Natural Alternatives in the Treatment of Colorectal Cancer: A Mechanisms Perspective
Abstract
:1. Introduction
2. CRC Treatment
3. Chemoresistance in CRC
3.1. Enzymes Involved in the 5-FU Metabolism Processing
3.2. Efflux Pumps
3.3. Epithelial–Mesenchymal Transition
3.4. Autophagy
3.5. Chemoresistance Induced by Components of the Tumor Microenvironment
3.6. Inflammation
4. Natural Compounds as a Promising Therapeutic Option for CRC
4.1. Curcumin
4.2. Resveratrol
4.3. Artemisinin
4.4. Helminth-Derived Molecules
4.5. Trimethylglycine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3-MA | 3-methyladenine |
5-FU | 5-fluorouracil |
5-FUR | 5-fluorouracil resistance |
ABC | ATP-binding cassette |
ABCB1 | ATP-binding cassette subfamily B member 1 |
ABCC1 | ATP-binding cassette subfamily C member 1 |
ABCG2 | ATP-binding cassette subfamily G member 2 |
Alb | Albumin |
ALDH1 | Aldehyde dehydrogenase 1 |
ALT | Alanine aminotransferase |
AOM | Azoxymethane |
AOPP | Advanced oxidation protein products |
APC | Adenomatous polyposis coli |
AST | Aspartate transferase |
ATG16L | Autophagy related 16-like |
Bcl-2 | B-cell lymphoma 2 |
Bcl-xL | B-cell lymphoma-extra large |
BHMT | Betaine-homocysteine methyl transferase |
BRAF | B-Raf proto-oncogene |
CAC | Colitis-associated colon cancer |
CAFs | Cancer-associated fibroblasts |
CDK1/2/4 | Cyclin-dependent kinase 1/2/4 |
CDKN2A | Cyclin-dependent kinase inhibitor 2A |
CH2THF | 5,10-methylenetetrahydrofolate |
CIMP | CpG island methylator phenotype |
CIN | Chromosomal instability |
COX-2 | Cyclooxygenase 2 |
CRC | Colorectal cancer |
CSC | Cancer stem cells |
CTLA-4 | Cytotoxic T-lymphocyte-associated protein 4 |
Cur | Curcumin |
CXCR2/4 | Chemokine receptor type 2/4 |
DHFU | Dihydro fluorouracil |
DMSO | Dimethyl sulfoxide |
DPD | Dihydropyrimidine dehydrogenase |
DSS | Dextran sodium sulfate |
dTMP | Deoxythymidine monophosphate |
dUMP | Deoxyuridine monophosphate |
E2F1 | E2F transcription factor 1 |
EGFR | Epidermal growth factor receptor |
EMT | Epithelial–mesenchymal transition |
ERCC1 | Excision repair cross-complementing rodent repair deficiency, complementation group 1 |
ERK | Extracellular signal-regulated kinase |
FA | Folinic acid |
FdUMP | 5-fluorodeoxyuridine monophosphate |
FOLFOX | 5-fluorouracil, oxaliplatin, and leucovorin |
FOXQ1 | Forkhead box Q1 |
GO | Graphene oxide |
GPx | Glutathione peroxidase |
HER-2/3 | Human epidermal growth factor receptor 2/3 |
HIF | Hypoxia-inducible factor |
HSP27 | Heat shock protein 27 |
HSPB8 | Heat shock protein family B member 8 |
ICAM-1 | Intercellular adhesion molecule 1 |
IFN-γ | Interferon gamma |
IGF-1R | Insulin-like growth factor-1 receptor |
IL-1β/2/6/10/12/23 | Interleukin 1β/2/6/10/12/23 |
Ip. | Intraperitoneal |
IRE1α | Inositol-requiring transmembrane kinase endoribonuclease-1α |
IκBα | NFκB inhibitor alpha |
JNK | c-Jun N-terminal kinase |
KRAS | Kirsten rat sarcoma viral proto-oncogene |
mCRC | Metastatic colorectal cancer |
MDA | Malondialdehyde |
MDR1 | Multidrug resistance protein 1 |
MDR1 | Multidrug resistance protein 1 |
MDSC | Myeloid-derived suppressor cells |
MMP9/13 | Matrix metalloproteinases 9/13 |
MRP1 | Multidrug resistance-associated protein 1 |
MSI | Microsatellite instability |
NC | Natural compound |
NFκB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NK | Natural killer cell |
NNMT | Nicotinamide N-methyltransferase |
NRF2 | Nuclear factor erythroid 2-related factor 2 |
NSAIDs | Non-steroidal anti-inflammatory drugs |
OXA | Oxaliplatin |
PARP | Poly (ADP-ribose) polymerase |
PD-1 | Programmed cell death protein 1 |
PD-L1 | Programmed death-ligand 1 |
PGE2 | Prostaglandin E2 |
P-gp | P-glycoprotein 1 |
PI3K | Phosphatidylinositol 3-kinase |
pRb | Retinoblastoma protein |
ROS | Reactive oxygen species |
RSV | Resveratrol |
SHP1 | Src homology 2 domain-containing protein tyrosine phosphatase 1 |
SIRT1 | Sirtuin 1 |
SOD | Superoxide dismutase |
STAT1/3/6 | Signal transducer and activator of transcription 1/3/6 |
TAMs | Tumor-associated macrophages |
TcES | Molecules excreted/secreted by Taenia crassiceps |
TGF-β | Transforming growth factor beta |
TGFβ-R | Transforming growth factor-β receptor |
TLR4 | Toll-like receptor 4 |
TMG | Trimethylglycine |
TNF-α/β | Tumor necrosis factor alpha/beta |
TNM | Tumor–node–metastasis |
Tp53 | Tumor protein p53 |
TS | Thymidylate synthase |
VCR | Vincristine-resistant |
VEGF | Vascular endothelial growth factor |
WHO | World Health Organization |
XBP1 | X-box binding protein 1 |
Zeb1/2 | Zinc finger E-box binding homeobox ½ |
References
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global Burden of Colorectal Cancer in 2020 and 2040: Incidence and Mortality Estimates from GLOBOCAN. Gut 2022, 72, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of Colorectal Cancer: Incidence, Mortality, Survival, and Risk Factors. Przegląd Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, H.; Kuroda, H.; Imai, Y.; Hiraishi, H. Molecular Pathogenesis of Sporadic Colorectal Cancers. Chin. J. Cancer 2016, 35, 4. [Google Scholar] [CrossRef]
- Lewandowska, A.; Rudzki, G.; Lewandowski, T.; Stryjkowska-Góra, A.; Rudzki, S. Risk Factors for the Diagnosis of Colorectal Cancer. Cancer Control 2022, 29. [Google Scholar] [CrossRef]
- Ahmad, R.; Singh, J.K.; Wunnava, A.; Al-obeed, O.; Abdulla, M.; Srivastava, S.K. Emerging Trends in Colorectal Cancer: Dysregulated Signaling Pathways. Int. J. Mol. Med. 2021, 47, 14. [Google Scholar] [CrossRef]
- Khalyfa, A.A.; Punatar, S.; Aslam, R.; Yarbrough, A. Exploring the Inflammatory Pathogenesis of Colorectal Cancer. Diseases 2021, 9, 79. [Google Scholar] [CrossRef]
- Sánchez-Barrera, C.Á.; Olguin, J.E.; Terrazas, L. A Dual Role for Neutrophils and Myeloid-Derived Suppressor Cells in the Development of Colorectal Cancer; Morales-Montor, J., Ed.; Serie: Immunology and Immune System Disorders; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2022; pp. 145–185. [Google Scholar]
- Alzahrani, S.M.; Al Doghaither, H.A.; Al-Ghafar, A.B. General Insight into Cancer: An Overview of Colorectal Cancer. Mol. Clin. Oncol. 2021, 15, 271. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Cancer-Preventive Interventions. Colorectal Cancer Screening [Internet]; World Health Organization: Geneva, Switzerland, 2019; ISBN 9789283230236. [Google Scholar]
- Wilson, L.A.M.; Browne, S.; Barnes, J.; El Hoyek, N.; Helmueller, L.; Janeiro, M.J.; Wendt, B. Opportunities and Challenges in Screening for Colorectal Cancer. Popul. Health Manag. 2023, 26, 246–253. [Google Scholar] [CrossRef]
- Buccafusca, G.; Proserpio, I.; Tralongo, A.C.; Rametta Giuliano, S.; Tralongo, P. Early Colorectal Cancer: Diagnosis, Treatment and Survivorship Care. Crit. Rev. Oncol. Hematol. 2019, 136, 20–30. [Google Scholar] [CrossRef]
- Mattar, R.E.; Al-Alem, F.; Simoneau, E.; Hassanain, M. Preoperative Selection of Patients with Colorectal Cancer Liver Metastasis for Hepatic Resection. World J. Gastroenterol. 2016, 22, 567–581. [Google Scholar] [CrossRef]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Shin, A.E.; Giancotti, F.G.; Rustgi, A.K. Metastatic Colorectal Cancer: Mechanisms and Emerging Therapeutics. Trends Pharmacol. Sci. 2023, 44, 222–236. [Google Scholar] [CrossRef] [PubMed]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of Action and Clinical Strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Xu, E.; Liu, H.; Wan, L.; Lai, M. Epithelial-Mesenchymal Transition in Colorectal Cancer Metastasis: A System Review. Pathol. Res. Pract. 2015, 211, 557–569. [Google Scholar] [CrossRef]
- van den Boogaard, W.M.C.; Komninos, D.S.J.; Vermeij, W.P. Chemotherapy Side-Effects: Not All DNA Damage Is Equal. Cancers 2022, 14, 627. [Google Scholar] [CrossRef]
- Wigmore, P.M.; Mustafa, S.; El-Beltagy, M.; Lyons, L.; Umka, J.; Bennett, G. Effects of 5-FU. In Chemo Fog. Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2010; Volume 678. [Google Scholar] [CrossRef]
- Ribeiro, R.A.; Wanderley, C.W.S.; Wong, D.V.T.; Mota, J.M.S.C.; Leite, C.A.V.G.; Souza, M.H.L.P.; Cunha, F.Q.; Lima-Júnior, R.C.P. Irinotecan- and 5-Fluorouracil-Induced Intestinal Mucositis: Insights into Pathogenesis and Therapeutic Perspectives. Cancer Chemother. Pharmacol. 2016, 78, 881–893. [Google Scholar] [CrossRef]
- Anaka, M.; Abdel-Rahman, O. Managing 5FU Cardiotoxicity in Colorectal Cancer Treatment. Cancer Manag. Res. 2022, 14, 273–285. [Google Scholar] [CrossRef]
- Kang, L.; Tian, Y.; Xu, S.; Chen, H. Oxaliplatin-Induced Peripheral Neuropathy: Clinical Features, Mechanisms, Prevention and Treatment. J. Neurol. 2021, 268, 3269–3282. [Google Scholar] [CrossRef]
- Palmieri, L.J.; Dubreuil, O.; Bachet, J.B.; Trouilloud, I.; Locher, C.; Coriat, R.; Moryoussef, F.; Landi, B.; Perkins, G.; Hautefeuille, V.; et al. Reasons for Chemotherapy Discontinuation and End-of-Life in Patients with Gastrointestinal Cancer: A Multicenter Prospective AGEO Study. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101431. [Google Scholar] [CrossRef]
- Ramos, A.; Sadeghi, S.; Tabatabaeian, H. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int. J. Mol. Sci. 2021, 22, 9451. [Google Scholar] [CrossRef]
- Hammond, W.A.; Swaika, A.; Mody, K. Pharmacologic Resistance in Colorectal Cancer: A Review. Ther. Adv. Med. Oncol. 2016, 8, 57–84. [Google Scholar] [CrossRef] [PubMed]
- Cornelison, R.; Llaneza, D.C.; Landen, C.N. Emerging Therapeutics to Overcome Chemoresistance in Epithelial Ovarian Cancer: A Mini-Review. Int. J. Mol. Sci. 2017, 18, 2171. [Google Scholar] [CrossRef] [PubMed]
- Wohlhueter, R.M.; McIvor, R.S.; Plagemann, P.G. Facilitated Transport of Uracil and 5-Fluorouracil, and Permeation of Orotic Acid into Cultured Mammalian Cells. J. Cell. Physiol. 1980, 104, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Santi, D.V.; McHenry, C.S.; Sommer, H. Mechanism of Interaction of Thymidylate Synthetase with 5-Fluorodeoxyuridylate. Biochemistry 1974, 13, 471–481. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, A.K.; Singh, H.; Thareja, S.; Kumar, P. Regulation of Thymidylate Synthase: An Approach to Overcome 5-FU Resistance in Colorectal Cancer. Med. Oncol. 2023, 40, 3. [Google Scholar] [CrossRef]
- Song, S.; Tian, B.; Zhang, M.; Gao, X.; Jie, L.; Liu, P.; Li, J. Diagnostic and Prognostic Value of Thymidylate Synthase Expression in Breast Cancer. Clin. Exp. Pharmacol. Physiol. 2021, 48, 279–287. [Google Scholar] [CrossRef]
- Li, Y.; Mizutani, Y.; Shiraishi, T.; Okihara, K.; Ukimura, O.; Kawauchi, A.; Nonomura, N.; Fukushima, M.; Sakai, T.; Miki, T. Prognostic Significance of Thymidylate Synthase Expression in Patients with Prostate Cancer Undergoing Radical Prostatectomy. Urology 2007, 69, 988–995. [Google Scholar] [CrossRef]
- Lenz, H.J.; Leichman, C.G.; Danenberg, K.D.; Danenberg, P.V.; Groshen, S.; Cohen, H.; Laine, L.; Crookes, P.; Silberman, H.; Baranda, J.; et al. Thymidylate Synthase MRNA Level in Adenocarcinoma of the Stomach: A Predictor for Primary Tumor Response and Overall Survival. J. Clin. Oncol. 1996, 14, 176–182. [Google Scholar] [CrossRef]
- Dotor, E.; Cuatrecases, M.; Martínez-Iniesta, M.; Navarro, M.; Vilardell, F.; Guinó, E.; Pareja, L.; Figueras, A.; Molleví, D.G.; Serrano, T.; et al. Tumor Thymidylate Synthase 1494del6 Genotype as a Prognostic Factor in Colorectal Cancer Patients Receiving Fluorouracil-Based Adjuvant Treatment. J. Clin. Oncol. 2006, 24, 1603–1611. [Google Scholar] [CrossRef]
- Jiang, H.; Li, B.; Wang, F.; Ma, C.; Hao, T. Expression of ERCC1 and TYMS in Colorectal Cancer Patients and the Predictive Value of Chemotherapy Efficacy. Oncol. Lett. 2019, 18, 1157–1162. [Google Scholar] [CrossRef]
- Badary, D.M.; Elkabsh, M.M.; Mady, H.H.; Gabr, A.; Kroosh, S.S. Prognostic and Predictive Role of Excision Repair Cross-Complementation Group 1 and Thymidylate Synthase in Colorectal Carcinoma Patients Received FOLFOX Chemotherapy: An Immunohistochemical Study. Appl. Immunohistochem. Mol. Morphol. 2020, 28, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Avendaño, C.; Menéndez, J.C. Antimetabolites. In Medicinal Chemistry of Anticancer Drugs; Elsevier: Amsterdam, The Netherlands, 2008; pp. 9–52. [Google Scholar]
- Zhang, Y.H.; Luo, D.D.; Wan, S.B.; Qu, X.J. S1PR2 Inhibitors Potently Reverse 5-FU Resistance by Downregulating DPD Expression in Colorectal Cancer. Pharmacol. Res. 2020, 155, 104717. [Google Scholar] [CrossRef] [PubMed]
- Ughachukwu, P.; Unekwe, P. Efflux Pump-Mediated Resistance in Chemotherapy. Ann. Med. Health Sci. Res. 2012, 2, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Alketbi, L.; Al-Ali, A.; Talaat, I.M.; Hamid, Q.; Bajbouj, K. The Role of ATP-Binding Cassette Subfamily A in Colorectal Cancer Progression and Resistance. Int. J. Mol. Sci. 2023, 24, 1344. [Google Scholar] [CrossRef]
- Chen, N.; Kong, Y.; Wu, Y.; Gao, Q.; Fu, J.; Sun, X.; Geng, Q. CAC1 Knockdown Reverses Drug Resistance through the Downregulation of P-Gp and MRP-1 Expression in Colorectal Cancer. PLoS ONE 2019, 14, e0222035. [Google Scholar] [CrossRef]
- Gao, Q.; Li, X.X.; Xu, Y.M.; Zhang, J.Z.; Rong, S.D.; Qin, Y.Q.; Fang, J. IRE1α-Targeting Downregulates ABC Transporters and Overcomes Drug Resistance of Colon Cancer Cells. Cancer Lett. 2020, 476, 67–74. [Google Scholar] [CrossRef]
- Zhang, N.; Ng, A.S.; Cai, S.; Li, Q.; Yang, L.; Kerr, D. Novel Therapeutic Strategies: Targeting Epithelial–Mesenchymal Transition in Colorectal Cancer. Lancet Oncol. 2021, 22, e358–e368. [Google Scholar] [CrossRef]
- Du, F.; Liu, H.; Lu, Y.; Zhao, X.; Fan, D. Epithelial-to-Mesenchymal Transition: Liaison between Cancer Metastasis and Drug Resistance. Crit. Rev. Oncog. 2017, 22, 275–282. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Manavi, M.S.; Faghihkhorasani, F.; Fakhr, S.S.; Baei, F.J.; Khorasani, F.F.; Zare, M.M.; Far, N.P.; Rezaei-Tazangi, F.; Ren, J.; et al. Harnessing Function of EMT in Cancer Drug Resistance: A Metastasis Regulator Determines Chemotherapy Response. Cancer Metastasis Rev. 2024, 43, 457–479. [Google Scholar] [CrossRef]
- Kim, A.Y.; Kwak, J.H.; Je, N.K.; Lee, Y.H.; Jung, Y.S. Epithelial-Mesenchymal Transition Is Associated with Acquired Resistance to 5-Fluorocuracil in HT-29 Colon Cancer Cells. Toxicol. Res. 2015, 31, 151–156. [Google Scholar] [CrossRef]
- Sreekumar, R.; Al-Saihati, H.; Emaduddin, M.; Moutasim, K.; Mellone, M.; Patel, A.; Kilic, S.; Cetin, M.; Erdemir, S.; Navio, M.S.; et al. The ZEB2-Dependent EMT Transcriptional Programme Drives Therapy Resistance by Activating Nucleotide Excision Repair Genes ERCC1 and ERCC4 in Colorectal Cancer. Mol. Oncol. 2021, 15, 2065–2083. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.Z.; Miow, Q.H.; Miki, Y.; Noda, T.; Mori, S.; Huang, R.Y.; Thiery, J.P. Epithelial-mesenchymal Transition Spectrum Quantification and Its Efficacy in Deciphering Survival and Drug Responses of Cancer Patients. EMBO Mol. Med. 2014, 6, 1279–1293. [Google Scholar] [CrossRef] [PubMed]
- Kocaturk, N.M.; Akkoc, Y.; Kig, C.; Bayraktar, O.; Gozuacik, D.; Kutlu, O. Autophagy as a Molecular Target for Cancer Treatment. Eur. J. Pharm. Sci. 2019, 134, 116–137. [Google Scholar] [CrossRef]
- Gao, T.; Yuan, D.; He, B.; Gao, Y.; Liu, C.; Sun, H.; Nie, J.; Wang, S.; Nie, Z. Identification of Autophagy Related Genes in Predicting the Prognosis and Aiding 5- Fluorouracil Therapy of Colorectal Cancer. Heliyon 2022, 8, e09033. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, R.; Liu, Y.; Mei, H.; Liu, X.; Peng, Z. USP11 Induce Resistance to 5-Fluorouracil in Colorectal Cancer through Activating Autophagy by Stabilizing VCP. J. Cancer 2021, 12, 2317–2325. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, J.; Chen, C.; Jiang, Y.; Feng, X.; Liao, Y.; Yang, Z. NGFR Increases the Chemosensitivity of Colorectal Cancer Cells by Enhancing the Apoptotic and Autophagic Effects of 5-Fluorouracil via the Activation of S100A9. Front. Oncol. 2021, 11, 652081. [Google Scholar] [CrossRef]
- Bai, C.; Zhang, Z.; Zhou, L.; Zhang, H.Y.; Chen, Y.; Tang, Y. Repurposing Ziyuglycoside II Against Colorectal Cancer via Orchestrating Apoptosis and Autophagy. Front. Pharmacol. 2020, 11, 576547. [Google Scholar] [CrossRef]
- Wu, T.; Dai, Y. Tumor Microenvironment and Therapeutic Response. Cancer Lett. 2017, 387, 61–68. [Google Scholar] [CrossRef]
- Blondy, S.; David, V.; Verdier, M.; Mathonnet, M.; Perraud, A.; Christou, N. 5-Fluorouracil Resistance Mechanisms in Colorectal Cancer: From Classical Pathways to Promising Processes. Cancer Sci. 2020, 111, 3142–3154. [Google Scholar] [CrossRef]
- Hu, J.L.; Wang, W.; Lan, X.L.; Zeng, Z.C.; Liang, Y.S.; Yan, Y.R.; Song, F.Y.; Wang, F.F.; Zhu, X.H.; Liao, W.J.; et al. CAFs Secreted Exosomes Promote Metastasis and Chemotherapy Resistance by Enhancing Cell Stemness and Epithelial-Mesenchymal Transition in Colorectal Cancer. Mol. Cancer 2019, 18, 91. [Google Scholar] [CrossRef]
- Linares, J.; Sallent-Aragay, A.; Badia-Ramentol, J.; Recort-Bascuas, A.; Méndez, A.; Manero-Rupérez, N.; Re, D.L.; Rivas, E.I.; Guiu, M.; Zwick, M.; et al. Long-Term Platinum-Based Drug Accumulation in Cancer-Associated Fibroblasts Promotes Colorectal Cancer Progression and Resistance to Therapy. Nat. Commun. 2023, 14, 746. [Google Scholar] [CrossRef] [PubMed]
- Jin, W. Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial– Mesenchymal Transition. Cells 2020, 9, 217. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ramírez, D.; Mendoza-Rodríguez, M.G.; Alemán, O.R.; Candanedo-González, F.A.; Rodríguez-Sosa, M.; Montesinos-Montesinos, J.J.; Salcedo, M.; Brito-Toledo, I.; Vaca-Paniagua, F.; Terrazas, L.I. Impact of STAT-Signaling Pathway on Cancer-Associated Fibroblasts in Colorectal Cancer and Its Role in Immunosuppression. World J. Gastrointest. Oncol. 2024, 16, 1705–1724. [Google Scholar] [CrossRef] [PubMed]
- Tošić, I.; Frank, D.A. STAT3 as a Mediator of Oncogenic Cellular Metabolism: Pathogenic and Therapeutic Implications. Neoplasia 2021, 23, 1167–1178. [Google Scholar] [CrossRef]
- Qin, A.; Yu, Q.; Gao, Y.; Tan, J.; Huang, H.; Qiao, Z.; Qian, W. Inhibition of STAT3/CyclinD1 Pathway Promotes Chemotherapeutic Sensitivity of Colorectal Caner. Biochem. Biophys. Res. Commun. 2015, 457, 681–687. [Google Scholar] [CrossRef]
- Mendoza-Rodríguez, M.G.; Sánchez-Barrera, C.Á.; Callejas, B.E.; García-Castillo, V.; Beristain-Terrazas, D.L.; Delgado-Buenrostro, N.L.; Chirino, Y.I.; León-Cabrera, S.A.; Rodríguez-Sosa, M.; Gutierrez-Cirlos, E.B.; et al. Use of STAT6 Phosphorylation Inhibitor and Trimethylglycine as New Adjuvant Therapies for 5-Fluorouracil in Colitis-Associated Tumorigenesis. Int. J. Mol. Sci. 2020, 21, 2130. [Google Scholar] [CrossRef]
- Leon-Cabrera, S.A.; Molina-Guzman, E.; Delgado-Ramirez, Y.G.; Vázquez-Sandoval, A.; Ledesma-Soto, Y.; Pérez-Plasencia, C.G.; Chirino, Y.I.; Delgado-Buenrostro, N.L.; Rodríguez-Sosa, M.; Vaca-Paniagua, F.; et al. Lack of STAT6 Attenuates Inflammation and Drives Protection against Early Steps of Colitis-Associated Colon Cancer. Cancer Immunol. Res. 2017, 5, 385–396. [Google Scholar] [CrossRef]
- Jayakumar, A.; Bothwell, A.L.M. Stat6 Promotes Intestinal Tumorigenesis in a Mouse Model of Adenomatous Polyposis by Expansion of MDSCs and Inhibition of Cytotoxic CD8 Response. Neoplasia 2017, 19, 595–605. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, X.; Xu, Y.; La, X.; Tian, J.; Li, A.; Li, H.; Wu, C.; Xi, Y.; Song, G.; et al. Tumor-Associated Macrophages Confer Colorectal Cancer 5-Fluorouracil Resistance by Promoting MRP1 Membrane Translocation via an Intercellular CXCL17/CXCL22–CCR4–ATF6–GRP78 Axis. Cell Death Dis. 2023, 14, 582. [Google Scholar] [CrossRef]
- Shi, Q.; Shen, Q.; Liu, Y.; Shi, Y.; Huang, W.; Wang, X.; Li, Z.; Chai, Y.; Wang, H.; Hu, X.; et al. Increased Glucose Metabolism in TAMs Fuels O-GlcNAcylation of Lysosomal Cathepsin B to Promote Cancer Metastasis and Chemoresistance. Cancer Cell 2022, 40, 1207–1222.e10. [Google Scholar] [CrossRef]
- Niu, T.; Zhou, F. Inflammation and Tumor Microenvironment. J. Cent. South Univ. (Med. Sci.) 2023, 48, 1899–1913. [Google Scholar] [CrossRef]
- Tuomisto, A.E.; Mäkinen, M.J.; Väyrynen, J.P. Systemic Inflammation in Colorectal Cancer: Underlying Factors, Effects, and Prognostic Significance. World J. Gastroenterol. 2019, 25, 4383–4404. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Li, Y.; Zhu, C.; Wang, W.; Zhou, Y. Managing Cancer Drug Resistance from the Perspective of Inflammation. J. Oncol. 2022, 2022, 3426407. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, S.A.; Dinmohammadi, F.; Alizadeh, A.; Elahian, F. Inflammatory Pathway Interactions and Cancer Multidrug Resistance Regulation. Life Sci. 2019, 235, 116825. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, B.; Peng, J.; Tang, H.; Wang, S.; Peng, S.; Ye, F.; Wang, J.; Ouyang, K.; Li, J.; et al. Inhibition of NF-ΚB Signaling Unveils Novel Strategies to Overcome Drug Resistance in Cancers. Drug Resist. Updat. 2024, 73, 101042. [Google Scholar] [CrossRef]
- Pyo, J.S.; Kim, E.K. Clinicopathological Significance and Prognostic Implication of Nuclear Factor-ΚB Activation in Colorectal Cancer. Pathol. Res. Pract. 2019, 215, 152469. [Google Scholar] [CrossRef]
- Thiruchenthooran, V.; Sánchez-López, E.; Gliszczyńska, A. Perspectives of the Application of Non-Steroidal Anti-Inflammatory Drugs in Cancer Therapy: Attempts to Overcome Their Unfavorable Side Effects. Cancers 2023, 15, 475. [Google Scholar] [CrossRef]
- Hua, X.; Phipps, A.I.; Burnett-Hartman, A.N.; Adams, S.V.; Hardikar, S.; Cohen, S.A.; Kocarnik, J.M.; Ahnen, D.J.; Lindor, N.M.; Baron, J.A.; et al. Timing of Aspirin and Other Nonsteroidal Anti-Inflammatory Drug Use among Patients with Colorectal Cancer in Relation to Tumor Markers and Survival. J. Clin. Oncol. 2017, 35, 2806–2813. [Google Scholar] [CrossRef]
- Huang, M.; Lu, J.J.; Ding, J. Natural Products in Cancer Therapy: Past, Present and Future. Nat. Prod. Bioprospect. 2021, 11, 5–13. [Google Scholar] [CrossRef]
- Naeem, A.; Hu, P.; Yang, M.; Zhang, J.; Liu, Y.; Zhu, W.; Zheng, Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022, 27, 8367. [Google Scholar] [CrossRef]
- Rejhová, A.; Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural Compounds and Combination Therapy in Colorectal Cancer Treatment. Eur. J. Med. Chem. 2018, 144, 582–594. [Google Scholar] [CrossRef] [PubMed]
- Callejas, B.E.; Mendoza-Rodríguez, M.G.; Villamar-Cruz, O.; Reyes-Martínez, S.; Sánchez-Barrera, C.A.; Rodríguez-Sosa, M.; Delgado-Buenrostro, N.L.; Martínez-Saucedo, D.; Chirino, Y.I.; León-Cabrera, S.A.; et al. Helminth-Derived Molecules Inhibit Colitis-Associated Colon Cancer Development through NF-ΚB and STAT3 Regulation. Int. J. Cancer 2019, 145, 3126–3139. [Google Scholar] [CrossRef] [PubMed]
- Calibasi-Kocal, G.; Pakdemirli, A.; Bayrak, S.; Ozupek, N.M.; Sever, T.; Basbinar, Y.; Ellidokuz, H.; Yigitbasi, T. Curcumin Effects on Cell Proliferation, Angiogenesis and Metastasis in Colorectal Cancer. J. BUON 2019, 24, 1482–1487. [Google Scholar]
- Liang, Z.; Xie, H.; Shen, W.; Shao, L.; Zeng, L.; Huang, X.; Zhu, Q.; Zhai, X.; Li, K.; Qiu, Z.; et al. The Synergism of Natural Compounds and Conventional Therapeutics against Colorectal Cancer Progression and Metastasis. Front. Biosci. 2022, 27, 263. [Google Scholar] [CrossRef]
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef]
- Lin, Y.G.; Kunnumakkara, A.B.; Nair, A.; Merritt, W.M.; Han, L.Y.; Armaiz-Pena, G.N.; Kamat, A.A.; Spannuth, W.A.; Gershenson, D.M.; Lutgendorf, S.K.; et al. Curcumin Inhibits Tumor Growth and Angiogenesis in Ovarian Carcinoma by Targeting the Nuclear Factor-ΚB Pathway. Clin. Cancer Res. 2007, 13, 3423–3430. [Google Scholar] [CrossRef]
- Yoysungnoen, P.; Wirachwong, P.; Changtam, C.; Suksamram, A.; Patumraj, S. Anti-Cancer and Anti-Angiogenic Effects of Curcumin and Tetrahydrocurcumin on Implanted Hepatocellular Carcinoma in Nude Mice. World J. Gastroenterol. 2008, 14, 2003–2009. [Google Scholar] [CrossRef]
- Li, L.; Ahmed, B.; Mehta, K.; Kurzrock, R. Liposomal Curcumin with and without Oxaliplatin: Effects on Cell Growth, Apoptosis, and Angiogenesis in Colorectal Cancer. Mol. Cancer Ther. 2007, 6, 1276–1282. [Google Scholar] [CrossRef]
- Pricci, M.; Girardi, B.; Giorgio, F.; Losurdo, G.; Ierardi, E.; Di Leo, A. Curcumin and Colorectal Cancer: From Basic to Clinical Evidences. Int. J. Mol. Sci. 2020, 21, 2364. [Google Scholar] [CrossRef]
- Giordano, A.; Tommonaro, G. Curcumin and Cancer. Nutrients 2019, 11, 2376. [Google Scholar] [CrossRef]
- Rajitha, B.; Belalcazar, A.; Nagaraju, G.P.; Shaib, W.L.; Snyder, J.P.; Shoji, M.; Pattnaik, S.; Alam, A.; El-Rayes, B.F. Inhibition of NF-κB Translocation by Curcumin Analogs Induces G0/G1 Arrest and Downregulates Thymidylate Synthase in Colorectal Cancer. Cancer Lett. 2016, 373, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Huang, S.; Wei, Y.; Cao, S.; Pi, C.; Feng, T.; Liang, J.; Zhao, L.; Ren, G. Curcumin Enhances the Anticancer Effect of 5-Fluorouracil against Gastric Cancer through down-Regulation of COX-2 and NF-ΚB Signaling Pathways. J. Cancer 2017, 8, 3697–3706. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Jiang, L.; Xia, Q.; Zhong, L. Synergistic Inhibitory Effects of Curcumin and 5-Fluorouracil on the Growth of the Human Colon Cancer Cell Line HT-29. Chemotherapy 2005, 52, 23–28. [Google Scholar] [CrossRef]
- Patel, B.B.; Sengupta, R.; Qazi, S.; Vachhani, H.; Yu, Y.; Rishi, A.K.; Majumdar, A.P.N. Curcumin Enhances the Effects of 5-Fluorouracil and Oxaliplatin in Mediating Growth Inhibition of Colon Cancer Cells by Modulating EGFR and IGF-1R. Int. J. Cancer 2008, 122, 267–273. [Google Scholar] [CrossRef]
- Yu, Y.; Kanwar, S.S.; Patel, B.B.; Nautiyal, J.; Sarkar, F.H.; Majumdar, A.P.N. Elimination of Colon Cancer Stem-like Cells by the Combination of Curcumin and FOLFOX. Transl. Oncol. 2009, 2, 321–328. [Google Scholar] [CrossRef]
- Patel, B.B.; Gupta, D.; Elliott, A.A.; Sengupta, V.; Yu, Y.; Majumdar, A.P.N. Curcumin Targets FOLFOX-Surviving Colon Cancer Cells via Inhibition of EGFRs and IGF-1R. Anticancer Res. 2010, 30, 319–325. [Google Scholar]
- Shakibaei, M.; Mobasheri, A.; Lueders, C.; Busch, F.; Shayan, P.; Goel, A. Curcumin Enhances the Effect of Chemotherapy against Colorectal Cancer Cells by Inhibition of NF-ΚB and Src Protein Kinase Signaling Pathways. PLoS ONE 2013, 8, e57218. [Google Scholar] [CrossRef]
- Lu, W.D.; Qin, Y.; Yang, C.; Li, L.; Fu, Z.X. Effect of Curcumin on Human Colon Cancer Multidrug Resistance in Vitro and in Vivo. Clinics 2013, 68, 694–701. [Google Scholar] [CrossRef]
- Shakibaei, M.; Buhrmann, C.; Kraehe, P.; Shayan, P.; Lueders, C.; Goel, A. Curcumin Chemosensitizes 5-Fluorouracil Resistant MMR-Deficient Human Colon Cancer Cells in High Density Cultures. PLoS ONE 2014, 9, e85397. [Google Scholar] [CrossRef]
- Toden, S.; Okugawa, Y.; Jascur, T.; Wodarz, D.; Komarova, N.L.; Buhrmann, C.; Shakibaei, M.; Richard Boland, C.; Goel, A. Curcumin Mediates Chemosensitization to 5-Fluorouracil through MiRNA-Induced Suppression of Epithelialto-Mesenchymal Transition in Chemoresistant Colorectal Cancer. Carcinogenesis 2014, 36, 355–367. [Google Scholar] [CrossRef]
- Buhrmann, C.; Kraehe, P.; Lueders, C.; Shayan, P.; Goel, A.; Shakibaei, M. Curcumin Suppresses Crosstalk between Colon Cancer Stem Cells and Stromal Fibroblasts in the Tumor Microenvironment: Potential Role of EMT. PLoS ONE 2014, 9, e107514. [Google Scholar] [CrossRef] [PubMed]
- Shakibaei, M.; Kraehe, P.; Popper, B.; Shayan, P.; Goel, A.; Buhrmann, C. Curcumin Potentiates Antitumor Activity of 5-Fluorouracil in a 3D Alginate Tumor Microenvironment of Colorectal Cancer. BMC Cancer 2015, 15, 250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; He, L.-J.; Ye, H.-Z.; Liu, D.-F.; Zhu, Y.-B.; Miao, D.-D.; Zhang, S.-P.; Chen, Y.-Y.; Jua, Y.-W.; Shen, J.; et al. Nrf2 Is a Key Factor in the Reversal Effect of Curcumin on Multidrug Resistance in the HCT-8/5-Fu Human Colorectal Cancer Cell Line. Mol. Med. Rep. 2018, 18, 5409–5416. [Google Scholar] [CrossRef] [PubMed]
- He, W.-T.; Zhu, Y.-H.; Zhang, T.; Abulimiti, P.; Zeng, F.-Y.; Zhang, L.-P.; Luo, L.-J.; Xie, X.-M.; Zhang, H.-L. Curcumin Reverses 5-Fluorouracil Resistance by Promoting Human Colon Cancer HCT-8/5-FU Cell Apoptosis and Down-Regulating Heat Shock Protein 27 and P-Glycoprotein. Chin. J. Integr. Med. 2019, 25, 416–424. [Google Scholar] [CrossRef]
- Li, G.; Fang, S.; Shao, X.; Li, Y.; Tong, Q.; Kong, B.; Chen, L.; Wang, Y.; Yang, J.; Yu, H.; et al. Curcumin Reverses Nnmt-Induced 5-Fluorouracil Resistance via Increasing Ros and Cell Cycle Arrest in Colorectal Cancer Cells. Biomolecules 2021, 11, 1295. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, X.; Lin, J.; Song, F.; Shao, Y. Low Curcumin Concentration Enhances the Anticancer Effect of 5-Fluorouracil against Colorectal Cancer. Phytomedicine 2021, 85, 153547. [Google Scholar] [CrossRef]
- Sadeghi-Abandansari, H.; Pakian, S.; Nabid, M.R.; Ebrahimi, M.; Rezalotfi, A. Local Co-Delivery of 5-Fluorouracil and Curcumin Using Schiff’s Base Cross-Linked Injectable Hydrogels for Colorectal Cancer Combination Therapy. Eur. Polym. J. 2021, 157, 110646. [Google Scholar] [CrossRef]
- Bardania, H.; Jafari, F.; Baneshi, M.; Mahmoudi, R.; Ardakani, M.T.; Safari, F.; Barmak, M.J. Folic Acid-Functionalized Albumin/Graphene Oxide Nanocomposite to Simultaneously Deliver Curcumin and 5-Fluorouracil into Human Colorectal Cancer Cells: An in Vitro Study. BioMed Res. Int. 2023, 2023, 8334102. [Google Scholar] [CrossRef]
- Moreno-Quintero, G.; Betancur-Zapata, E.; Herrera-Ramírez, A.; Cardona-Galeano, W. New Hybrid Scaffolds Based on 5-FU/Curcumin: Synthesis, Cytotoxic, Antiproliferative and Pro-Apoptotic Effect. Pharmaceutics 2023, 15, 1221. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Diagaradjane, P.; Anand, P.; Kuzhuvelil, H.B.; Deorukhkar, A.; Gelovani, J.; Guha, S.; Krishnan, S.; Aggarwal, B.B. Curcumin Sensitizes Human Colorectal Cancer to Capecitabine by Modulation of Cyclin D1, COX-2, MMP-9, VEGF and CXCR4 Expression in an Orthotopic Mouse Model. Int. J. Cancer 2009, 125, 2187–2197. [Google Scholar] [CrossRef]
- Karthika, C.; Sureshkumar, R.; Sajini, D.V.; Ashraf, G.M.; Rahman, M.H. 5-Fluorouracil and Curcumin with Pectin Coating as a Treatment Regimen for Titanium Dioxide with Dimethylhydrazine-Induced Colon Cancer Model. Environ. Sci. Pollut. Res. 2022, 29, 63202–63215. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, Y.; Sakamoto, T.; Li, Z.; Yasui, H.; Hamada, H.; Kubo, H.; Nakajima, M. Curcumin Inhibits Epithelial-Mesenchymal Transition in Oral Cancer Cells via c-Met Blockade. Oncol. Lett. 2020, 19, 4177–4182. [Google Scholar] [CrossRef]
- Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health Benefits of Resveratrol Administration. Acta Biochim. Pol. 2019, 66, 13–21. [Google Scholar] [CrossRef]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an Anti-Cancer Agent: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1428–1447. [Google Scholar] [CrossRef] [PubMed]
- Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and Cancer: Focus on in Vivo Evidence. Endocr. Relat. Cancer 2014, 21, R209–R225. [Google Scholar] [CrossRef] [PubMed]
- Honari, M.; Shafabakhsh, R.; Reiter, R.J.; Mirzaei, H.; Asemi, Z. Resveratrol Is a Promising Agent for Colorectal Cancer Prevention and Treatment: Focus on Molecular Mechanisms. Cancer Cell Int. 2019, 19, 180. [Google Scholar] [CrossRef]
- Zhou, M.; Niu, H.; Cui, D.; Huang, G.; Li, J.; Tian, H.; Xu, X.; Liang, F.; Chen, R. Resveratrol Triggers Autophagy-related Apoptosis to Inhibit the Progression of Colorectal Cancer via Inhibition of FOXQ1. Phytother. Res. 2024, 38, 3218–3239. [Google Scholar] [CrossRef]
- Chang, C.H.; Lee, C.Y.; Lu, C.C.; Tsai, F.J.; Hsu, Y.M.; Tsao, J.W.; Juan, Y.N.; Chiu, H.Y.; Yang, J.S.; Wang, C.C. Resveratrol-Induced Autophagy and Apoptosis in Cisplatin-Resistant Human Oral Cancer CAR Cells: A Key Role of AMPK and Akt/MTOR Signaling. Int. J. Oncol. 2017, 50, 873–882. [Google Scholar] [CrossRef]
- Wu, J.; Hu, D.; Zhang, R. Depletion of Bmi-1 Enhances 5-Fluorouracil-Induced Apoptosisand Autophagy in Hepatocellular Carcinoma Cells. Oncol. Lett. 2012, 4, 723–726. [Google Scholar] [CrossRef]
- He, X.X.; Huang, C.K.; Xie, B.S. Autophagy Inhibition Enhanced 5-FU-Induced Cell Death in Human Gastric Carcinoma BGC-823 Cells. Mol. Med. Rep. 2018, 17, 6768–6776. [Google Scholar] [CrossRef]
- Chan, J.Y.; Meng, S.P.; Clement, M.V.; Pervaiz, S.; Shao, C.L. Resveratrol Displays Converse Dose-Related Effects on 5-Fluorouracilevoked Colon Cancer Cell Apoptosis: The Roles of Caspase-6 and P53. Cancer Biol. Ther. 2008, 7, 1305–1312. [Google Scholar] [CrossRef]
- Lee, S.C.; Chan, J.Y.; Pervaiz, S. Spontaneous and 5-Fluorouracil-Induced Centrosome Amplification Lowers the Threshold to Resveratrol-Evoked Apoptosis in Colon Cancer Cells. Cancer Lett. 2010, 288, 36–41. [Google Scholar] [CrossRef]
- Baba, Y.; Nosho, K.; Shima, K.; Irahara, N.; Chan, A.T.; Meyerhardt, J.A.; Chung, D.C.; Giovannucci, E.L.; Fuchs, C.S.; Ogino, S. HIF1A Overexpression Is Associated with Poor Prognosis in a Cohort of 731 Colorectal Cancers. Am. J. Pathol. 2010, 176, 2292–2301. [Google Scholar] [CrossRef] [PubMed]
- Abdel Latif, Y.; El-Bana, M.; Hussein, J.; El-Khayat, Z.; Farrag, A.R. Effects of Resveratrol in Combination with 5-Fluorouracil on N-Methylnitrosourea-Induced Colon Cancer in Rats. Comp. Clin. Pathol. 2019, 28, 1351–1362. [Google Scholar] [CrossRef]
- Mohapatra, P.; Preet, R.; Choudhuri, M.; Choudhuri, T.; Kundu, C.N. 5-Fluorouracil Increases the Chemopreventive Potentials of Resveratrol through DNA Damage and MAPK Signaling Pathway in Human Colorectal Cancer Cells. Oncol. Res. 2011, 19, 311–321. [Google Scholar] [CrossRef]
- Santandreu, F.M.; Valle, A.; Oliver, J.; Roca, P. Resveratrol Potentiates the Cytotoxic Oxidative Stress Induced by Chemotherapy in Human Colon Cancer Cells. Cell. Physiol. Biochem. 2011, 28, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Buhrmann, C.; Shayan, P.; Kraehe, P.; Popper, B.; Goel, A.; Shakibaei, M. Resveratrol Induces Chemosensitization to 5-Fluorouracil through up-Regulation of Intercellular Junctions, Epithelial-to-Mesenchymal Transition and Apoptosis in Colorectal Cancer. Biochem. Pharmacol. 2015, 98, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Blanquer-Rosselló, M. del M.; Hernández-López, R.; Roca, P.; Oliver, J.; Valle, A. Resveratrol Induces Mitochondrial Respiration and Apoptosis in SW620 Colon Cancer Cells. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2017, 1861, 431–440. [Google Scholar] [CrossRef]
- Buhrmann, C.; Yazdi, M.; Popper, B.; Shayan, P.; Goel, A.; Aggarwal, B.B.; Shakibaei, M. Resveratrol Chemosensitizes TNF-β-Induced Survival of 5-FU-Treated Colorectal Cancer Cells. Nutrients 2018, 10, 888. [Google Scholar] [CrossRef]
- Chung, S.S.; Dutta, P.; Austin, D.; Wang, P.; Awad, A.; Vadgama, J.V. Combination of Resveratrol and 5-Flurouracil Enhanced Antitelomerase Activity and Apoptosis by Inhibiting STAT3 and Akt Signaling Pathways in Human Colorectal Cancer Cells. Oncotarget 2018, 9, 32943–32957. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, S.; Zhou, J.; Li, X. Effect of Resveratrol on Drug Resistance in Colon Cancer Chemotherapy. RSC Adv. 2019, 9, 2572–2580. [Google Scholar] [CrossRef]
- Brockmueller, A.; Girisa, S.; Kunnumakkara, A.B.; Shakibaei, M. Resveratrol Modulates Chemosensitisation to 5-FU via Β1-Integrin/HIF-1α Axis in CRC Tumor Microenvironment. Int. J. Mol. Sci. 2023, 24, 4988. [Google Scholar] [CrossRef]
- Soliman, B.A.; Farrag, A.R.H.; Khaled, H.A.S. Combinational Effect of 5-Flourouracil and Resveratrol against N-Nitroso-N-Methyl Urea Induced Colorectal Cancer. Egypt. J. Hosp. Med. 2018, 70, 994–1006. [Google Scholar] [CrossRef]
- Shi, C.; Li, H.; Yang, Y.; Hou, L. Anti-Inflammatory and Immunoregulatory Functions of Artemisinin and Its Derivatives. Mediat. Inflamm. 2015, 2015, 435713. [Google Scholar] [CrossRef] [PubMed]
- Pras, N.; Visser, J.F.; Batterman, S.; Woerdenbag, H.J.; Malingré, T.M.; Lugt, C.B. Laboratory Selection of Artemisia annua L. for High Artemisinin Yielding Types. Phytochem. Anal. 1991, 2, 80–83. [Google Scholar] [CrossRef]
- Xie, K.; Li, Z.; Zhang, Y.; Wu, H.; Zhang, T.; Wang, W. Artemisinin and Its Derivatives as Promising Therapies for Autoimmune Diseases. Heliyon 2024, 10, e27972. [Google Scholar] [CrossRef]
- Khakzad, M.R.; Ganji, A.; Ariabod, V.; Farahani, I. Artemisinin Therapeutic Efficacy in the Experimental Model of Multiple Sclerosis. Immunopharmacol. Immunotoxicol. 2017, 39, 348–353. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.; Ren, W.; Liu, Z.L.; Cheng, Y.F.; Zhang, X.M. Combination Treatment with Artemisinin and Oxaliplatin Inhibits Tumorigenesis in Esophageal Cancer EC109 Cell through Wnt/β-Catenin Signaling Pathway. Thorac. Cancer 2020, 11, 2316–2324. [Google Scholar] [CrossRef]
- Jung, E.J.; Paramanantham, A.; Kim, H.J.; Shin, S.C.; Kim, G.S.; Jung, J.M.; Ryu, C.H.; Hong, S.C.; Chung, K.H.; Kim, C.W.; et al. Artemisia annua L. Polyphenol-Induced Cell Death Is Ros-Independently Enhanced by Inhibition of Jnk in Hct116 Colorectal Cancer Cells. Int. J. Mol. Sci. 2021, 22, 1366. [Google Scholar] [CrossRef]
- Ma, Z.; Woon, C.Y.N.; Liu, C.G.; Cheng, J.T.; You, M.; Sethi, G.; Wong, A.L.A.; Ho, P.C.L.; Zhang, D.; Ong, P.; et al. Repurposing Artemisinin and Its Derivatives as Anticancer Drugs: A Chance or Challenge? Front. Pharmacol. 2021, 12, 828856. [Google Scholar] [CrossRef]
- Rastogi, T.; Devesa, S.; Mangtani, P.; Mathew, A.; Cooper, N.; Kao, R.; Sinha, R. Cancer Incidence Rates among South Asians in Four Geographic Regions: India, Singapore, UK and US. Int. J. Epidemiol. 2008, 37, 147–160. [Google Scholar] [CrossRef]
- Callejas, B.E.; Martínez-Saucedo, D.; Terrazas, L.I. Parasites as Negative Regulators of Cancer. Biosci. Rep. 2018, 38, BSR20180935. [Google Scholar] [CrossRef]
- Rostamirad, S.; Daneshpour, S.; Mofid, M.R.; Andalib, A.; Eskandariyan, A.; Mousavi, S.; Yousofi Darani, H. Inhibition of Mouse Colon Cancer Growth Following Immunotherapy with a Fraction of Hydatid Cyst Fluid. Exp. Parasitol. 2023, 249, 108501. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, B.A.; Prince, S.; Smith, K.A. Gastrointestinal Nematode-Derived Antigens Alter Colorectal Cancer Cell Proliferation and Migration through Regulation of Cell Cycle and Epithelial-Mesenchymal Transition Proteins. Int. J. Mol. Sci. 2020, 21, 7845. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Rodríguez, M.G.; Medina-Reyes, D.; Sánchez-Barrera, C.A.; Fernández-Muñoz, K.V.; García-Castillo, V.; Ledesma-Torres, J.L.; González-González, M.I.; Reyes, J.L.; Pérez-Plascencia, C.; Rodríguez-Sosa, M.; et al. Helminth-Derived Molecules Improve 5-Fluorouracil Treatment on Experimental Colon Tumorigenesis. Biomed. Pharmacother. 2024, 175, 116628. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Díaz, M.; Terrazas, L.I. Taenia Crassiceps Infection and Its Excreted/Secreted Products Inhibit STAT1 Activation in Response to IFN-γ. Int. J. Parasitol. 2014, 44, 613–623. [Google Scholar] [CrossRef]
- Dobrijević, D.; Pastor, K.; Nastić, N.; Özogul, F.; Krulj, J.; Kokić, B.; Bartkiene, E.; Rocha, J.M.; Kojić, J. Betaine as a Functional Ingredient: Metabolism, Health-Promoting Attributes, Food Sources, Applications and Analysis Methods. Molecules 2023, 28, 4824. [Google Scholar] [CrossRef]
- Zhao, G.; He, F.; Wu, C.; Li, P.; Li, N.; Deng, J.; Zhu, G.; Ren, W.; Peng, Y. Betaine in Inflammation: Mechanistic Aspects and Applications. Front. Immunol. 2018, 9, 1070. [Google Scholar] [CrossRef]
- Youn, J.; Cho, E.; Lee, J.E. Association of Choline and Betaine Levels with Cancer Incidence and Survival: A Meta-Analysis. Clin. Nutr. 2019, 38, 100–109. [Google Scholar] [CrossRef]
- Kim, D.H.; Sung, B.; Kang, Y.J.; Jang, J.Y.; Hwang, S.Y.; Lee, Y.; Kim, M.; Im, E.; Yoon, J.-H.; Kim, C.M.; et al. Anti-Inflammatory Effects of Betaine on AOM/DSS-induced Colon Tumorigenesis in ICR Male Mice. Int. J. Oncol. 2014, 45, 1250–1256. [Google Scholar] [CrossRef]
- Bingula, R.; Dupuis, C.; Pichon, C.; Berthon, J.Y.; Filaire, M.; Pigeon, L.; Filaire, E. Study of the Effects of Betaine and/or C-Phycocyanin on the Growth of Lung Cancer A549 Cells In Vitro and In Vivo. J. Oncol. 2016, 2016, 8162952. [Google Scholar] [CrossRef]
- Kar, F.; Hacioglu, C.; Kacar, S.; Sahinturk, V.; Kanbak, G. Betaine Suppresses Cell Proliferation by Increasing Oxidative Stress–Mediated Apoptosis and Inflammation in DU-145 Human Prostate Cancer Cell Line. Cell Stress Chaperones 2019, 24, 871–881. [Google Scholar] [CrossRef]
- Hagar, H.; Husain, S.; Fadda, L.M.; Attia, N.M.; Attia, M.M.A.; Ali, H.M. Inhibition of NF-ΚB and the Oxidative Stress -Dependent Caspase-3 Apoptotic Pathway by Betaine Supplementation Attenuates Hepatic Injury Mediated by Cisplatin in Rats. Pharmacol. Rep. 2019, 71, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Al Za’abi, M.; Ali, H.; Al Sabahi, M.; Ali, B.H. The Salutary Action of Melatonin and Betaine, given Singly or Concomitantly, on Cisplatin-Induced Nephrotoxicity in Mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021, 394, 1693–1701. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Chen, X. Drug Resistance and Combating Drug Resistance in Cancer. Cancer Drug Resist. 2019, 2, 141–160. [Google Scholar] [CrossRef] [PubMed]
Cell Lines | |||
---|---|---|---|
Author | Model | Condition | Mechanism |
[87] | HT-29 | 20 µM Cur + 50 µM 5-FU | Synergistic effect ↓ COX-2 |
[88] | HCT-116 | 10 µM Cur + 200 µM 5-FU + 5 µM OXA | ↑ sensitivity to chemotherapeutics and apoptosis ↓ p-EGFR, p-HER-2, p-HER-3, p-IGF-1R, p-AKT, and COX-2 |
[89] | HCT-116 | 20 µM Cur + 50 µM 5-FU + 1.12 µM OXA | ↓ stemness (↓ CD166, CD44), colony formation, and EGFR. ↑ EGFR promoter methylation |
[90] | HCT-116 | 25 µM Cur + 50 µM 5-FU + 1.25 µM OXA | ↓ cell survival, p-EGFR, p-HER-2, p-IGF-1R, p-AKT, COX-2 |
[91] | HCT-116 | 5 µM Cur + 1 mM 5-FU | Cell cycle arrest in S-phase ↑ apoptosis ↓ NF-κB, Src, PI3K |
[92] | HCT-8/VCR | Different concentrations | Enhanced 5-FU sensitivity |
[93] | HCT-116/5-FUR | 20 µM Cur + 5 µM 5-FU | ↑ sensitivity to 5-FU, apoptosis, and colonosphere formation, and ↓ stemness (↓ CD133, CD44, ALDH1) |
[94] | HCT-116/5-FUR and SW480/5-FUR | 10 µM Cur + 10 µM 5-FU | ↑ sensitivity to 5-FU, apoptosis ↓colony number, stemness (↓ polycomb repressive complex), EMT, and cell cycle arrest. |
[95] | Co-culture of HCT-115 and MRC-5 | 5 µM Cur + different concentrations of 5-FU | ↓ colony number, stemness (↓ CD133, ALDH1, CD44), MMP13, NF-κB-p65, p50, TGF-β3, TGF-βR, Smad2, and mesenchymal properties (↓ vimentin, Slug, ↑ E-cad) |
[96] | HCT-116/5-FUR in alginate-based 3D culture | 5 µM Cur + 0.01 nM 5-FU | ↑ sensitivity to 5-FU, apoptosis ↓ cell viability, migration, CXCR4, MMP9, p-NF-κB-p65 |
[97] | HCT-8/5-FUR | 10 µM Cur + 10 mM 5-FU | ↑ sensitivity to 5-FU, apoptosis ↓ Nrf2 signaling |
[98] | HCT-8/5-FUR | Different concentrations | ↑ sensitivity to 5-FU, apoptosis ↓ P-gp and HSP27 G0/G1 cell cycle arrest |
[99] | HT-29 | 30 µM Cur + 20 mg/L 5-FU | Cell cycle arrest in G1/S and G2/M, ↑ p21, ↓cyclinB1, CDK1, cyclin A2, CDK2, p-Rb, cyclin D1, CDK4 |
[99] | SW480 NNMT overexpression | 10 µM Cur + 10 mg/L 5-FU | Cell cycle arrest in G1/S and G2/M ↓ cyclin B1, CDK1, cyclin A2, CDK2, p-Rb, CDK4 |
[100] | SW620 | 10 µM Cur + 5 µM 5-FU | ↑ apoptosis ↓ cell viability, pERK, pSTAT1, L1 |
[101] | HT-29 | Drug-loaded hydrogels with 60 mg/mL Cur + 5 mg/mL 5-FU | Synergism effect, cell cycle arrest ↑ apoptosis |
[102] | HT-29 | Nanoparticles GO-Alb-Cur-5FU-FA with 32 μg/mL Cur + 200 μg/mL 5-FU | Potentiates cytotoxicity ↑ apoptosis |
[103] | SW480 and SW620 | Hybrid 6a, 6d, 6e from 0.625 to 40 µM | ↓ cell viability ↑ apoptosis cell cycle arrest |
Animal models | |||
Author | Model | Condition | Mechanism |
[104] | Orthotopic transplant of HCT-116 | 60 mg/kg, gavage, twice/week of 5-FU (capecitabine) + 1 g/kg, gavage, daily, of cur, for 28 days | ↓ tumor volume; ascites; metastasis to liver, intestine, spleen, and rectum; proliferation index; angiogenesis; NF-κB; COX-2; cyclin D1; c-Myc; ICAM-1; MMP-9; CXCR4; VEGF ↑ apoptosis |
[94] | Xenotransplant-HCT-116/5-FUR | 20 mg/kg once every 2 days of 5-FU + 50 mg/kg daily of cur, ip. for 40 days | ↓tumor volume and tumor weight |
[100] | Xenotransplant-SW620 | Not specified | ↑ cell death and survival rates ↓ tumor volume and proliferation |
[105] | Titanium dioxide with dimethylhydrazine-induced CRC | 50 mg/kg 5-FU coated with pectin + 200 mg/kg cur coated with pectin | Ameliorate histopathology |
Cell Lines | |||
---|---|---|---|
Author | Model | Condition | Mechanism |
[116] | HCT-116 p53+/+ and HCT-116 p53−/− | 5-FU IC50 + RSV 25–200 µM | ↑ cleaved caspase-6 and apoptosis G1 cell cycle arrest |
[117] | HCT-116 p53+/+ and HCT-116 p53−/− | 5-FU 50 µM + RSV 200 µM | ↑ cleaved caspase-6, apoptosis, centrosome amplification |
[120] | HCT-116 | 5-FU 0.5 µM + RSV 15 µM | ↓ cell viability, cell proliferation ↑ apoptosis (↓ Bcl-xL, ↑ Bax, cleaved caspase-9, -3, -8, and PARP), DNA damage, p-JNK, p38 Cell cycle arrest at S-phase |
[121] | HT-29 and SW620 | 5-FU 10 µM + RSV 100 µM | Sensitivity to 5-FU ↑ mitochondrial oxidative stress, ROS, lipid peroxidation ↓ catalase GPx, SOD, p-AKT, p-STAT3 |
[122] | HCT-116/HCT-116-5-FUR in a 3D-alginate tumor microenvironment | 5-FU 0.01, 0.1 and 1 nM + RSV 5 µM | ↓ proliferation ↑ sensitivity to 5-FU, colony number, intercellular junctions (↑ E-cadherin, claudin-2), apoptosis, and cleaved caspase-3 ↓EMT (↓ vimentin, Slug), p-NF-κB-p65, p-NF-κB-p50, IκBα |
[123] | SW620 | 5-FU 10 µM + RSV 10 µM | ↓ cell viability ↑ H2O2 production |
[124] | HCT-116/HCT-116-5-FUR in a 3D-alginate tumor microenvironment stimulated by TNF-β | 5-FU 1 nM + RSV 5 µM | ↑ apoptosis ↓ colony number, stemness (↓ ALDH1, CD44, CD133), p-NF-κB-p65, CXCR4, MMP9, EMT (↓ vimentin, Slug, ↑ E-cadherin) |
[125] | HCT-116 and DLD1 | 5-FU 10 µM + RSV 25 µM | Cell cycle arrest in S-phase ↑ apoptosis ↓ EMT (↓ vimentin, Slug), migration, stemness (↓ CD51, CD44), pSTAT3, pAkt, and telomerase activity |
[126] | SW480-CD133+ and LoVo-CD133+ | 5-FU 15 μM + RSV 80 μM | ↑ sensitivity to 5-FU, apoptosis (↑ Bax) |
[127] | HCT-116 and HCT-116-5-FUR | 5-FU 2 nM + RSV 5 µM | ↑5-FU sensitivity by β1-Integrin receptors ↓ cell viability, cell colony formation, migration and invasion, mesenchymal phenotype, apoptosis, HIF-α expression, and inflammation (↓ p-NF-κB) ↓ vascularization (↓ VEGF), stemness (↓ CD44, CD133) |
Animal models | |||
Author | Model | Condition | Mechanism |
[128] | N-Nitroso-N-methyl urea induced colorectal cancer in rats | i.p. treatment 5-FU 6.25 mg/kg on days 1, 3, and 5, with cycle being repeated every four weeks for 2 months, and orally treated with RSV dissolved in DMSO: 100µ/kg daily for 2 months. | More intact surface epithelium ↑ normal colon cells, integrity of mucosal architecture ↓ inflammation, severity of colon injury, epithelial loss, inflammatory cell infiltrate, epithelial hyperplasia, irregular crypts, goblet cell, proliferation, COX-2 |
[119] | N-methyl nitrosourea-induced colon cancer in rats | Colon cancer rats orally treated with RSV (10 mg/kg/day) and i.p. injected with 5-FU (12.5 mg/kg, on days 1, 3, and 5 with the cycle being repeated every 4 weeks) over 4 months | Ameliorate liver function (↓ AST, ↓ ALT), kidney function (↓ urea, ↓ creatinine), AOPP, MDA ↑ SOD, p53 ↓ NF-κB, COX-2 Ameliorate histopathology |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez-Muñoz, K.V.; Sánchez-Barrera, C.Á.; Meraz-Ríos, M.; Reyes, J.L.; Pérez-Yépez, E.A.; Ortiz-Melo, M.T.; Terrazas, L.I.; Mendoza-Rodriguez, M.G. Natural Alternatives in the Treatment of Colorectal Cancer: A Mechanisms Perspective. Biomolecules 2025, 15, 326. https://doi.org/10.3390/biom15030326
Fernandez-Muñoz KV, Sánchez-Barrera CÁ, Meraz-Ríos M, Reyes JL, Pérez-Yépez EA, Ortiz-Melo MT, Terrazas LI, Mendoza-Rodriguez MG. Natural Alternatives in the Treatment of Colorectal Cancer: A Mechanisms Perspective. Biomolecules. 2025; 15(3):326. https://doi.org/10.3390/biom15030326
Chicago/Turabian StyleFernandez-Muñoz, Karen Vanessa, Cuauhtémoc Ángel Sánchez-Barrera, Marco Meraz-Ríos, Jose Luis Reyes, Eloy Andrés Pérez-Yépez, Maria Teresa Ortiz-Melo, Luis I. Terrazas, and Monica Graciela Mendoza-Rodriguez. 2025. "Natural Alternatives in the Treatment of Colorectal Cancer: A Mechanisms Perspective" Biomolecules 15, no. 3: 326. https://doi.org/10.3390/biom15030326
APA StyleFernandez-Muñoz, K. V., Sánchez-Barrera, C. Á., Meraz-Ríos, M., Reyes, J. L., Pérez-Yépez, E. A., Ortiz-Melo, M. T., Terrazas, L. I., & Mendoza-Rodriguez, M. G. (2025). Natural Alternatives in the Treatment of Colorectal Cancer: A Mechanisms Perspective. Biomolecules, 15(3), 326. https://doi.org/10.3390/biom15030326