Probiotics and Diet in Rosacea: Current Evidence and Future Perspectives
Abstract
:1. Introduction
1.1. Rosacea Clinical Features and Types
1.2. Pathogenesis of Rosacea
2. Gut Microbiota: Its Role and Implications in Dermatology
3. Diet and Rosacea
Author | Year | Country | Study Design | Rosacea Patient Number | Follow-Up | Investigation | Main Results and Conclusions |
---|---|---|---|---|---|---|---|
Alia E, Feng H 2022 [34] | 2022 | USA | Review | - | - | Dietary role in rosacea pathogenesis | Dietary factors influence rosacea pathogenesis and symptom management through TRPV channels, inflammation, and the gut–skin axis. |
Weiss E, Katta R 2017 [35] | 2017 | USA | Review | - | - | Dietary role in rosacea management | This study highlights the potential of dietary interventions in managing rosacea by modulating inflammation and immune responses. |
Li S, Cho E, Drucker AM, et al. 2017 [17] | 2017 | USA | Prospective cohort | 4945 (total cohort: 82,737) | 14 years | Alcohol intake and incidence of rosacea | Alcohol intake, especially white wine and liquor, is linked to increased rosacea risk in women. |
Li S, Chen ML, Drucker AM, et al. 2018 [45] | 2018 | USA | Prospective cohort | 4945 (total cohort: 82,737) | 14 years | Caffeine intake and incidence of rosacea | There is an inverse association between coffee consumption and rosacea risk. This suggests a protective effect of caffeine. |
Yuan X, Huang X, Wang B, et al. 2019 [41] | 2019 | China | Retrospective case–control | 2637 | 2 years | Association between dietary factors and rosacea | Dairy product consumption is found to have a protective effect. Fatty foods and tea are significantly associated with an increased risk of rosacea. Sweet foods, spicy foods, and coffee show no significant association with rosacea. |
Sharquie KE, Najim RA, et al. 2006 [50] | 2006 | Iraq | Double-blind, randomized, controlled trial | 25 | 6 months | Efficacy and safety of oral zinc sulfate in treating rosacea | Zinc sulfate is potentially effective in rosacea management. |
4. Rosacea and Gastrointestinal Diseases
5. Probiotics in Rosacea
Author | Year | Country | Study Design | Patient Number | Follow-Up | Investigation | Results and Conclusions |
---|---|---|---|---|---|---|---|
Gueniche et al. 2010 [67] | 2010 | France | In vitro study | - | - | Lactobacillus paracasei CNCM I-2116 (ST11) | Lactobacillus paracasei CNCM I-2116 (ST11) inhibit skin inflammation induced by substance P and recover skin barrier function. |
Buianova et al. 2018 [68] | 2018 | USA | Review article | - | - | Role of intestinal microbiome and probiotics in pathophysiology of rosacea | Probiotics may be a potential treatment option for rosacea. |
Manzhalii et al. 2016 [71] | 2016 | Germany | Clinical trial | 82 | 1 month | Escherichia coli Nissle 1917 on several dermatoses, including rosacea | Escherichia coli Nissle 1917 improves several skin diseases. |
Fortuna et al. 2016 [72] | 2016 | Italy | Case report | 1 | 6 months | Effect of combining low-dose doxycycline and probiotic therapy in treating scalp rosacea | The combination of doxycycline and probiotics improves symptoms in a patient with rosacea of the scalp. |
Knackstedt et al. 2020 [77] | 2020 | NS | Review article | - | - | Use of topical probiotics in treating skin conditions, including rosacea | Topical probiotics have anti-inflammatory and skin barrier-repairing properties. |
Pinchuk IV, Bressollier P, Verneuil B, et al. 200 [78] | 2001 | France | In vitro study | - | - | Role of Bacillus subtilis 3 on Helicobacter pylori and its potential impact on rosacea | Bacillus subtilis 3 shows significant anti-H. pylori activity. |
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gether, L.; Overgaard, L.K.; Egeberg, A.; Thyssen, J.P. Incidence and Prevalence of Rosacea: A Systematic Review and Meta-Analysis. Br. J. Dermatol. 2018, 179, 282–289. [Google Scholar] [CrossRef] [PubMed]
- van Zuuren, E.J. Rosacea. N. Engl. J. Med. 2017, 377, 1754–1764. [Google Scholar] [CrossRef] [PubMed]
- Gallo, R.L.; Granstein, R.D.; Kang, S.; Mannis, M.; Steinhoff, M.; Tan, J.; Thiboutot, D. Standard Classification and Pathophysiology of Rosacea: The 2017 Update by the National Rosacea Society Expert Committee. J. Am. Acad. Dermatol. 2018, 78, 148–155. [Google Scholar] [CrossRef]
- Wilkin, J.; Dahl, M.; Detmar, M.; Drake, L.; Feinstein, A.; Odom, R.; Powell, F. Standard Classification of Rosacea: Report of the National Rosacea Society Expert Committee on the Classification and Staging of Rosacea. J. Am. Acad. Dermatol. 2002, 46, 584–587. [Google Scholar] [CrossRef] [PubMed]
- Redd, T.K.; Seitzman, G.D. Ocular Rosacea. Curr. Opin. Ophthalmol. 2020, 31, 503–507. [Google Scholar] [CrossRef]
- Mc Aleer, M.A.; Lacey, N.; Powell, F.C. The Pathophysiology of Rosacea. G. Ital. Dermatol. Venereol. 2009, 144, 663–671. [Google Scholar]
- Nowicka, D.; Chilicka, K.; Dzieńdziora-Urbińska, I.; Szyguła, R. Skincare in Rosacea from the Cosmetologist’s Perspective: A Narrative Review. J. Clin. Med. 2022, 12, 115. [Google Scholar] [CrossRef]
- Geng, R.S.Q.; Bourkas, A.N.; Mufti, A.; Sibbald, R.G. Rosacea: Pathogenesis and Therapeutic Correlates. J. Cutan. Med. Surg. 2024, 28, 178–189. [Google Scholar] [CrossRef]
- Yamasaki, K.; Schauber, J.; Coda, A.; Lin, H.; Dorschner, R.A.; Schechter, N.M.; Bonnart, C.; Descargues, P.; Hovnanian, A.; Gallo, R.L. Kallikrein-Mediated Proteolysis Regulates the Antimicrobial Effects of Cathelicidins in Skin. FASEB J. 2006, 20, 2068–2080. [Google Scholar] [CrossRef]
- Searle, T.; Ali, F.R.; Carolides, S.; Al-Niaimi, F. Rosacea and the Gastrointestinal System. Australas. J. Dermatol. 2020, 61, 307–311. [Google Scholar] [CrossRef]
- Schwab, V.D.; Sulk, M.; Seeliger, S.; Nowak, P.; Aubert, J.; Mess, C.; Rivier, M.; Carlavan, I.; Rossio, P.; Metze, D.; et al. Neurovascular and Neuroimmune Aspects in the Pathophysiology of Rosacea. J. Investig. Dermatol. Symp. Proc. 2011, 15, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Sanchez, D.A.; Ishiuji, Y.; Patel, T.; Fountain, J.; Chan, Y.H.; Yosipovitch, G. Enhanced Skin Blood Flow and Sensitivity to Noxious Heat Stimuli in Papulopustular Rosacea. J. Am. Acad. Dermatol. 2007, 57, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Farhat, M.; Na, J.; Li, R.; Wu, Y. Bacterial and Fungal Microbiome Characterization in Patients with Rosacea and Healthy Controls. Br. J. Dermatol. 2020, 183, 1112–1114. [Google Scholar] [CrossRef]
- Holmes, A.D. Potential Role of Microorganisms in the Pathogenesis of Rosacea. J. Am. Acad. Dermatol. 2013, 69, 1025–1032. [Google Scholar] [CrossRef]
- Parodi, A.; Paolino, S.; Greco, A.; Drago, F.; Mansi, C.; Rebora, A.; Parodi, A.; Savarino, V. Small Intestinal Bacterial Overgrowth in Rosacea: Clinical Effectiveness of Its Eradication. Clin. Gastroenterol. Hepatol. 2008, 6, 759–764. [Google Scholar] [CrossRef]
- Yang, F.; Xiao, X.; Cheng, W.; Yang, W.; Yu, P.; Song, Z.; Yarov-Yarovoy, V.; Zheng, J. Structural Mechanism Underlying Capsaicin Binding and Activation of the TRPV1 Ion Channel. Nat. Chem. Biol. 2015, 11, 518–524. [Google Scholar] [CrossRef]
- Li, S.; Cho, E.; Drucker, A.M.; Qureshi, A.A.; Li, W.-Q. Alcohol Intake and Risk of Rosacea in US Women. J. Am. Acad. Dermatol. 2017, 76, 1061–1067.e2. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff, M.; Schauber, J.; Leyden, J.J. New Insights into Rosacea Pathophysiology: A Review of Recent Findings. J. Am. Acad. Dermatol. 2013, 69, S15–S26. [Google Scholar] [CrossRef]
- Bowe, W.; Patel, N.B.; Logan, A.C. Acne Vulgaris, Probiotics and the Gut-Brain-Skin Axis: From Anecdote to Translational Medicine. Benef. Microbes 2014, 5, 185–199. [Google Scholar] [CrossRef]
- Coates, M.; Lee, M.J.; Norton, D.; MacLeod, A.S. The Skin and Intestinal Microbiota and Their Specific Innate Immune Systems. Front. Immunol. 2019, 10, 2950. [Google Scholar] [CrossRef]
- Salem, I.; Ramser, A.; Isham, N.; Ghannoum, M.A. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front. Microbiol. 2018, 9, 1459. [Google Scholar] [CrossRef]
- O’Neill, C.A.; Monteleone, G.; McLaughlin, J.T.; Paus, R. The Gut-Skin Axis in Health and Disease: A Paradigm with Therapeutic Implications. Bioessays 2016, 38, 1167–1176. [Google Scholar] [CrossRef]
- Ellis, S.R.; Nguyen, M.; Vaughn, A.R.; Notay, M.; Burney, W.A.; Sandhu, S.; Sivamani, R.K. The Skin and Gut Microbiome and Its Role in Common Dermatologic Conditions. Microorganisms 2019, 7, 550. [Google Scholar] [CrossRef]
- Polkowska-Pruszyńska, B.; Gerkowicz, A.; Krasowska, D. The Gut Microbiome Alterations in Allergic and Inflammatory Skin Diseases—An Update. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Vojvodic, A.; Peric-Hajzler, Z.; Matovic, D.; Vojvodic, P.; Vlaskovic-Jovicevic, T.; Sijan, G.; Dimitrijevic, S.; Stepic, N.; Wollina, U.; Badr, B.A.E.; et al. Gut Microbiota and the Alteration of Immune Balance in Skin Diseases: From Nutraceuticals to Fecal Transplantation. Open Access Maced. J. Med. Sci. 2019, 7, 3034–3038. [Google Scholar] [CrossRef]
- Yeh, N.-L.; Hsu, C.-Y.; Tsai, T.-F.; Chiu, H.-Y. Gut Microbiome in Psoriasis Is Perturbed Differently During Secukinumab and Ustekinumab Therapy and Associated with Response to Treatment. Clin. Drug Investig. 2019, 39, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, R.; Wang, T. Gut Microbiota and Skin Pathologies: Mechanism of the Gut-Skin Axis in Atopic Dermatitis and Psoriasis. Int. Immunopharmacol. 2024, 141, 112658. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, H.; Zhou, J.; Mou, Y.; Wang, G.; Xiong, X. Patients with Acne Vulgaris Have a Distinct Gut Microbiota in Comparison with Healthy Controls. Acta Derm. Venereol. 2018, 98, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Manfredini, M.; Sticchi, A.; Lippolis, N.; Pedroni, G.; Giovani, M.; Ciardo, S.; Chello, C.; Guida, S.; Farnetani, F.; Pellacani, G. Characterization of Acne-Prone Skin with Reflectance Confocal Microscopy and Optical Coherence Tomography and Modifications Induced by Topical Treatment and Probiotic Supplementation. J. Clin. Med. 2023, 12, 4787. [Google Scholar] [CrossRef]
- Rebora, A.; Drago, F.; Parodi, A. May Helicobacter Pylori Be Important for Dermatologists? Dermatology 1995, 191, 6–8. [Google Scholar] [CrossRef]
- Yang, X. Relationship between Helicobacter Pylori and Rosacea: Review and Discussion. BMC Infect. Dis. 2018, 18, 318. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.-H.; Yun, Y.; Kim, H.-S.; Kim, H.-N.; Jung, H.J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.-L.; Kim, W.-S. Rosacea and Its Association with Enteral Microbiota in Korean Females. Exp. Dermatol. 2018, 27, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-J.; Lee, W.-H.; Ho, H.J.; Tseng, C.-H.; Wu, C.-Y. An Altered Fecal Microbial Profiling in Rosacea Patients Compared to Matched Controls. J. Formos. Med. Assoc. 2021, 120, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Alia, E.; Feng, H. Rosacea Pathogenesis, Common Triggers, and Dietary Role: The Cause, the Trigger, and the Positive Effects of Different Foods. Clin. Dermatol. 2022, 40, 122–127. [Google Scholar] [CrossRef]
- Weiss, E.; Katta, R. Diet and Rosacea: The Role of Dietary Change in the Management of Rosacea. Dermatol. Pract. Concept. 2017, 7, 31–37. [Google Scholar] [CrossRef]
- Sulk, M.; Seeliger, S.; Aubert, J.; Schwab, V.D.; Cevikbas, F.; Rivier, M.; Nowak, P.; Voegel, J.J.; Buddenkotte, J.; Steinhoff, M. Distribution and Expression of Non-Neuronal Transient Receptor Potential (TRPV) Ion Channels in Rosacea. J. Investig. Dermatol. 2012, 132, 1253–1262. [Google Scholar] [CrossRef]
- Two, A.M.; Wu, W.; Gallo, R.L.; Hata, T.R. Rosacea: Part I. Introduction, Categorization, Histology, Pathogenesis, and Risk Factors. J. Am. Acad. Dermatol. 2015, 72, 749–758; quiz 759–760. [Google Scholar] [CrossRef]
- Searle, T.; Ali, F.R.; Carolides, S.; Al-Niaimi, F. Rosacea and Diet: What Is New in 2021? J. Clin. Aesthet. Dermatol. 2021, 14, 49–54. [Google Scholar]
- Rosa, D.F.; Sarandy, M.M.; Novaes, R.D.; Freitas, M.B.; do Carmo Gouveia Pelúzio, M.; Gonçalves, R.V. High-Fat Diet and Alcohol Intake Promotes Inflammation and Impairs Skin Wound Healing in Wistar Rats. Mediat. Inflamm. 2018, 2018, 4658583. [Google Scholar] [CrossRef]
- Adaszek, Ł.; Gadomska, D.; Mazurek, Ł.; Łyp, P.; Madany, J.; Winiarczyk, S. Properties of Capsaicin and Its Utility in Veterinary and Human Medicine. Res. Vet. Sci. 2019, 123, 14–19. [Google Scholar] [CrossRef]
- Yuan, X.; Huang, X.; Wang, B.; Huang, Y.-X.; Zhang, Y.-Y.; Tang, Y.; Yang, J.-Y.; Chen, Q.; Jian, D.; Xie, H.-F.; et al. Relationship between Rosacea and Dietary Factors: A Multicenter Retrospective Case-Control Survey. J. Dermatol. 2019, 46, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Clifton, H.L.; Inceoglu, B.; Ma, L.; Zheng, J.; Schaefer, S. TRPV1 Channels Are Involved in Niacin-Induced Cutaneous Vasodilation in Mice. J. Cardiovasc. Pharmacol. 2015, 65, 184–191. [Google Scholar] [CrossRef]
- Li, N.; Li, Y.; Gao, Q.; Li, D.; Tang, J.; Sun, M.; Zhang, P.; Liu, B.; Mao, C.; Xu, Z. Chronic Fetal Exposure to Caffeine Altered Resistance Vessel Functions via RyRs-BKCa down-Regulation in Rat Offspring. Sci. Rep. 2015, 5, 13225. [Google Scholar] [CrossRef] [PubMed]
- Sakarya, A.H.; Uzun, H.; Türkkanı, A.; Çakar, A.N.; Hsieh, Y.-H.; Üstün, G.G.; Şafak, T. Effects of Systemic and Local Caffeine on Vessel Diameter, Anastomosis Patency, and Intimal Hyperplasia in the Rat. J. Reconstr. Microsurg. 2019, 35, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, M.L.; Drucker, A.M.; Cho, E.; Geng, H.; Qureshi, A.A.; Li, W.-Q. Association of Caffeine Intake and Caffeinated Coffee Consumption With Risk of Incident Rosacea in Women. JAMA Dermatol. 2018, 154, 1394–1400. [Google Scholar] [CrossRef]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef]
- McBurney, M.I.; Davis, C.; Fraser, C.M.; Schneeman, B.O.; Huttenhower, C.; Verbeke, K.; Walter, J.; Latulippe, M.E. Establishing What Constitutes a Healthy Human Gut Microbiome: State of the Science, Regulatory Considerations, and Future Directions. J. Nutr. 2019, 149, 1882–1895. [Google Scholar] [CrossRef]
- Ogawa, Y.; Kawamura, T.; Shimada, S. Zinc and Skin Biology. Arch. Biochem. Biophys. 2016, 611, 113–119. [Google Scholar] [CrossRef]
- Bamford, J.T.M.; Gessert, C.E.; Haller, I.V.; Kruger, K.; Johnson, B.P. Randomized, Double-Blind Trial of 220 Mg Zinc Sulfate Twice Daily in the Treatment of Rosacea. Int. J. Dermatol. 2012, 51, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Sharquie, K.E.; Najim, R.A.; Al-Salman, H.N. Oral Zinc Sulfate in the Treatment of Rosacea: A Double-Blind, Placebo-Controlled Study. Int. J. Dermatol. 2006, 45, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Sbidian, E.; Vicaut, É.; Chidiack, H.; Anselin, E.; Cribier, B.; Dréno, B.; Chosidow, O. A Randomized-Controlled Trial of Oral Low-Dose Isotretinoin for Difficult-To-Treat Papulopustular Rosacea. J. Investig. Dermatol. 2016, 136, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- King, A.; Tan, M.G.; Kirshen, C.; Tolkachjov, S.N. Low-Dose Isotretinoin for the Management of Rosacea: A Systematic Review and Meta-Analysis. J. Eur. Acad. Dermatol. Venereol. 2024, 1–8. [Google Scholar] [CrossRef]
- Egeberg, A.; Hansen, P.R.; Gislason, G.H.; Thyssen, J.P. Clustering of Autoimmune Diseases in Patients with Rosacea. J. Am. Acad. Dermatol. 2016, 74, 667–672.e1. [Google Scholar] [CrossRef]
- Haber, R.; El Gemayel, M. Comorbidities in Rosacea: A Systematic Review and Update. J. Am. Acad. Dermatol. 2018, 78, 786–792.e8. [Google Scholar] [CrossRef]
- Egeberg, A.; Weinstock, L.B.; Thyssen, E.P.; Gislason, G.H.; Thyssen, J.P. Rosacea and Gastrointestinal Disorders: A Population-Based Cohort Study. Br. J. Dermatol. 2017, 176, 100–106. [Google Scholar] [CrossRef]
- De Pessemier, B.; Grine, L.; Debaere, M.; Maes, A.; Paetzold, B.; Callewaert, C. Gut-Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. Microorganisms 2021, 9, 353. [Google Scholar] [CrossRef]
- Wang, F.-Y.; Chi, C.-C. Rosacea, Germs, and Bowels: A Review on Gastrointestinal Comorbidities and Gut-Skin Axis of Rosacea. Adv. Ther. 2021, 38, 1415–1424. [Google Scholar] [CrossRef]
- Bonamigo, R.R.; Leite, C.S.; Wagner, M.; Bakos, L. Rosacea and Helicobacter Pylori: Interference of Systemic Antibiotic in the Study of Possible Association. J. Eur. Acad. Dermatol. Venereol. 2000, 14, 424–425. [Google Scholar] [CrossRef]
- Jørgensen, A.-H.R.; Egeberg, A.; Gideonsson, R.; Weinstock, L.B.; Thyssen, E.P.; Thyssen, J.P. Rosacea Is Associated with Helicobacter Pylori: A Systematic Review and Meta-Analysis. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 2010–2015. [Google Scholar] [CrossRef] [PubMed]
- Kolibásová, K.; Tóthová, I.; Baumgartner, J.; Filo, V. Eradication of Helicobacter Pylori as the Only Successful Treatment in Rosacea. Arch. Dermatol. 1996, 132, 1393. [Google Scholar] [CrossRef]
- Gravina, A.; Federico, A.; Ruocco, E.; Lo Schiavo, A.; Masarone, M.; Tuccillo, C.; Peccerillo, F.; Miranda, A.; Romano, L.; de Sio, C.; et al. Helicobacter Pylori Infection but Not Small Intestinal Bacterial Overgrowth May Play a Pathogenic Role in Rosacea. United Eur. Gastroenterol. J. 2015, 3, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.D.; Spoendlin, J.; Chien, A.L.; Baldwin, H.; Chang, A.L.S. Evidence-Based Update on Rosacea Comorbidities and Their Common Physiologic Pathways. J. Am. Acad. Dermatol. 2018, 78, 156–166. [Google Scholar] [CrossRef]
- Wang, F.-Y.; Chi, C.-C. Association of Rosacea with Inflammatory Bowel Disease: A MOOSE-Compliant Meta-Analysis. Medicine 2019, 98, e16448. [Google Scholar] [CrossRef] [PubMed]
- Ferraretto, A.; Donetti, E.; García-Mena, J.; Pacheco-López, G. Editorial: The Gut-Skin-Brain Axis in Human Health and Disease. Front. Nutr. 2023, 10, 1155614. [Google Scholar] [CrossRef]
- Porubsky, C.F.; Glass, A.B.; Comeau, V.; Buckley, C.; Goodman, M.B.; Kober, M.-M.; Porubsky, C.F.; Glass, A.B.; Comeau, V.; Buckley, C.; et al. The Role of Probiotics in Acne and Rosacea. In Probiotics—Current Knowledge and Future Prospects; IntechOpen: London, UK, 2018; ISBN 978-1-78923-387-2. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Gueniche, A.; Benyacoub, J.; Philippe, D.; Bastien, P.; Kusy, N.; Breton, L.; Blum, S.; Castiel-Higounenc, I. Lactobacillus Paracasei CNCM I-2116 (ST11) Inhibits Substance P-Induced Skin Inflammation and Accelerates Skin Barrier Function Recovery in Vitro. Eur. J. Dermatol. 2010, 20, 731–737. [Google Scholar] [CrossRef]
- Buianova, I.; Girnyk, G.; Senyshyn, N.; Hepburn, I.S. Gut-Skin Connection: Role of Intestinal Biome in Rosacea: 216. Am. J. Gastroenterol. 2018, 113, S126. [Google Scholar] [CrossRef]
- Probiotics in Extraintestinal Diseases: Current Trends and New Directions. Available online: https://www.mdpi.com/2072-6643/11/4/788 (accessed on 18 December 2024).
- Kober, M.-M.; Bowe, W.P. The Effect of Probiotics on Immune Regulation, Acne, and Photoaging. Int. J. Womens Dermatol. 2015, 1, 85–89. [Google Scholar] [CrossRef]
- Manzhalii, E.; Hornuss, D.; Stremmel, W. Intestinal-Borne Dermatoses Significantly Improved by Oral Application of Escherichia Coli Nissle 1917. World J. Gastroenterol. 2016, 22, 5415–5421. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, M.C.; Garelli, V.; Pranteda, G.; Romaniello, F.; Cardone, M.; Carlesimo, M.; Rossi, A. A Case of Scalp Rosacea Treated with Low Dose Doxycycline and Probiotic Therapy and Literature Review on Therapeutic Options. Dermatol. Ther. 2016, 29, 249–251. [Google Scholar] [CrossRef]
- Tang, S.; Li, J.; Li, Y.; Du, H.; Zhu, W.; Zhang, R.; Wan, J. Effects of Saccharomyces Boulardii on Microbiota Composition and Metabolite Levels in the Small Intestine of Constipated Mice. BMC Microbiol. 2024, 24, 493. [Google Scholar] [CrossRef]
- Jin, Y.; Wu, J.; Huang, K.; Liang, Z. Heat-Killed Saccharomyces Boulardii Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis by Restoring the Intestinal Barrier, Reducing Inflammation, and Modulating the Gut Microbiota. Nutrients 2024, 16, 702. [Google Scholar] [CrossRef]
- Simon O’Brien, E.; Robert, A.; Gauthier, D.; Le Cavorzin, A.; Planchais, J.; Roux, X.; Verleye, M.; Castagné, V. Protective Effects of Saccharomyces Boulardii CNCM I-745 in an Experimental Model of NSAID-Induced Enteropathy. Benef. Microbes 2023, 14, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Habeebuddin, M.; Karnati, R.K.; Shiroorkar, P.N.; Nagaraja, S.; Asdaq, S.M.B.; Khalid Anwer, M.; Fattepur, S. Topical Probiotics: More Than a Skin Deep. Pharmaceutics 2022, 14, 557. [Google Scholar] [CrossRef] [PubMed]
- Knackstedt, R.; Knackstedt, T.; Gatherwright, J. The Role of Topical Probiotics in Skin Conditions: A Systematic Review of Animal and Human Studies and Implications for Future Therapies. Exp. Dermatol. 2020, 29, 15–21. [Google Scholar] [CrossRef]
- Pinchuk, I.V.; Bressollier, P.; Verneuil, B.; Fenet, B.; Sorokulova, I.B.; Mégraud, F.; Urdaci, M.C. In Vitro Anti-Helicobacter Pylori Activity of the Probiotic Strain Bacillus Subtilis 3 Is Due to Secretion of Antibiotics. Antimicrob. Agents Chemother. 2001, 45, 3156–3161. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manfredini, M.; Barbieri, M.; Milandri, M.; Longo, C. Probiotics and Diet in Rosacea: Current Evidence and Future Perspectives. Biomolecules 2025, 15, 411. https://doi.org/10.3390/biom15030411
Manfredini M, Barbieri M, Milandri M, Longo C. Probiotics and Diet in Rosacea: Current Evidence and Future Perspectives. Biomolecules. 2025; 15(3):411. https://doi.org/10.3390/biom15030411
Chicago/Turabian StyleManfredini, Marco, Michele Barbieri, Margherita Milandri, and Caterina Longo. 2025. "Probiotics and Diet in Rosacea: Current Evidence and Future Perspectives" Biomolecules 15, no. 3: 411. https://doi.org/10.3390/biom15030411
APA StyleManfredini, M., Barbieri, M., Milandri, M., & Longo, C. (2025). Probiotics and Diet in Rosacea: Current Evidence and Future Perspectives. Biomolecules, 15(3), 411. https://doi.org/10.3390/biom15030411