Effects of Brimonidine, Latanoprost, and Omidenepag on Tunicamycin-Induced Endoplasmic Reticulum Stress and Fibrosis in Human Trabecular Meshwork Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. WST-1 Assay
2.3. Immunocytochemistry
2.4. Real-Time Quantitative Polymerase Chain Reaction (qPCR)
2.5. Western Blotting
2.6. Statistical Analysis
3. Results
3.1. Effects of Tunicamycin on Human TM Cell Viability
3.2. Effects of Tunicamycin on the mRNA Expressions of CHOP, GRP78, and sXBP-1 in Human TM Cells
3.3. Effects of Different BRI, LAT, and OMD Concentrations on CHOP, GRP78, and sXBP-1 mRNA Expressions in Tunicamycin-Treated Human TM Cells
3.4. Comparison of BRI, LAT, and OMD on CHOP, GRP78, and sXBP-1 mRNA Amount in Tunicamycin-Treated Human TM Cells
3.5. Effects of BRI, LAT, and OMD on CHOP, GRP78, and sXBP-1 Protein Expressions in Tunicamycin-Treated Human TM Cells
3.6. Effects of Different BRI, LAT, and OMD Concentrations on COL1A1, CTGF, Fibronectin, and α-SMA mRNA Expressions in Tunicamycin-Treated Human TM Cells
3.7. Comparison of BRI, LAT, and OMD on COL1A1, CTGF, Fibronectin, and α-SMA mRNA Expressions in Tunicamycin-Treated Human TM Cells
3.8. Effects of BRI, LAT, and OMD on COL1A1, Fibronectin, F-Actin, and α-SMA Protein Expressions in Tunicamycin-Treated Human TM Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gungor, D.; Kayikcioglu, O.R.; Altinisik, M.; Dogruya, S. Changes in optic nerve head and macula optical coherence tomography angiography parameters before and after trabeculectomy. Jpn. J. Ophthalmol. 2022, 66, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Honjo, M.; Liu, M.; Aihara, M. An Autotaxin-Induced Ocular Hypertension Mouse Model Reflecting Physiological Aqueous Biomarker. Investig. Ophthalmol. Vis. Sci. 2024, 65, 32. [Google Scholar] [CrossRef]
- Baudouin, C.; Kolko, M.; Melik-Parsadaniantz, S.; Messmer, E.M. Inflammation in Glaucoma: From the back to the front of the eye, and beyond. Prog. Retin. Eye Res. 2021, 83, 100916. [Google Scholar] [CrossRef]
- Karimi, A.; Halabian, M.; Razaghi, R.; Downs, J.C.; Kelley, M.J.; Acott, T.S. Modeling the Endothelial Glycocalyx Layer in the Human Conventional Aqueous Outflow Pathway. Cells 2022, 11, 3925. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Honjo, M.; Yamagishi, R.; Aihara, M. Effects of Brimonidine, Omidenepag Isopropyl, and Ripasudil Ophthalmic Solutions to Protect against H2O2-Induced Oxidative Stress in Human Trabecular Meshwork Cells. Curr. Eye Res. 2023, 48, 1014–1025. [Google Scholar] [CrossRef]
- Honjo, M.; Yamagishi, R.; Igarashi, N.; Ku, C.Y.; Kurano, M.; Yatomi, Y.; Igarashi, K.; Aihara, M. Effect of postoperative corticosteroids on surgical outcome and aqueous autotaxin following combined cataract and microhook ab interno trabeculotomy. Sci. Rep. 2021, 11, 747. [Google Scholar] [CrossRef] [PubMed]
- Honjo, M.; Igarashi, N.; Nishida, J.; Kurano, M.; Yatomi, Y.; Igarashi, K.; Kano, K.; Aoki, J.; Aihara, M. Role of the Autotaxin-LPA Pathway in Dexamethasone-Induced Fibrotic Responses and Extracellular Matrix Production in Human Trabecular Meshwork Cells. Investig. Ophthalmol. Vis. Sci. 2018, 59, 21–30. [Google Scholar] [CrossRef]
- Ding, Q.J.; Zhu, W.; Cook, A.C.; Anfinson, K.R.; Tucker, B.A.; Kuehn, M.H. Induction of trabecular meshwork cells from induced pluripotent stem cells. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7065–7072. [Google Scholar] [CrossRef]
- Buffault, J.; Brignole-Baudouin, F.; Labbe, A.; Baudouin, C. An Overview of Current Glaucomatous Trabecular Meshwork Models. Curr. Eye Res. 2023, 48, 1089–1099. [Google Scholar] [CrossRef]
- Zhu, W.; Godwin, C.R.; Cheng, L.; Scheetz, T.E.; Kuehn, M.H. Transplantation of iPSC-TM stimulates division of trabecular meshwork cells in human eyes. Sci. Rep. 2020, 10, 2905. [Google Scholar] [CrossRef]
- Yoshida, H. ER stress and diseases. FEBS J. 2007, 274, 630–658. [Google Scholar] [CrossRef] [PubMed]
- Endo, S.; Hiramatsu, N.; Hayakawa, K.; Okamura, M.; Kasai, A.; Tagawa, Y.; Sawada, N.; Yao, J.; Kitamura, M. Geranylgeranylacetone, an inducer of the 70-kDa heat shock protein (HSP70), elicits unfolded protein response and coordinates cellular fate independently of HSP70. Mol. Pharmacol. 2007, 72, 1337–1348. [Google Scholar] [CrossRef]
- Kasetti, R.B.; Patel, P.D.; Maddineni, P.; Patil, S.; Kiehlbauch, C.; Millar, J.C.; Searby, C.C.; Raghunathan, V.; Sheffield, V.C.; Zode, G.S. ATF4 leads to glaucoma by promoting protein synthesis and ER client protein load. Nat. Commun. 2020, 11, 5594. [Google Scholar] [CrossRef] [PubMed]
- Chai, F.; Yan, H.; Zhao, X.; Li, J.; Pei, C. The role of GRP78 in oxidative stress induced by tunicamycin in trabecular meshwork cells. Acta Biochim. Pol. 2022, 69, 59–64. [Google Scholar] [CrossRef]
- Oyadomari, S.; Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004, 11, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.C.; Bhattacharya, S.; Clark, A.F.; Zode, G.S. Increased Endoplasmic Reticulum Stress in Human Glaucomatous Trabecular Meshwork Cells and Tissues. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3860–3868. [Google Scholar] [CrossRef]
- Akiyama, T.; Fujishiro, T.; Sugimoto, K.; Sakata, R.; Saito, H.; Honjo, M.; Aihara, M. Short-term outcomes of micropulse transscleral laser therapy using the revised delivery probe in refractory glaucoma. Jpn. J. Ophthalmol. 2022, 66, 549–558. [Google Scholar] [CrossRef]
- Inoue, K.; Kunimatsu-Sanuki, S.; Ishida, K.; Tomita, G. Intraocular pressure-lowering effects and safety of brimonidine/brinzolamide fixed combination after switching from other medications. Jpn. J. Ophthalmol. 2022, 66, 440–446. [Google Scholar] [CrossRef]
- Sakata, R.; Mizoue, S.; Yoshikawa, K.; Adachi, M.; Ohkubo, S.; Hamada, N.; Naito, T.; Muramatsu, T.; Hara, T.; Asato, R.; et al. Additive effects of brimonidine tartrate 0.1%/brinzolamide 1% fixed-dose combination in prostaglandin analog-treated Japanese glaucoma patients. Jpn. J. Ophthalmol. 2023, 67, 668–677. [Google Scholar] [CrossRef]
- Aspberg, J.; Heijl, A.; Johannesson, G.; Linden, C.; Andersson-Geimer, S.; Bengtsson, B. Intraocular Pressure Lowering Effect of Latanoprost as First-line Treatment for Glaucoma. J. Glaucoma 2018, 27, 976–980. [Google Scholar] [CrossRef]
- Fan, S.; Agrawal, A.; Gulati, V.; Neely, D.G.; Toris, C.B. Daytime and nighttime effects of brimonidine on IOP and aqueous humor dynamics in participants with ocular hypertension. J. Glaucoma 2014, 23, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Honjo, M.; Yamagishi-Kimura, R.; Sakata, R.; Watanabe, S.; Aihara, M. Neuroprotective effect of omidenepag on excitotoxic retinal ganglion cell death regulating COX-2-EP2-cAMP-PKA/Epac pathway via Neuron-Glia interaction. Neuroscience 2024, 553, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Esaki, Y.; Katsuta, O.; Kamio, H.; Noto, T.; Mano, H.; Iwamura, R.; Yoneda, K.; Odani-Kawabata, N.; Morishima, K.; Shams, N.K. The Antiglaucoma Agent and EP2 Receptor Agonist Omidenepag Does Not Affect Eyelash Growth in Mice. J. Ocul. Pharmacol. Ther. 2020, 36, 529–533. [Google Scholar] [CrossRef]
- Ueda, K.; Sakata, R.; Fujishiro, T.; Honjo, M.; Shirato, S.; Aihara, M. Newly or switching effect of a selective EP2 agonist on intraocular pressure in Japanese patients with open-angle glaucoma. Jpn. J. Ophthalmol. 2022, 66, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Su, T.P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 2007, 131, 596–610. [Google Scholar] [CrossRef]
- Dias-Teixeira, K.L.; Pereira, R.M.; Silva, J.S.; Fasel, N.; Aktas, B.H.; Lopes, U.G. Unveiling the Role of the Integrated Endoplasmic Reticulum Stress Response in Leishmania Infection—Future Perspectives. Front. Immunol. 2016, 7, 283. [Google Scholar] [CrossRef]
- Ito, M.; Matsuoka, I. Inhibition of P2Y6 receptor-mediated phospholipase C activation and Ca2+ signalling by prostaglandin E2 in J774 murine macrophages. Eur. J. Pharmacol. 2015, 749, 124–132. [Google Scholar] [CrossRef]
- Schütte, M.; Wolosin, J.M. Ca2+ mobilization and interlayer signal transfer in the heterocellular bilayered epithelium of the rabbit ciliary body. J. Physiol. 1996, 496, 25–37. [Google Scholar] [CrossRef]
- Kanamori, A.; Naka, M.; Fukuda, M.; Nakamura, M.; Negi, A. Latanoprost protects rat retinal ganglion cells from apoptosis in vitro and in vivo. Exp. Eye Res. 2009, 88, 535–541. [Google Scholar] [CrossRef]
- Wu, J.; Chen, S.; Liu, H.; Zhang, Z.; Ni, Z.; Chen, J.; Yang, Z.; Nie, Y.; Fan, D. Tunicamycin specifically aggravates ER stress and overcomes chemoresistance in multidrug-resistant gastric cancer cells by inhibiting N-glycosylation. J. Exp. Clin. Cancer Res. 2018, 37, 272. [Google Scholar] [CrossRef]
- Liu, M.; Honjo, M.; Yamagishi, R.; Igarashi, N.; Nakamura, N.; Kurano, M.; Yatomi, Y.; Igarashi, K.; Aihara, M. Fibrotic Response of Human Trabecular Meshwork Cells to Transforming Growth Factor-Beta 3 and Autotaxin in Aqueous Humor. Biomolecules 2022, 12, 1231. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, N.; Honjo, M.; Aihara, M. mTOR inhibitors potentially reduce TGF-beta2-induced fibrogenic changes in trabecular meshwork cells. Sci. Rep. 2021, 11, 14111. [Google Scholar] [CrossRef] [PubMed]
- Keller, K.E.; Bhattacharya, S.K.; Borras, T.; Brunner, T.M.; Chansangpetch, S.; Clark, A.F.; Dismuke, W.M.; Du, Y.; Elliott, M.H.; Ethier, C.R.; et al. Consensus recommendations for trabecular meshwork cell isolation, characterization and culture. Exp. Eye Res. 2018, 171, 164–173. [Google Scholar] [CrossRef]
- Suzuki, G.; Kunikane, E.; Shigemi, W.; Shinno, K.; Kozai, S.; Kurata, M.; Kawamura, A. Ocular and systemic pharmacokinetics of brimonidine and brinzolamide after topical administration in rabbits: Comparison between fixed-combination and single-drug formulations. Curr. Eye Res. 2021, 46, 380–386. [Google Scholar] [CrossRef]
- Sjöquist, B.; Stjernschantz, J. Ocular and Systemic Pharmacokinetics Of Latanoprost in Humans. Surv. Ophthalmol. 2002, 47, S6–S12. [Google Scholar] [CrossRef]
- Acheampong, A.A.; Small, D.; Baumgarten, V.; Welty, D.; Tang-Liu, D. Formulation effects on ocular absorption of brimonidine in rabbit eyes. J. Ocul. Pharmacol. Ther. 2002, 18, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, N.; Honjo, M.; Yamagishi, R.; Kurano, M.; Yatomi, Y.; Igarashi, K.; Kaburaki, T.; Aihara, M. Involvement of autotaxin in the pathophysiology of elevated intraocular pressure in Posner-Schlossman syndrome. Sci. Rep. 2020, 10, 6265. [Google Scholar] [CrossRef]
- Nakamura, N.; Yamagishi, R.; Honjo, M.; Igarashi, N.; Shimizu, S.; Aihara, M. Effects of topical TGF-β1, TGF-β2, ATX, and LPA on IOP elevation and regulation of the conventional aqueous humor outflow pathway. Mol. Vis. 2021, 27, 61. [Google Scholar]
- Yamaguchi, H.; Wang, H.G. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J. Biol. Chem. 2004, 279, 45495–45502. [Google Scholar] [CrossRef]
- Wang, Y.; Osakue, D.; Yang, E.; Zhou, Y.; Gong, H.; Xia, X.; Du, Y. Endoplasmic Reticulum Stress Response of Trabecular Meshwork Stem Cells and Trabecular Meshwork Cells and Protective Effects of Activated PERK Pathway. Investig. Ophthalmol. Vis. Sci. 2019, 60, 265–273. [Google Scholar] [CrossRef]
- Yokouchi, M.; Hiramatsu, N.; Hayakawa, K.; Okamura, M.; Du, S.; Kasai, A.; Takano, Y.; Shitamura, A.; Shimada, T.; Yao, J.; et al. Involvement of selective reactive oxygen species upstream of proapoptotic branches of unfolded protein response. J. Biol. Chem. 2008, 283, 4252–4260. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.; Zhao, Z.; He, Y.; Zhang, J.; Su, X.; Sun, N.; Fan, Z. Endoplasmic reticulum stress is involved in retinal injury induced by repeated transient spikes of intraocular pressure. J. Zhejiang Univ. Sci. B 2021, 22, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Scheuner, D.; Ron, D.; Pennathur, S.; Kaufman, R.J. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J. Clin. Invest. 2008, 118, 3378–3389. [Google Scholar] [CrossRef]
- So, J.; Warsh, J.J.; Li, P.P. Impaired endoplasmic reticulum stress response in B-lymphoblasts from patients with bipolar-I disorder. Biol. Psychiatry 2007, 62, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Wordinger, R.J.; Sharma, T.; Clark, A.F. The role of TGF-beta2 and bone morphogenetic proteins in the trabecular meshwork and glaucoma. J. Ocul. Pharmacol. Ther. 2014, 30, 154–162. [Google Scholar] [CrossRef]
- Taurone, S.; Ripandelli, G.; Pacella, E.; Bianchi, E.; Plateroti, A.M.; De Vito, S.; Plateroti, P.; Grippaudo, F.R.; Cavallotti, C.; Artico, M. Potential regulatory molecules in the human trabecular meshwork of patients with glaucoma: Immunohistochemical profile of a number of inflammatory cytokines. Mol. Med. Rep. 2015, 11, 1384–1390. [Google Scholar] [CrossRef] [PubMed]
- Rozpedek-Kaminska, W.; Galita, G.; Siwecka, N.; Carroll, S.L.; Diehl, J.A.; Kucharska, E.; Pytel, D.; Majsterek, I. The Potential Role of Small-Molecule PERK Inhibitor LDN-0060609 in Primary Open-Angle Glaucoma Treatment. Int. J. Mol. Sci. 2021, 22, 4494. [Google Scholar] [CrossRef]
- Kasetti, R.B.; Maddineni, P.; Kodati, B.; Nagarajan, B.; Yacoub, S. Astragaloside IV Attenuates Ocular Hypertension in a Mouse Model of TGFβ2 Induced Primary Open Angle Glaucoma. Int. J. Mol. Sci. 2021, 22, 12508. [Google Scholar] [CrossRef]
- Kasetti, R.B.; Maddineni, P.; Millar, J.C.; Clark, A.F.; Zode, G.S. Increased synthesis and deposition of extracellular matrix proteins leads to endoplasmic reticulum stress in the trabecular meshwork. Sci. Rep. 2017, 7, 14951. [Google Scholar] [CrossRef]
- Hong, S.; Han, S.H.; Kim, C.Y.; Kim, K.Y.; Song, Y.K.; Seong, G.J. Brimonidine reduces TGF-beta-induced extracellular matrix synthesis in human Tenon’s fibroblasts. BMC Ophthalmol. 2015, 15, 54. [Google Scholar] [CrossRef]
- Nakamura, N.; Honjo, M.; Yamagishi, R.; Igarashi, N.; Sakata, R.; Aihara, M. Effects of selective EP2 receptor agonist, omidenepag, on trabecular meshwork cells, Schlemm’s canal endothelial cells and ciliary muscle contraction. Sci. Rep. 2021, 11, 16257. [Google Scholar] [CrossRef] [PubMed]
- Terai, N.; Schlotzer-Schrehardt, U.; Lampel, J.; Bohm, A.G.; Rummelt, C.; Schmidt, E.; Pillunat, L.E. Effect of latanoprost and timolol on the histopathology of the human conjunctiva. Br. J. Ophthalmol. 2009, 93, 219–224. [Google Scholar] [CrossRef]
- Watanabe, M.; Sato, T.; Tsugeno, Y.; Higashide, M.; Furuhashi, M.; Umetsu, A.; Suzuki, S.; Ida, Y.; Hikage, F.; Ohguro, H. An alpha2-Adrenergic Agonist, Brimonidine, Beneficially Affects the TGF-beta2-Treated Cellular Properties in an In Vitro Culture Model. Bioengineering 2022, 9, 310. [Google Scholar] [CrossRef] [PubMed]
- Kalouche, G.; Beguier, F.; Bakria, M.; Melik-Parsadaniantz, S.; Leriche, C.; Debeir, T.; Rostene, W.; Baudouin, C.; Vige, X. Activation of Prostaglandin FP and EP2 Receptors Differently Modulates Myofibroblast Transition in a Model of Adult Primary Human Trabecular Meshwork Cells. Investig. Ophthalmol. Vis. Sci. 2016, 57, 1816–1825. [Google Scholar] [CrossRef] [PubMed]
- El-Shabrawi, Y.; Eckhardt, M.; Berghold, A.; Faulborn, J.; Auboeck, L.; Mangge, H.; Ardjomand, N. Synthesis pattern of matrix metalloproteinases (MMPs) and inhibitors (TIMPs) in human explant organ cultures after treatment with latanoprost and dexamethasone. Eye 2000, 14, 375–383. [Google Scholar] [CrossRef]
- Toris, C.B.; Gabelt, B.T.; Kaufman, P.L. Update on the mechanism of action of topical prostaglandins for intraocular pressure reduction. Surv. Ophthalmol. 2008, 53 (Suppl. 1), S107–S120. [Google Scholar] [CrossRef]
- Dijkstra, B.G.; Schneemann, A.; Hoyng, P.F. Flow after Prostaglandin E1 Is Mediated by Receptor-Coupled Adenylyl Cyclase in Human Anterior Segments. Investig. Ophthalmol. Vis. Sci. 1999, 40, 2622–2626. [Google Scholar]
- Anthony, T.L.; Pierce, K.L.; Stamer, W.D.; Regan, J.W. Prostaglandin F2 alpha receptors in the human trabecular meshwork. Investig. Ophthalmol. Vis. Sci. 1998, 39, 315–321. [Google Scholar]
- Stamer, W.D.; Huang, Y.; Seftor, R.E.; Svensson, S.S.; Snyder, R.W.; Regan, J.W. Cultured human trabecular meshwork cells express functional alpha 2A adrenergic receptors. Investig. Ophthalmol. Vis. Sci. 1996, 37, 2426–2433. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Honjo, M.; Yamagishi, R.; Aihara, M. Effects of Brimonidine, Latanoprost, and Omidenepag on Tunicamycin-Induced Endoplasmic Reticulum Stress and Fibrosis in Human Trabecular Meshwork Cells. Biomolecules 2025, 15, 389. https://doi.org/10.3390/biom15030389
Liu M, Honjo M, Yamagishi R, Aihara M. Effects of Brimonidine, Latanoprost, and Omidenepag on Tunicamycin-Induced Endoplasmic Reticulum Stress and Fibrosis in Human Trabecular Meshwork Cells. Biomolecules. 2025; 15(3):389. https://doi.org/10.3390/biom15030389
Chicago/Turabian StyleLiu, Mengxuan, Megumi Honjo, Reiko Yamagishi, and Makoto Aihara. 2025. "Effects of Brimonidine, Latanoprost, and Omidenepag on Tunicamycin-Induced Endoplasmic Reticulum Stress and Fibrosis in Human Trabecular Meshwork Cells" Biomolecules 15, no. 3: 389. https://doi.org/10.3390/biom15030389
APA StyleLiu, M., Honjo, M., Yamagishi, R., & Aihara, M. (2025). Effects of Brimonidine, Latanoprost, and Omidenepag on Tunicamycin-Induced Endoplasmic Reticulum Stress and Fibrosis in Human Trabecular Meshwork Cells. Biomolecules, 15(3), 389. https://doi.org/10.3390/biom15030389