Cetuximab and Paclitaxel Drug Response in Head and Neck Tumor Stem Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Identification and Separation of TSCs via Cell Sorting
2.3. Confirmation of Stemness Properties
2.4. Invasion and Migration Assay
2.5. Sphere-Forming Assay
2.6. Treatment and MTS Assay
2.7. Gene Expression
2.8. Protein Expression
2.9. Statistical Analysis
3. Results
3.1. Separation of SCC-28 and FADU Cells into TSC and Non-TSC Subsets
3.2. ALDH-Positive Cells Have Greater Stemness Properties than Those of ALDH-Negative Cells
3.3. The Combination of Cetuximab and Paclitaxel Is Efficient in Treating TSCs and Non-TSCs in HNC
3.4. EGFR, NTRK2, KRAS, and HIF-1α Exhibit Different Gene Expression Levels Between TSCs and Non-TSCs
3.5. Protein Expression Levels of EGFR, TRKB, KRAS, and HIF-1α Are Different Depending on the Tumor Cell Line
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syrjänen, S.; Syrjänen, K. HPV in Head and Neck Carcinomas: Different HPV Profiles in Oropharyngeal Carcinomas—Why? Acta Cytol. 2019, 63, 124–142. [Google Scholar] [CrossRef]
- OMS. Cancer Tomorrow. 2022. Available online: https://gco.iarc.fr/tomorrow/en/dataviz/isotype (accessed on 6 January 2022).
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Head and Neck Cancer-National Cancer Institute. 2022. Available online: https://www.cancer.gov/types/head-and-neck/head-neck-fact-sheet#:~:text=Researchers%20estimated%20that%20more%20than,throat%2C%20or%20voice%20box%20cancer (accessed on 12 January 2023).
- Bian, S.; Wang, Z.; Chen, Y.; Li, R. SPLUNC1 and MLL3 regulate cancer stem cells in nasopharyngeal carcinoma. J. BUON 2019, 24, 1700–1705. [Google Scholar]
- Chow, L.Q.M. Head and Neck Cancer. N. Engl. J. Med. 2020, 382, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Wiechec, E.; Hansson, K.T.; Alexandersson, L.; Jönsson, J.I.; Roberg, K. Hypoxia Mediates Differential Response to Anti-EGFR Therapy in HNSCC Cells. Int. J. Mol. Sci. 2017, 18, 943. [Google Scholar] [CrossRef]
- Reid, P.A.; Wilson, P.; Li, Y.; Marcu, L.G.; Bezak, E. Current understanding of cancer stem cells: Review of their radiobiology and role in head and neck cancers. Head Neck 2017, 39, 1920–1932. [Google Scholar] [CrossRef] [PubMed]
- Curtarelli, R.B.; Gonçalves, J.M.; Dos Santos, L.G.P.; Savi, M.G.; Nör, J.E.; Mezzomo, L.A.M.; Rodríguez Cordeiro, M.M. Expression of Cancer Stem Cell Biomarkers in Human Head and Neck Carcinomas: A Systematic Review. Stem. Cell Rev. Rep. 2018, 14, 769–784. [Google Scholar] [CrossRef]
- Fernandes, G.M.M.; Galbiatti-Dias, A.L.S.; Ferreira, L.A.M.; Serafim Junior, V.; Rodrigues-Fleming, G.H.; de Oliveira-Cucolo, J.G.; Biselli-Chicote, P.M.; Kawasaki-Oyama, R.S.; Maniglia, J.V.; Pavarino, É.; et al. Anti-EGFR treatment effects on laryngeal cancer stem cells. Am. J. Transl. Res. 2021, 13, 143–155. [Google Scholar]
- Fernandes, G.M.M.; Serafim Junior, V.; Galbiatti-Dias, A.L.S.; Ferreira, L.A.M.; Castanhole-Nunes, M.M.U.; Kawasaki-Oyama, R.S.; Maniglia, J.V.; Pavarino, E.C.; Goloni-Bertollo, E.M. Treatment effects of the EGFR pathway drugs on head and neck cancer stem cells. Am. J. Cancer. Res. 2022, 12, 4196–4210. [Google Scholar] [PubMed]
- Arteaga, C. Targeting HER1/EGFR: A molecular approach to cancer therapy. Semin. Oncol. 2003, 30, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.R.; Byers, L.A.; Nilsson, M.; Diao, L.; Wang, J.; Li, L.; Tong, P.; Hofstad, M.; Saigal, B.; Wistuba, I.; et al. Integrative proteomic and transcriptomic analysis provides evidence for TrkB (NTRK2) as a therapeutic target in combination with tyrosine kinase inhibitors for non-small cell lung cancer. Oncotarget 2018, 9, 14268–14284. [Google Scholar] [CrossRef] [PubMed]
- de Farias, C.B.; Heinen, T.E.; dos Santos, R.P.; Abujamra, A.L.; Schwartsmann, G.; Roesler, R. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition. Biochem. Biophys. Res. Commun. 2012, 425, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Brenner, J.C.; Graham, M.P.; Kumar, B.; Saunders, L.M.; Kupfer, R.; Lyons, R.H.; Bradford, C.R.; Carey, T.E. Genotyping of 73 UM-SCC head and neck squamous cell carcinoma cell lines. Head Neck 2010, 32, 417–426. [Google Scholar] [CrossRef]
- ATCC. FaDu-HTB-43. Available online: https://www.atcc.org/products/htb-43 (accessed on 1 January 2025).
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Hossein, D. Quantifications of Western Blots with ImageJ; University of York: York, UK, 2015; Volume 854. [Google Scholar]
- Atashzar, M.R.; Baharlou, R.; Karami, J.; Abdollahi, H.; Rezaei, R.; Pourramezan, F.; Zoljalali Moghaddam, S.H. Cancer stem cells: A review from origin to therapeutic implications. J. Cell Physiol. 2020, 235, 790–803. [Google Scholar] [CrossRef]
- Heft Neal, M.E.; Brenner, J.C.; Prince, M.E.P.; Chinn, S.B. Advancement in Cancer Stem Cell Biology and Precision Medicine-Review Article Head and Neck Cancer Stem Cell Plasticity and the Tumor Microenvironment. Front. Cell Dev. Biol. 2021, 9, 660210. [Google Scholar] [CrossRef] [PubMed]
- Barzegar Behrooz, A.; Syahir, A.; Ahmad, S. CD133: Beyond a cancer stem cell biomarker. J. Drug Target. 2019, 27, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Wee, P.; Wang, Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers 2017, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Götz, R.; Sendtner, M. Cooperation of tyrosine kinase receptor TrkB and epidermal growth factor receptor signaling enhances migration and dispersal of lung tumor cells. PLoS ONE 2014, 9, e100944. [Google Scholar] [CrossRef]
- Serafim Junior, V.; Fernandes, G.M.M.; Oliveira-Cucolo, J.G.; Pavarino, E.C.; Goloni-Bertollo, E.M. Role of Tropomyosin-related kinase B receptor and brain-derived neurotrophic factor in cancer. Cytokine 2020, 136, 155270. [Google Scholar] [CrossRef] [PubMed]
- Amatu, A.; Sartore-Bianchi, A.; Siena, S. gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 2016, 1, e000023. [Google Scholar] [CrossRef]
- Khelwatty, S.; Essapen, S.; Bagwan, I.; Green, M.; Seddon, A.; Modjtahedi, H. The impact of co-expression of wild-type EGFR and its ligands determined by immunohistochemistry for response to treatment with cetuximab in patients with metastatic colorectal cancer. Oncotarget 2017, 8, 7666–7677. [Google Scholar] [CrossRef]
- Jedlinski, A.; Ansell, A.; Johansson, A.C.; Roberg, K. EGFR status and EGFR ligand expression influence the treatment response of head and neck cancer cell lines. J. Oral Pathol. Med. 2013, 42, 26–36. [Google Scholar] [CrossRef]
- Parikh, P.; Patil, V.; Agarwal, J.P.; Chaturvedi, P.; Vaidya, A.; Rathod, S.; Noronha, V.; Joshi, A.; Jamshed, A.; Bhattacharya, G.S.; et al. Guidelines for treatment of recurrent or metastatic head and neck cancer. Indian J. Cancer 2014, 51, 89–94. [Google Scholar] [CrossRef]
- Ang, K.K.; Berkey, B.A.; Tu, X.; Zhang, H.Z.; Katz, R.; Hammond, E.H.; Fu, K.K.; Milas, L. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 2002, 62, 7350–7356. [Google Scholar]
- Kjær, I.; Lindsted, T.; Fröhlich, C.; Olsen, J.V.; Horak, I.D.; Kragh, M.; Pedersen, M.W. Cetuximab Resistance in Squamous Carcinomas of the Upper Aerodigestive Tract Is Driven by Receptor Tyrosine Kinase Plasticity: Potential for mAb Mixtures. Mol. Cancer Ther. 2016, 15, 1614–1626. [Google Scholar] [CrossRef]
- La Fleur, L.; Johansson, A.C.; Roberg, K. A CD44high/EGFRlow subpopulation within head and neck cancer cell lines shows an epithelial-mesenchymal transition phenotype and resistance to treatment. PLoS ONE 2012, 7, e44071. [Google Scholar] [CrossRef]
- Grau, J.J.; Mesía, R.; de la Iglesia-Vicente, M.; Williams, E.S.; Taberna, M.; Caballero, M.; Larque, A.B.; de la Oliva, J.; Cordón-Cardo, C.; Domingo-Domenech, J. Enrichment of Cells with Cancer Stem Cell-Like Markers in Relapses of Chemoresistant Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma. Oncology 2016, 90, 267–272. [Google Scholar] [CrossRef]
- Silva Galbiatti-Dias, A.L.; Fernandes, G.M.M.; Castanhole-Nunes, M.M.U.; Hidalgo, L.F.; Nascimento Filho, C.H.V.; Kawasaki-Oyama, R.S.; Ferreira, L.A.M.; Biselli-Chicote, P.M.; Pavarino, É.; Goloni-Bertollo, E.M. Relationship between CD44. Am. J. Cancer Res. 2018, 8, 1633–1641. [Google Scholar]
- De Roock, W.; Piessevaux, H.; De Schutter, J.; Janssens, M.; De Hertogh, G.; Personeni, N.; Biesmans, B.; Van Laethem, J.L.; Peeters, M.; Humblet, Y.; et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann. Oncol. 2008, 19, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Saki, M.; Toulany, M.; Rodemann, H.P. Acquired resistance to cetuximab is associated with the overexpression of Ras family members and the loss of radiosensitization in head and neck cancer cells. Radiother. Oncol. 2013, 108, 473–478. [Google Scholar] [CrossRef]
- Manchado, E.; Weissmueller, S.; Morris, J.P.; Chen, C.C.; Wullenkord, R.; Lujambio, A.; de Stanchina, E.; Poirier, J.T.; Gainor, J.F.; Corcoran, R.B.; et al. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature 2016, 534, 647–651. [Google Scholar] [CrossRef]
- Cuzziol, C.I.; Marzochi, L.L.; Possebon, V.S.; Kawasaki-Oyama, R.S.; Mattos, M.F.; Junior, V.S.; Ferreira, L.A.M.; Pavarino, É.; Castanhole-Nunes, M.M.U.; Goloni-Bertollo, E.M. Regulation of VEGFA, KRAS, and NFE2L2 Oncogenes by MicroRNAs in Head and Neck Cancer. Int. J. Mol. Sci. 2022, 23, 7483. [Google Scholar] [CrossRef]
- Wu, Y.; Yun, D.; Zhao, Y.; Wang, Y.; Sun, R.; Yan, Q.; Zhang, S.; Lu, M.; Zhang, Z.; Lu, D.; et al. Down regulation of RNA binding motif, single-stranded interacting protein 3, along with up regulation of nuclear HIF1A correlates with poor prognosis in patients with gastric cancer. Oncotarget 2017, 8, 1262–1277. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.F.; Wang, S.S.; Zheng, M.; Dai, L.L.; Wang, K.; Gao, X.L.; Cao, M.X.; Yu, X.H.; Pang, X.; Zhang, M.; et al. Hypoxia promotes vasculogenic mimicry formation by vascular endothelial growth factor A mediating epithelial-mesenchymal transition in salivary adenoid cystic carcinoma. Cell Prolif. 2019, 52, e12600. [Google Scholar] [CrossRef]
- Rodriguez, D.; Watts, D.; Gaete, D.; Sormendi, S.; Wielockx, B. Hypoxia Pathway Proteins and Their Impact on the Blood Vasculature. Int. J. Mol. Sci. 2021, 22, 9191. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.V.N. New natural products able to act on the stabilization of microtubules, an important target against cancer. Química Nova 2004, 27. [Google Scholar] [CrossRef]
- Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 2014, 25, 2677–2681. [Google Scholar] [CrossRef]
- Minichiello, L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 2009, 10, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Sueth-Santiago, V.; Decote-Ricardo, D.; Morrot, A.; Freire-de-Lima, C.G.; Lima, M.E. Challenges in the chemotherapy of Chagas disease: Looking for possibilities related to the differences and similarities between the parasite and host. World J. Biol. Chem. 2017, 8, 57–80. [Google Scholar] [CrossRef]
- Mori, Y.; Yamawaki, K.; Ishiguro, T.; Yoshihara, K.; Ueda, H.; Sato, A.; Ohata, H.; Yoshida, Y.; Minamino, T.; Okamoto, K.; et al. ALDH-Dependent Glycolytic Activation Mediates Stemness and Paclitaxel Resistance in Patient-Derived Spheroid Models of Uterine Endometrial Cancer. Stem Cell Rep. 2019, 13, 730–746. [Google Scholar] [CrossRef]
- Yin, B.; Ma, Z.Y.; Zhou, Z.W.; Gao, W.C.; Du, Z.G.; Zhao, Z.H.; Li, Q.Q. The TrkB+ cancer stem cells contribute to post-chemotherapy recurrence of triple-negative breast cancers in an orthotopic mouse model. Oncogene 2015, 34, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Bernad, I.P.; Trufero, J.M.; Urquizu, L.C.; Pazo Cid, R.A.; de Miguel, A.C.; Agustin, M.J.; Lanzuela, M.; Antón, A. Activity of weekly paclitaxel-cetuximab chemotherapy in unselected patients with recurrent/metastatic head and neck squamous cell carcinoma: Prognostic factors. Clin. Transl. Oncol. 2017, 19, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Vermorken, J.B.; Mesia, R.; Rivera, F.; Remenar, E.; Kawecki, A.; Rottey, S.; Erfan, J.; Zabolotnyy, D.; Kienzer, H.R.; Cupissol, D.; et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 2008, 359, 1116–1127. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.M.; Noronha, V.; Joshi, A.; Agarwala, V.; Muddu, V.; Ramaswamy, A.; Chandrasekharan, A.; Dhumal, S.; Juvekar, S.; Arya, A.; et al. Comparison of paclitaxel-cetuximab chemotherapy versus metronomic chemotherapy consisting of methotrexate and celecoxib as palliative chemotherapy in head and neck cancers. Indian J. Cancer 2017, 54, 20–24. [Google Scholar] [CrossRef]
- Harada, K.; Ferdous, T.; Kobayashi, H.; Ueyama, Y. Paclitaxel in combination with cetuximab exerts antitumor effect by suppressing NF-κB activity in human oral squamous cell carcinoma cell lines. Int. J. Oncol. 2014, 45, 2439–2445. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serafim Júnior, V.; Fernandes, G.M.d.M.; Tedeschi, B.B.B.; Cuzziol, C.I.; Castanhole-Nunes, M.M.U.; Ferreira, L.A.M.; Rodrigues, G.H.; de Oliveira-Cucolo, J.G.; Pavarino, É.C.; Goloni-Bertollo, E.M. Cetuximab and Paclitaxel Drug Response in Head and Neck Tumor Stem Cells. Biomolecules 2025, 15, 352. https://doi.org/10.3390/biom15030352
Serafim Júnior V, Fernandes GMdM, Tedeschi BBB, Cuzziol CI, Castanhole-Nunes MMU, Ferreira LAM, Rodrigues GH, de Oliveira-Cucolo JG, Pavarino ÉC, Goloni-Bertollo EM. Cetuximab and Paclitaxel Drug Response in Head and Neck Tumor Stem Cells. Biomolecules. 2025; 15(3):352. https://doi.org/10.3390/biom15030352
Chicago/Turabian StyleSerafim Júnior, Vilson, Glaucia Maria de Mendonça Fernandes, Bianca Barbério Bogdan Tedeschi, Caroline Izak Cuzziol, Márcia Maria Urbanin Castanhole-Nunes, Letícia Antunes Muniz Ferreira, Gabriela Helena Rodrigues, Juliana Garcia de Oliveira-Cucolo, Érika Cristina Pavarino, and Eny Maria Goloni-Bertollo. 2025. "Cetuximab and Paclitaxel Drug Response in Head and Neck Tumor Stem Cells" Biomolecules 15, no. 3: 352. https://doi.org/10.3390/biom15030352
APA StyleSerafim Júnior, V., Fernandes, G. M. d. M., Tedeschi, B. B. B., Cuzziol, C. I., Castanhole-Nunes, M. M. U., Ferreira, L. A. M., Rodrigues, G. H., de Oliveira-Cucolo, J. G., Pavarino, É. C., & Goloni-Bertollo, E. M. (2025). Cetuximab and Paclitaxel Drug Response in Head and Neck Tumor Stem Cells. Biomolecules, 15(3), 352. https://doi.org/10.3390/biom15030352