Esophageal tumors = 5/15 (33.3) Gastric adenocarcinoma = 12/12 (100) Colon adenocarcinoma = 12/12 (100) Pancreatic adenocarcinoma = 11/11 (100) Hepatocellular carcinoma = 13/14 (92.9) |
[54] | Neu5Gc-GM3 | IHC with 14F7 mAb | Basocellular carcinoma = 2/13 (15.4) Cutaneous melanoma = 28/28 (100) |
[35] | O-linked mucin-containing Neu5Gc | IHC with 3E1-2 mAb | Breast carcinoma = 37/37 (100) Lung carcinoma = 7/11 (63.6) |
[38] | Neu5Gc-GM3 | IHC with 14F7 mAb | Renal cell carcinoma = 11/36 (30.5) Prostatic adenocarcinoma = 17/20 (85) |
[64] | Neu5Gc-GM3 | IHC with 14F7 mAb | Lymphoma = 33/37 (89.2) Cutaneous melanoma (LNM) = 15/17 (88.2) Breast carcinoma (LNM) = 14/14 (100) Colon adenocarcinoma (LNM) = 9/12 (75.0) |
[65] | Neu5Gc-GM3 | IHC with 14F7 mAb | Nasopharyngeal carcinoma = 13/14 (92.8) |
[50] | Neu5Gc-GM3 | IHC with 14F7 mAb | NSCLC = 84/90 (93.3) |
[56] | Neu5Gc-GM3 | IHC with 14F7 mAb | NSCLC = 155/165 (93.9) |
[51] | Neu5Gc-containing ganglioside | IHC with P3 mAb | Lung carcinoma = 35/36 (97.2) |
[23] | Neu5Gc-GM3 | IHC with 14F7 mAb | Colon adenocarcinoma = 50/50 (100) |
[24] | Neu5Gc-GM3 | IHC with 14F7 mAb | Sarcoma = 50/50 (100) |
[16] | Neu5Gc-GM3 | IHC with 14F7 mAb | Astrocytoma * = 10/19 (52.6) Sarcoma = 25/30 (83.3) Thyroid carcinoma = 23/25 (92.0) |
[52] | Neu5Gc-GM3 | IHC with 14F7 mAb | Breast carcinoma = 126/126 (100) |
[34] | Neu5Gc-GM3 | IHC with 14F7 mAb | Wilms tumor * = 22/25 (88.0) |
[59] | Neu5Gc-GM3 | IHC with 14F7 mAb | Neuroectodermal tumor * = 23/27 (85.2) |
[60] | Neu5Gc-GM3 | IHC with 14F7 mAb | Retinoblastoma * = 21/21 (100) |
[55] | Neu5Gc-GM3 | IHC with 14F7 mAb | Oral mucosal melanoma = 37/44 (84.1) |
[58] | Neu5Gc-GM3 | IHC with 14F7 mAb | Cervical carcinoma = 28/29 (96.5) Astrocytoma = 24/45 (53.3) |
3. Potential Mechanisms Implicated in Neu5Gc Expression in Human Tissues
4. Contribution of Neu5Gc to Tumor Progression
5. Role of Neu5Gc-GM3 in Tumor Biology: A Case Study
5.1. Neu5Gc-GM3 Expression and Tumor Aggressiveness
5.2. Neu5Gc-GM3 Expression and Immune Response
5.3. Antitumor Activity of Therapeutic Strategies Targeting Neu5Gc-GM3
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Traving, C.; Schauer, R. Structure, function and metabolism of sialic acids. Cell Mol. Life Sci. 1998, 54, 1330–1349. [Google Scholar] [CrossRef] [PubMed]
- Angata, T.; Varki, A. Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective. Chem. Rev. 2002, 102, 439–469. [Google Scholar] [CrossRef]
- Pinho, S.S.; Reis, C.A. Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer 2015, 15, 540–555. [Google Scholar] [CrossRef]
- Muchmore, E.A.; Milewski, M.; Varki, A.; Diaz, S. Biosynthesis of N-glycolyneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool. J. Biol. Chem. 1989, 264, 20216–20223. [Google Scholar] [CrossRef] [PubMed]
- Collins, B.E.; Yang, L.J.; Mukhopadhyay, G.; Filbin, M.T.; Kiso, M.; Hasegawa, A.; Schnaar, R.L. Sialic acid specificity of myelin-associated glycoprotein binding. J. Biol. Chem. 1997, 272, 1248–1255. [Google Scholar] [CrossRef]
- Hayashi, N.; Chiba, H.; Kuronuma, K.; Go, S.; Hasegawa, Y.; Takahashi, M.; Gasa, S.; Watanabe, A.; Hasegawa, T.; Kuroki, Y.; et al. Detection of N-glycolyated gangliosides in non-small-cell lung cancer using GMR8 monoclonal antibody. Cancer Sci. 2013, 104, 43–47. [Google Scholar] [CrossRef]
- Rodrigues, E.; Macauley, M.S. Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities. Cancers 2018, 10, 207. [Google Scholar] [CrossRef] [PubMed]
- Varki, A.; Schauer, R. Sialic acids. In Essentials of Glycobiology, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2009. [Google Scholar]
- Hugonnet, M.; Singh, P.; Haas, Q.; von Gunten, S. The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Front. Immunol. 2021, 12, 799861. [Google Scholar] [CrossRef]
- Sakuma, K.; Aoki, M.; Kannagi, R. Transcription factors c-Myc and CDX2 mediate E-selectin ligand expression in colon cancer cells undergoing EGF/bFGF-induced epithelial-mesenchymal transition. Proc. Natl. Acad. Sci. USA 2012, 109, 7776–7781. [Google Scholar] [CrossRef] [PubMed]
- Seales, E.C.; Jurado, G.A.; Singhal, A.; Bellis, S.L. Ras oncogene directs expression of a differentially sialylated, functionally altered beta1 integrin. Oncogene 2003, 22, 7137–7145. [Google Scholar] [CrossRef] [PubMed]
- Koike, T.; Kimura, N.; Miyazaki, K.; Yabuta, T.; Kumamoto, K.; Takenoshita, S.; Chen, J.; Kobayashi, M.; Hosokawa, M.; Taniguchi, A.; et al. Hypoxia induces adhesion molecules on cancer cells: A missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci. USA 2004, 101, 8132–8137. [Google Scholar] [CrossRef] [PubMed]
- Irie, A.; Koyama, S.; Kozutsumi, Y.; Kawasaki, T.; Suzuki, A. The molecular basis for the absence of N-glycolylneuraminic acid in humans. J. Biol. Chem. 1998, 273, 15866–15871. [Google Scholar] [CrossRef]
- Higashi, H.; Hirabayashi, Y.; Fukui, Y.; Naiki, M.; Matsumoto, M.; Ueda, S.; Kato, S. Characterization of N-glycolylneuraminic acid-containing gangliosides as tumor-associated Hanganutziu-Deicher antigen in human colon cancer. Cancer Res. 1985, 45, 3796–3802. [Google Scholar]
- Watarai, S.; Kushi, Y.; Shigeto, R.; Misawa, N.; Eishi, Y.; Handa, S.; Yasuda, T. Production of monoclonal antibodies directed to Hanganutziu-Deicher active gangliosides, N-glycolylneuraminic acid-containing gangliosides. J. Biochem. 1995, 117, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Quintana, Y.; Blanco, D.; Cedeño, M.; Rengifo, C.E.; Frómeta, M.; Ríos, M.; Rengifo, E.; Carr, A. Tissue Reactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Tumors of Neuroectodermal, Mesodermal, and Epithelial Origin. J. Biomark. 2013, 2013, 602417. [Google Scholar] [CrossRef]
- Yin, J.; Hashimoto, A.; Izawa, M.; Miyazaki, K.; Chen, G.Y.; Takematsu, H.; Kozutsumi, Y.; Suzuki, A.; Furuhata, K.; Cheng, F.L.; et al. Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non-human sialic acid on human cancer cells. Cancer Res. 2006, 66, 2937–2945. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, P.A.; Sandvik, J.A.; Jeppesen Edin, N.F.; Krengel, U. Hypothesis: Hypoxia induces de novo synthesis of NeuGc gangliosides in humans through CMAH domain substitute. Biochem. Biophys. Res. Commun. 2018, 495, 1562–1566. [Google Scholar] [CrossRef] [PubMed]
- Dorvignit, D.; Boligan, K.F.; Relova-Hernández, E.; Clavell, M.; López, A.; Labrada, M.; Simon, H.U.; López-Requena, A.; Mesa, C.; von Gunten, S. Antitumor effects of the GM3(Neu5Gc) ganglioside-specific humanized antibody 14F7hT against Cmah-transfected cancer cells. Sci. Rep. 2019, 9, 9921. [Google Scholar] [CrossRef]
- Malykh, Y.N.; Schauer, R.; Shaw, L. N-Glycolylneuraminic acid in human tumours. Biochimie 2001, 83, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Gabri, M.R.; Otero, L.L.; Gomez, D.E.; Alonso, D.F. Exogenous incorporation of neugc-rich mucin augments n-glycolyl sialic acid content and promotes malignant phenotype in mouse tumor cell lines. J. Exp. Clin. Cancer Res. 2009, 28, 146. [Google Scholar] [CrossRef]
- de Leòn, J.; Fernández, A.; Mesa, C.; Clavel, M.; Fernández, L.E. Role of tumour-associated N-glycolylated variant of GM3 ganglioside in cancer progression: Effect over CD4 expression on T cells. Cancer Immunol. Immunother. 2006, 55, 443–450. [Google Scholar] [CrossRef]
- Lahera, T.; Calvo, A.; Torres, G.; Rengifo, C.E.; Quintero, S.; Arango Mdel, C.; Danta, D.; Vázquez, J.M.; Escobar, X.; Carr, A. Prognostic Role of 14F7 Mab Immunoreactivity against N-Glycolyl GM3 Ganglioside in Colon Cancer. J. Oncol. 2014, 2014, 482301. [Google Scholar] [CrossRef]
- Pilco-Janeta, D.; De la Cruz Puebla, M.; Soriano, J.; Osorio, M.; Caballero, I.; Pérez, A.C.; Savon, L.; Cremades, N.; Blanco, R.; Carr, A. Aberrant expression of N-glycolyl GM3 ganglioside is associated with the aggressive biological behavior of human sarcomas. BMC Cancer 2019, 19, 556. [Google Scholar] [CrossRef]
- Samraj, A.N.; Pearce, O.M.; Läubli, H.; Crittenden, A.N.; Bergfeld, A.K.; Banda, K.; Gregg, C.J.; Bingman, A.E.; Secrest, P.; Diaz, S.L.; et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc. Natl. Acad. Sci. USA 2015, 112, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, M.; Padler-Karavani, V.; Varki, N.M.; Varki, A. Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc. Natl. Acad. Sci. USA 2008, 105, 18936–18941. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, A.; Hernandez, J.; Ortiz, R.; Cepeda, M.; Perez, K.; Car, A.; Viada, C.; Toledo, D.; Guerra, P.P.; García, E.; et al. NGlycolylGM3/VSSP Vaccine in Metastatic Breast Cancer Patients: Results of Phase I/IIa Clinical Trial. Breast Cancer (Auckl) 2012, 6, 151–157. [Google Scholar] [CrossRef]
- Osorio, M.; Gracia, E.; Reigosa, E.; Hernandez, J.; de la Torre, A.; Saurez, G.; Perez, K.; Viada, C.; Cepeda, M.; Carr, A.; et al. Effect of vaccination with N-glycolyl GM3/VSSP vaccine by subcutaneous injection in patients with advanced cutaneous melanoma. Cancer Manag. Res. 2012, 4, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, S.; Valdés-Zayas, A.; Santiesteban, E.R.; Flores, Y.I.; Areces, F.; Hernández, M.; Viada, C.E.; Mendoza, I.C.; Guerra, P.P.; García, E.; et al. A randomized, multicenter, placebo-controlled clinical trial of racotumomab-alum vaccine as switch maintenance therapy in advanced non-small cell lung cancer patients. Clin. Cancer Res. 2014, 20, 3660–3671. [Google Scholar] [CrossRef]
- Tangvoranuntakul, P.; Gagneux, P.; Diaz, S.; Bardor, M.; Varki, N.; Varki, A.; Muchmore, E. Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc. Natl. Acad. Sci. USA 2003, 100, 12045–12050. [Google Scholar] [CrossRef] [PubMed]
- Diaz, S.L.; Padler-Karavani, V.; Ghaderi, D.; Hurtado-Ziola, N.; Yu, H.; Chen, X.; Brinkman-Van der Linden, E.C.; Varki, A.; Varki, N.M. Sensitive and specific detection of the non-human sialic Acid N-glycolylneuraminic acid in human tissues and biotherapeutic products. PLoS ONE 2009, 4, e4241. [Google Scholar] [CrossRef] [PubMed]
- Hirabayashi, Y.; Kasakura, H.; Matsumoto, M.; Higashi, H.; Kato, S.; Kasai, N.; Naiki, M. Specific expression of unusual GM2 ganglioside with Hanganutziu-Deicher antigen activity on human colon cancers. Jpn. J. Cancer Res. 1987, 78, 251–260. [Google Scholar]
- Vázquez, A.M.; Alfonso, M.; Lanne, B.; Karlsson, K.A.; Carr, A.; Barroso, O.; Fernández, L.E.; Rengifo, E.; Lanio, M.E.; Alvarez, C.; et al. Generation of a murine monoclonal antibody specific for N-glycolylneuraminic acid-containing gangliosides that also recognizes sulfated glycolipids. Hybridoma 1995, 14, 551–556. [Google Scholar] [CrossRef]
- Scursoni, A.M.; Galluzzo, L.; Camarero, S.; Pozzo, N.; Gabri, M.R.; de Acosta, C.M.; Vázquez, A.M.; Alonso, D.F.; de Dávila, M.T. Detection and characterization of N-glycolyated gangliosides in Wilms tumor by immunohistochemistry. Pediatr. Dev. Pathol. 2010, 13, 18–23. [Google Scholar] [CrossRef]
- Stacker, S.A.; Thompson, C.; Riglar, C.; McKenzie, I.F. A new breast carcinoma antigen defined by a monoclonal antibody. J. Natl. Cancer Inst. 1985, 75, 801–811. [Google Scholar] [CrossRef]
- Carr, A.; Mullet, A.; Mazorra, Z.; Vázquez, A.M.; Alfonso, M.; Mesa, C.; Rengifo, E.; Pérez, R.; Fernández, L.E. A mouse IgG1 monoclonal antibody specific for N-glycolyl GM3 ganglioside recognized breast and melanoma tumors. Hybridoma 2000, 19, 241–247. [Google Scholar] [CrossRef]
- Blanco, R.; Rengifo, E.; Cedeño, M.; Rengifo, C.E.; Alonso, D.F.; Carr, A. Immunoreactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Epithelial Malignant Tumors from Digestive System. ISRN Gastroenterol. 2011, 2011, 645641. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Cedeño, M.; Escobar, X.; Blanco, D.; Rengifo, C.E.; Frómeta, M.; Alvarez, R.I.; Rengifo, E.; Carr, A. Immunorecognition of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Some Normal and Malignant Tissues from Genitourinary System. Int. Sch. Res. Not. 2011, 2011, 953803. [Google Scholar] [CrossRef]
- Nishimaki, T.; Kano, K.; Milgrom, F. Hanganutziu-Deicher antigen and antibody in pathologic sera and tissues. J. Immunol. 1979, 122, 2314–2318. [Google Scholar] [CrossRef]
- Kawai, T.; Kato, A.; Higashi, H.; Kato, S.; Naiki, M. Quantitative determination of N-glycolylneuraminic acid expression in human cancerous tissues and avian lymphoma cell lines as a tumor-associated sialic acid by gas chromatography-mass spectrometry. Cancer Res. 1991, 51, 1242–1246. [Google Scholar]
- Marquina, G.; Waki, H.; Fernandez, L.E.; Kon, K.; Carr, A.; Valiente, O.; Perez, R.; Ando, S. Gangliosides expressed in human breast cancer. Cancer Res. 1996, 56, 5165–5171. [Google Scholar]
- Nowak, J.A.; Jain, N.K.; Stinson, M.W.; Merrick, J.M. Interaction of bovine erythrocyte N-glycolylneuraminic acid-containing gangliosides and glycoproteins with a human Hanganutziu-Deicher serum. Mol. Immunol. 1986, 23, 693–700. [Google Scholar] [CrossRef]
- Merrick, J.M.; Zadarlik, K.; Milgrom, F. Characterization of the Hanganutziu-Deicher (serum-sickness) antigen as gangliosides containing n-glycolylneuraminic acid. Int. Arch. Allergy Appl. Immunol. 1978, 57, 477–480. [Google Scholar] [CrossRef]
- Devine, P.L.; Clark, B.A.; Birrell, G.W.; Layton, G.T.; Ward, B.G.; Alewood, P.F.; McKenzie, I.F. The breast tumor-associated epitope defined by monoclonal antibody 3E1.2 is an O-linked mucin carbohydrate containing N-glycolylneuraminic acid. Cancer Res. 1991, 51, 5826–5836. [Google Scholar] [PubMed]
- Higashi, H.; Nishi, Y.; Fukui, Y.; Ikuta, K.; Ueda, S.; Kato, S.; Fujita, M.; Nakano, Y.; Taguchi, T.; Sakai, S.; et al. Tumor-associated expression of glycosphingolipid Hanganutziu-Deicher antigen in human cancers. Gan 1984, 75, 1025–1029. [Google Scholar] [PubMed]
- Hirabayashi, Y.; Higashi, H.; Kato, S.; Taniguchi, M.; Matsumoto, M. Occurrence of tumor-associated ganglioside antigens with Hanganutziu-Deicher antigenic activity on human melanomas. Jpn. J. Cancer Res. 1987, 78, 614–620. [Google Scholar]
- Miyake, M.; Hashimoto, K.; Ito, M.; Ogawa, O.; Arai, E.; Hitomi, S.; Kannagi, R. The abnormal occurrence and the differentiation-dependent distribution of N-acetyl and N-glycolyl species of the ganglioside GM2 in human germ cell tumors. A study with specific monoclonal antibodies. Cancer 1990, 65, 499–505. [Google Scholar] [CrossRef]
- Saida, T.; Ikegawa, S.; Takizawa, Y.; Kawachi, S. Immunohistochemical detection of heterophile Hanganutziu-Deicher antigen in human malignant melanoma. Arch. Dermatol. Res. 1990, 282, 179–182. [Google Scholar] [CrossRef]
- Koda, T.; Aosasa, M.; Asaoka, H.; Nakaba, H.; Matsuda, H. Application of tyramide signal amplification for detection of N-glycolylneuraminic acid in human hepatocellular carcinoma. Int. J. Clin. Oncol. 2003, 8, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Domínguez, E.; Morales, O.; Blanco, D.; Martínez, D.; Rengifo, C.E.; Viada, C.; Cedeño, M.; Rengifo, E.; Carr, A. Prognostic Significance of N-Glycolyl GM3 Ganglioside Expression in Non-Small Cell Lung Carcinoma Patients: New Evidences. Patholog Res. Int. 2015, 2015, 132326. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Rengifo, C.; Cedeño, M.; Frómeta, M.; Hernández, T.; Carr, A.; Rengifo, E. Immunodetection of n-glycolyl gm3 ganglioside in lung carcinoma by immunohistochemistry: A technical study using frozen and formalin-fixed and paraffin-embedded tissues. Acta Microsc. 2014, 23, 199–213. [Google Scholar]
- Rubio-Hernández, M.C.; Estévez-García, A.; Calvo-Pérez, A.; Blanco-Santana, D.; Diaz-Prado, Y.; Lamadrid-García, J.; Lorenzo-Luaces, P.; Viada-González, C.; Blanco-Santana, R.; Fernández, L.E. Aberrant Expression of N-Glycolyl GM3 Ganglioside Correlates with Nuclear Grade in Stage II/III Resectable Estrogen and Progesterone Receptors Positive Breast Cancer. J. Mol. Biomark. Diagn. 2019, 10, 1–6. [Google Scholar]
- Blanco, R.; Blanco, D.; Escobar, X.; Rengifo, C.E.; Cedeño, M.; Alvarez, R.I.; Rengifo, E.; Carr, A. Immunoreaction of 14F7 Mab raised against N-glycolyl GM3 ganglioside correlates with high histological grade in some tumors of neuroectodermal and epithelial lineage. J. Mol. Biomark. Diagn. 2015, 6, 1. [Google Scholar] [CrossRef]
- Blanco, R.; Rengifo, E.; Rengifo, C.E.; Cedeño, M.; Frómeta, M.; Carr, A. Immunohistochemical Reactivity of the 14F7 Monoclonal Antibody Raised against N-Glycolyl GM3 Ganglioside in Some Benign and Malignant Skin Neoplasms. ISRN Dermatol. 2011, 2011, 848909. [Google Scholar] [CrossRef]
- Zhong, Y.; Wu, Y.; Li, C.; Tang, J.; Wang, X.; Ren, G.; Carr, A.; Pérez, R.; Guo, W. N-Glycolyl GM3 ganglioside immunoexpression in oral mucosal melanomas of Chinese. Oral. Dis. 2012, 18, 741–747. [Google Scholar] [CrossRef]
- van Cruijsen, H.; Ruiz, M.G.; van der Valk, P.; de Gruijl, T.D.; Giaccone, G. Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer. BMC Cancer 2009, 9, 180. [Google Scholar] [CrossRef]
- Palomo, A.G.; Santana, R.B.; Pérez, X.E.; Santana, D.B.; Gabri, M.R.; Monzon, K.L.; Pérez, A.C. Frequent co-expression of EGFR and NeuGcGM3 ganglioside in cancer: It’s potential therapeutic implications. Clin. Exp. Metastasis 2016, 33, 717–725. [Google Scholar] [CrossRef]
- Blanco, R.; Cedeno, M.; Rengifo, C.E.; Blanco, D.; Frometa, M.; Domínguez, E.; Ramos-Suzarte, M.; Carr, A.; Rengifo, E. Double Expression of Epidermal Growth Factor Receptor and N-Glycolyl GM3 Ganglioside in Human Malignant Tumors. A Study Four Differ. Clin. Scenar. 2017, 2, 6. [Google Scholar]
- Scursoni, A.M.; Galluzzo, L.; Camarero, S.; Lopez, J.; Lubieniecki, F.; Sampor, C.; Segatori, V.I.; Gabri, M.R.; Alonso, D.F.; Chantada, G.; et al. Detection of N-glycolyl GM3 ganglioside in neuroectodermal tumors by immunohistochemistry: An attractive vaccine target for aggressive pediatric cancer. Clin. Dev. Immunol. 2011, 2011, 245181. [Google Scholar] [CrossRef]
- Torbidoni, A.V.; Scursoni, A.; Camarero, S.; Segatori, V.; Gabri, M.; Alonso, D.; Chantada, G.; de Dávila, M.T. Immunoreactivity of the 14F7 Mab raised against N-Glycolyl GM3 Ganglioside in retinoblastoma tumours. Acta Ophthalmol. 2015, 93, e294–e300. [Google Scholar] [CrossRef]
- Manni, M.; Mantuano, N.R.; Zingg, A.; Kappos, E.A.; Behrens, A.J.; Back, J.; Follador, R.; Faridmoayer, A.; Läubli, H. Detection of N-glycolyl-neuraminic acid-containing glycolipids in human skin. Front. Immunol. 2023, 14, 1291292. [Google Scholar] [CrossRef]
- Wang, F.; Xie, B.; Wang, B.; Troy, F.A., 2nd. LC-MS/MS glycomic analyses of free and conjugated forms of the sialic acids, Neu5Ac, Neu5Gc and KDN in human throat cancers. Glycobiology 2015, 25, 1362–1374. [Google Scholar] [CrossRef]
- Hanisch, F.G.; Stadie, T.R.; Deutzmann, F.; Peter-Katalinic, J. MUC1 glycoforms in breast cancer--cell line T47D as a model for carcinoma-associated alterations of 0-glycosylation. Eur. J. Biochem. 1996, 236, 318–327. [Google Scholar] [CrossRef]
- Blanco, R.; Blanco, D.; Quintana, Y.; Escobar, X.; Rengifo, C.E.; Osorio, M.; Gutiérrez, Z.; Lamadrid, J.; Cedeño, M.; Frómeta, M.; et al. Immunoreactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Primary Lymphoid Tumors and Lymph Node Metastasis. Patholog Res. Int. 2013, 2013, 920972. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Rengifo, C.E.; Cedeño, M.; Frómeta, M.; Rengifo, E.; Carr, A. Immunoreactivity of the 14F7 Mab (Raised against N-Glycolyl GM3 Ganglioside) as a Positive Prognostic Factor in Non-Small-Cell Lung Cancer. Patholog Res. Int. 2012, 2012, 235418. [Google Scholar] [CrossRef]
- Chou, H.H.; Takematsu, H.; Diaz, S.; Iber, J.; Nickerson, E.; Wright, K.L.; Muchmore, E.A.; Nelson, D.L.; Warren, S.T.; Varki, A. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc. Natl. Acad. Sci. USA 1998, 95, 11751–11756. [Google Scholar] [CrossRef]
- Chou, H.H.; Hayakawa, T.; Diaz, S.; Krings, M.; Indriati, E.; Leakey, M.; Paabo, S.; Satta, Y.; Takahata, N.; Varki, A. Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc. Natl. Acad. Sci. USA 2002, 99, 11736–11741. [Google Scholar] [CrossRef]
- Bardor, M.; Nguyen, D.H.; Diaz, S.; Varki, A. Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J. Biol. Chem. 2005, 280, 4228–4237. [Google Scholar] [CrossRef]
- Varki, A. N-glycolylneuraminic acid deficiency in humans. Biochimie 2001, 83, 615–622. [Google Scholar] [CrossRef]
- Badr, H.A.; AlSadek, D.M.; Mathew, M.P.; Li, C.Z.; Djansugurova, L.B.; Yarema, K.J.; Ahmed, H. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation. Biomaterials 2015, 70, 23–36. [Google Scholar] [CrossRef]
- Kannagi, R. Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression-The Warburg effect revisited. Glycoconj. J. 2004, 20, 353–364. [Google Scholar] [CrossRef]
- Shewell, L.K.; Day, C.J.; Kutasovic, J.R.; Abrahams, J.L.; Wang, J.; Poole, J.; Niland, C.; Ferguson, K.; Saunus, J.M.; Lakhani, S.R.; et al. N-glycolylneuraminic acid serum biomarker levels are elevated in breast cancer patients at all stages of disease. BMC Cancer 2022, 22, 334. [Google Scholar] [CrossRef]
- Shewell, L.K.; Day, C.J.; Hippolite, T.; De Bisscop, X.; Paton, J.C.; Paton, A.W.; Jennings, M.P. Serum Neu5Gc biomarkers are elevated in primary cutaneous melanoma. Biochem. Biophys. Res. Commun. 2023, 642, 162–166. [Google Scholar] [CrossRef]
- Shewell, L.K.; Wang, J.J.; Paton, J.C.; Paton, A.W.; Day, C.J.; Jennings, M.P. Detection of N-glycolylneuraminic acid biomarkers in sera from patients with ovarian cancer using an engineered N-glycolylneuraminic acid-specific lectin SubB2M. Biochem. Biophys. Res. Commun. 2018, 507, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Wang, J.; Brockhausen, I.; Gao, Y. The generation of 5-N-glycolylneuraminic acid as a consequence of high levels of reactive oxygen species. Glycoconj. J. 2023, 40, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, H.; Sasabe, M.; Miyazaki, R.; Matsuda, H.; Fukai, F.; Hanada, K.; Hirano, H.; Takasaki, S. The analysis of N-glycolylneuraminic acid(NeuGc) of hepatoma tissue and K562 cell ferritins using HPLC and mass spectrometry. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2006, 82, 181–187. [Google Scholar] [CrossRef]
- Kawashima, I.; Ozawa, H.; Kotani, M.; Suzuki, M.; Kawano, T.; Gomibuchi, M.; Tai, T. Characterization of ganglioside expression in human melanoma cells: Immunological and biochemical analysis. J. Biochem. 1993, 114, 186–193. [Google Scholar] [CrossRef]
- Ecsedy, J.A.; Holthaus, K.A.; Yohe, H.C.; Seyfried, T.N. Expression of mouse sialic acid on gangliosides of a human glioma grown as a xenograft in SCID mice. J. Neurochem. 1999, 73, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Labrada, M.; Clavell, M.; Bebelagua, Y.; León, J.; Alonso, D.F.; Gabri, M.R.; Veloso, R.C.; Vérez, V.; Fernández, L.E. Direct validation of NGcGM3 ganglioside as a new target for cancer immunotherapy. Expert. Opin. Biol. Ther. 2010, 10, 153–162. [Google Scholar] [CrossRef]
- Zhang, L.C.; Liu, Y.N.; La, X.Q.; Yan, S.N.; Chen, Y.; Liang, J.Y.; Li, Z.Y. The potential mechanism of Neu5Gc inducing colorectal cancer based on network pharmacology and experimental validation. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 705–718. [Google Scholar] [CrossRef]
- Segatori, V.I.; Vazquez, A.M.; Gomez, D.E.; Gabri, M.R.; Alonso, D.F. Preclinical evaluation of racotumomab, an anti-idiotype monoclonal antibody to N-glycolyl-containing gangliosides, with or without chemotherapy in a mouse model of non-small cell lung cancer. Front. Oncol. 2012, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Yang, P.; Zhang, A.; Li, J.; Han, Z.; Yang, S.; Jimu, Y.; Kong, F.; Pan, D.; Long, K.; et al. Overdose intake of Neu5Gc triggers colorectal inflammation and alters liver metabolism. Food Agric. Immunol. 2023, 34, 2281274. [Google Scholar] [CrossRef]
- de León, J.; Fernández, A.; Clavell, M.; Labrada, M.; Bebelagua, Y.; Mesa, C.; Fernández, L.E. Differential influence of the tumour-specific non-human sialic acid containing GM3 ganglioside on CD4+CD25- effector and naturally occurring CD4+CD25+ regulatory T cells function. Int. Immunol. 2008, 20, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Müthing, J.; Steuer, H.; Peter-Katalinić, J.; Marx, U.; Bethke, U.; Neumann, U.; Lehmann, J. Expression of gangliosides GM3 (NeuAc) and GM3 (NeuGc) in myelomas and hybridomas of mouse, rat, and human origin. J. Biochem. 1994, 116, 64–73. [Google Scholar] [CrossRef]
- Casadesús, A.V.; Fernández-Marrero, Y.; Clavell, M.; Gómez, J.A.; Hernández, T.; Moreno, E.; López-Requena, A. A shift from N-glycolyl- to N-acetyl-sialic acid in the GM3 ganglioside impairs tumor development in mouse lymphocytic leukemia cells. Glycoconj. J. 2013, 30, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Segatori, V.I.; Otero, L.L.; Fernandez, L.E.; Gomez, D.E.; Alonso, D.F.; Gabri, M.R. Antitumor protection by NGcGM3/VSSP vaccine against transfected B16 mouse melanoma cells overexpressing N-glycolylated gangliosides. In Vivo 2012, 26, 609–617. [Google Scholar] [PubMed]
- Yin, J.; Miyazaki, K.; Shaner, R.L.; Merrill, A.H., Jr.; Kannagi, R. Altered sphingolipid metabolism induced by tumor hypoxia—New vistas in glycolipid tumor markers. FEBS Lett. 2010, 584, 1872–1878. [Google Scholar] [CrossRef]
- Gallo, O.; Franchi, A.; Magnelli, L.; Sardi, I.; Vannacci, A.; Boddi, V.; Chiarugi, V.; Masini, E. Cyclooxygenase-2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor angiogenesis and metastasis. Neoplasia 2001, 3, 53–61. [Google Scholar] [CrossRef]
- Gupta, R.A.; Dubois, R.N. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat. Rev. Cancer 2001, 1, 11–21. [Google Scholar] [CrossRef]
- Padler-Karavani, V.; Yu, H.; Cao, H.; Chokhawala, H.; Karp, F.; Varki, N.; Chen, X.; Varki, A. Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: Potential implications for disease. Glycobiology 2008, 18, 818–830. [Google Scholar] [CrossRef]
- Pham, T.; Gregg, C.J.; Karp, F.; Chow, R.; Padler-Karavani, V.; Cao, H.; Chen, X.; Witztum, J.L.; Varki, N.M.; Varki, A. Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium. Blood 2009, 114, 5225–5235. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Fezeu, L.K.; Leviatan Ben-Arye, S.; Yehuda, S.; Reuven, E.M.; Szabo de Edelenyi, F.; Fellah-Hebia, I.; Le Tourneau, T.; Imbert-Marcille, B.M.; Drouet, E.B.; et al. Association between Neu5Gc carbohydrate and serum antibodies against it provides the molecular link to cancer: French NutriNet-Santé study. BMC Med. 2020, 18, 262. [Google Scholar] [CrossRef] [PubMed]
- Mulens, V.; de la Torre, A.; Marinello, P.; Rodríguez, R.; Cardoso, J.; Díaz, R.; O’Farrill, M.; Macias, A.; Viada, C.; Saurez, G.; et al. Immunogenicity and safety of a NeuGcGM3 based cancer vaccine: Results from a controlled study in metastatic breast cancer patients. Hum. Vaccin. 2010, 6, 736–744. [Google Scholar] [CrossRef]
- Valdes-Zayas, A.; Gonzalez, Z.; Mulens, V.; Vega, A.M.; Perez, K.; Lorenzo-Luaces, P.; Rubio, M.C.; Estevez, A.; Curbelo, I.; Fernandez, L.E.; et al. Immunologic Response Elicited in Breast Cancer Patients Receiving a NeuGcGM3-based Vaccine as Adjuvant Therapy. J. Immunother. 2017, 40, 289–301. [Google Scholar] [CrossRef]
- Sanchez, L.; Muchene, L.; Lorenzo-Luaces, P.; Viada, C.; Rodriguez, P.C.; Alfonso, S.; Crombet, T.; Neninger, E.; Shkedy, Z.; Lage, A. Differential effects of two therapeutic cancer vaccines on short- and long-term survival populations among patients with advanced lung cancer. Semin. Oncol. 2018, 45, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Mori, I.; Sakurai, T.; Yoshimura, G.; Suzuma, T.; Nakamura, Y.; Nakamura, M.; Taniguchi, E.; Tamaki, T.; Umemura, T.; et al. Correlation between nuclear grade and biological prognostic variables in invasive breast cancer. Breast Cancer 2001, 8, 105–110. [Google Scholar] [CrossRef]
- Aguiar, F.N.; Mendes, H.N.; Bacchi, C.E.; Carvalho, F.M. Comparison of nuclear grade and immunohistochemical features in situ and invasive components of ductal carcinoma of breast. Rev. Bras. Ginecol. Obstet. 2013, 35, 97–102. [Google Scholar] [CrossRef]
- McKallip, R.; Li, R.; Ladisch, S. Tumor gangliosides inhibit the tumor-specific immune response. J. Immunol. 1999, 163, 3718–3726. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Li, R.; Ladisch, S. Natural forms of shed tumor gangliosides. Biochim. Biophys. Acta 1998, 1394, 43–56. [Google Scholar] [CrossRef]
- Dolo, V.; Li, R.; Dillinger, M.; Flati, S.; Manela, J.; Taylor, B.J.; Pavan, A.; Ladisch, S. Enrichment and localization of ganglioside G(D3) and caveolin-1 in shed tumor cell membrane vesicles. Biochim. Biophys. Acta 2000, 1486, 265–274. [Google Scholar] [CrossRef]
- Lauc, G.; Heffer-Lauc, M. Shedding and uptake of gangliosides and glycosylphosphatidylinositol-anchored proteins. Biochim. Biophys. Acta 2006, 1760, 584–602. [Google Scholar] [CrossRef] [PubMed]
- Furihata, M.; Ono, Y.; Ichikawa, K.; Tomita, S.; Fujimori, T.; Kubota, K. Prognostic significance of CD83 positive, mature dendritic cells in the gallbladder carcinoma. Oncol. Rep. 2005, 14, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Ananiev, J.; Gulubova, M.V.; Manolova, I.M. Prognostic significance of CD83 positive tumor-infiltrating dendritic cells and expression of TGF-beta 1 in human gastric cancer. Hepatogastroenterology 2011, 58, 1834–1840. [Google Scholar] [PubMed]
- Gulubova, M.; Manolova, I.; Ananiev, J.; Kjurkchiev, D.; Julianov, A.; Altunkova, I. Relationship of TGF-β1 and Smad7 expression with decreased dendritic cell infiltration in liver gastrointestinal cancer metastasis. Apmis 2013, 121, 967–975. [Google Scholar] [CrossRef]
- Rodríguez-Zhurbenko, N.; Martínez, D.; Blanco, R.; Rondón, T.; Griñán, T.; Hernández, A.M. Human antibodies reactive to NeuGcGM3 ganglioside have cytotoxic antitumor properties. Eur. J. Immunol. 2013, 43, 826–837. [Google Scholar] [CrossRef]
- Gentilini, M.V.; Pérez, M.E.; Fernández, P.M.; Fainboim, L.; Arana, E. The tumor antigen N-glycolyl-GM3 is a human CD1d ligand capable of mediating B cell and natural killer T cell interaction. Cancer Immunol. Immunother. 2016, 65, 551–562. [Google Scholar] [CrossRef]
- Galli, G.; Nuti, S.; Tavarini, S.; Galli-Stampino, L.; De Lalla, C.; Casorati, G.; Dellabona, P.; Abrignani, S. CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J. Exp. Med. 2003, 197, 1051–1057. [Google Scholar] [CrossRef]
- Rodriguez-Zhurbenko, N.; Quach, T.D.; Rothstein, T.L.; Hernandez, A.M. Human B-1 cells are important contributors to the naturally-occurring IgM pool against the tumor-associated ganglioside Neu5GcGM3. Front. Immunol. 2022, 13, 1061651. [Google Scholar] [CrossRef] [PubMed]
- Holodick, N.E.; Rodríguez-Zhurbenko, N.; Hernández, A.M. Defining Natural Antibodies. Front. Immunol. 2017, 8, 872. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Zhurbenko, N.; Quach, T.D.; Hopkins, T.J.; Rothstein, T.L.; Hernandez, A.M. Human B-1 Cells and B-1 Cell Antibodies Change With Advancing Age. Front. Immunol. 2019, 10, 483. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.; Rodríguez, E.; Arango Mdel, C.; Camacho, R.; Osorio, M.; Gabri, M.; Carrillo, G.; Valdés, Z.; Bebelagua, Y.; Pérez, R.; et al. Immunotherapy of advanced breast cancer with a heterophilic ganglioside (NeuGcGM3) cancer vaccine. J. Clin. Oncol. 2003, 21, 1015–1021. [Google Scholar] [CrossRef]
- Hernández, A.M.; Toledo, D.; Martínez, D.; Griñán, T.; Brito, V.; Macías, A.; Alfonso, S.; Rondón, T.; Suárez, E.; Vázquez, A.M.; et al. Characterization of the antibody response against NeuGcGM3 ganglioside elicited in non-small cell lung cancer patients immunized with an anti-idiotype antibody. J. Immunol. 2008, 181, 6625–6634. [Google Scholar] [CrossRef] [PubMed]
- Neninger, E.; Díaz, R.M.; de la Torre, A.; Rives, R.; Díaz, A.; Saurez, G.; Gabri, M.R.; Alonso, D.F.; Wilkinson, B.; Alfonso, A.M.; et al. Active immunotherapy with 1E10 anti-idiotype vaccine in patients with small cell lung cancer: Report of a phase I trial. Cancer Biol. Ther. 2007, 6, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Guthmann, M.D.; Castro, M.A.; Cinat, G.; Venier, C.; Koliren, L.; Bitton, R.J.; Vázquez, A.M.; Fainboim, L. Cellular and humoral immune response to N-Glycolyl-GM3 elicited by prolonged immunotherapy with an anti-idiotypic vaccine in high-risk and metastatic breast cancer patients. J. Immunother. 2006, 29, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Heinzelbecker, J.; Fauskanger, M.; Jonson, I.; Krengel, U.; Løset, G.; Munthe, L.; Tveita, A. Chimeric antigen receptor T cells targeting the GM3(Neu5Gc) ganglioside. Front. Immunol. 2024, 15, 1331345. [Google Scholar] [CrossRef] [PubMed]
- Herrera, Z.M.; Ramos, T.C. Pilot study of a novel combination of two therapeutic vaccines in advanced non-small-cell lung cancer patients. Cancer Immunol. Immunother. 2014, 63, 737–747. [Google Scholar] [CrossRef]
- Neninger Vinageras, E.; de la Torre, A.; Osorio Rodríguez, M.; Catalá Ferrer, M.; Bravo, I.; Mendoza del Pino, M.; Abreu Abreu, D.; Acosta Brooks, S.; Rives, R.; del Castillo Carrillo, C.; et al. Phase II randomized controlled trial of an epidermal growth factor vaccine in advanced non-small-cell lung cancer. J. Clin. Oncol. 2008, 26, 1452–1458. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco, R.; Muñoz, J.P. The Role of Non-Human Sialic Acid Neu5Gc-Containing Glycoconjugates in Human Tumors: A Review of Clinical and Experimental Evidence. Biomolecules 2025, 15, 253. https://doi.org/10.3390/biom15020253
Blanco R, Muñoz JP. The Role of Non-Human Sialic Acid Neu5Gc-Containing Glycoconjugates in Human Tumors: A Review of Clinical and Experimental Evidence. Biomolecules. 2025; 15(2):253. https://doi.org/10.3390/biom15020253
Chicago/Turabian StyleBlanco, Rancés, and Juan P. Muñoz. 2025. "The Role of Non-Human Sialic Acid Neu5Gc-Containing Glycoconjugates in Human Tumors: A Review of Clinical and Experimental Evidence" Biomolecules 15, no. 2: 253. https://doi.org/10.3390/biom15020253
APA StyleBlanco, R., & Muñoz, J. P. (2025). The Role of Non-Human Sialic Acid Neu5Gc-Containing Glycoconjugates in Human Tumors: A Review of Clinical and Experimental Evidence. Biomolecules, 15(2), 253. https://doi.org/10.3390/biom15020253