Molecular Modelling in Bioactive Peptide Discovery and Characterisation
Abstract
:1. Introduction
2. Structural Characteristics of Bioactive Peptides
2.1. Amino Acid Composition: The Building Blocks of Bioactivity
2.2. Amino Acid Sequence and Stereochemistry
2.3. Cyclisation of Bioactive Peptides
2.4. Structural Stability of Bioactive Peptides
2.5. Folding, Aggregation, and Peptide Conformation
2.6. Peptide Structure Determination: Experimental Characterisation
3. Current Molecular Modelling Methods in Bioactive Peptide Discovery
3.1. Homology Modelling in Bioactive Peptide Discovery
3.2. Molecular Docking
3.2.1. Challenges of Peptide–Protein Docking
3.2.2. Clustering in Molecular Docking
3.3. Virtual Screening of Peptide Libraries
3.4. Molecular Dynamics Simulation
3.4.1. Force Fields for MD Simulation Towards Bioactive Peptide Discovery
3.4.2. Enhanced Sampling Methods
Method | Purpose and Application | Reference |
---|---|---|
Metadynamics | Accelerates the exploration of free energy landscapes by applying a history-dependent bias potential that discourages the system from revisiting previously explored states, pushing it out of energy wells to sample higher-energy states. This approach is useful in protein folding, ligand binding, and phase transition. | [394] |
Umbrella Sampling | Enhances sampling in areas with high energy barriers by dividing the system into smaller, more manageable “windows” for easier sampling. Biasing forces are applied within each window, and the results are combined using the weighted histogram analysis method (WHAM) to reconstruct the free energy landscape. It is commonly applied in studying protein–ligand interactions, membrane fusion, and reaction mechanisms. | [380] |
Replica Exchange Molecular Dynamics | Enhances sampling by running multiple simulations at different temperatures, periodically swapping configurations. Higher temperatures help the system overcome energy barriers, and the exchanges allow low-temperature replicas to benefit from broader sampling. This method is used in applications such as protein conformational sampling, studies of thermodynamic properties, and the exploration of phase transitions. | [395] |
Adaptive Biasing Force (ABF) | Efficiently computes free energy profiles along a selected reaction coordinate by applying an adaptive biasing force to flatten energy barriers, promoting the exploration of rare conformational states. Over time, the force adjusts as the simulation progresses, making it useful for studying diffusion processes, chemical reactions, and molecular conformations. | [396] |
Steered Molecular Dynamics (SMD) | Mimics experiments like atomic force microscopy (AFM) by applying an external force to specific parts of a system, driving it along a reaction pathway. It is used to study processes such as protein–ligand unbinding and the mechanical properties of proteins. | [397,398] |
Accelerated Molecular Dynamics (aMD) | Lowers energy barriers by adding a boost potential to flatten energy wells, enabling faster sampling of conformations and helping the system escape local minima more easily. It is useful for studying large-scale conformational changes in proteins, molecular motors, and membrane simulations. | [399,400] |
Path Sampling Methods | Transition Path Sampling (TPS) and Forward Flux Sampling (FFS) are methods designed to simulate rare events by focusing on sampling transition pathways directly, rather than the entire phase space. These techniques gather trajectories connecting initial and final states, particularly during rare transitions between stable states, and are applied in areas such as chemical reactions, protein folding, and nucleation processes. | [401] |
Variationally Enhanced Sampling (VES) | Optimises biasing potential using a variational principle to enhance sampling in targeted regions. It constructs a free-energy landscape adaptively and applies an optimised bias potential for efficient exploration. This approach is particularly useful in applications such as protein folding, phase transitions, and complex chemical systems. | [402] |
Gaussian Accelerated Molecular Dynamics (GaMD) | An extension of aMD that enhances conformational sampling while preserving the Gaussian distribution of the biased potential. It applies a boost potential similar to aMD but incorporates the constraint of maintaining Gaussian statistics, enabling accurate reweighting. This approach is useful for studying protein–ligand interactions and large biomolecular systems. | [386] |
4. Machine Learning and Structural Modelling in Bioactive Peptide Discovery
4.1. AlphaFold-Based Modelling and Bioactive Peptide Discovery
4.2. Structure-Aware Machine-Learning Methods for Predicting Peptide Bioactivity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adelusi, T.I.; Oyedele, A.-Q.K.; Boyenle, I.D.; Ogunlana, A.T.; Adeyemi, R.O.; Ukachi, C.D.; Idris, M.O.; Olaoba, O.T.; Adedotun, I.O.; Kolawole, O.E.; et al. Molecular Modeling in Drug Discovery. Inform. Med. Unlocked 2022, 29, 100880. [Google Scholar] [CrossRef]
- Forster, M.J. Molecular Modelling in Structural Biology. Micron 2002, 33, 365–384. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, A. Molecular Modeling Techniques and In-Silico Drug Discovery. In Reverse Engineering of Regulatory Networks; Mandal, S., Ed.; Springer: New York, NY, USA, 2024; pp. 1–11. ISBN 978-1-07-163461-5. [Google Scholar]
- Kazmirchuk, T.D.D.; Bradbury-Jost, C.; Withey, T.A.; Gessese, T.; Azad, T.; Samanfar, B.; Dehne, F.; Golshani, A. Peptides of a Feather: How Computation Is Taking Peptide Therapeutics under Its Wing. Genes 2023, 14, 1194. [Google Scholar] [CrossRef]
- Leelananda, S.P.; Lindert, S. Computational Methods in Drug Discovery. Beilstein J. Org. Chem. 2016, 12, 2694–2718. [Google Scholar] [CrossRef]
- Peluso, P.; Chankvetadze, B. Recent Developments in Molecular Modeling Tools and Applications Related to Pharmaceutical and Biomedical Research. J. Pharm. Biomed. Anal. 2024, 238, 115836. [Google Scholar] [CrossRef]
- Aminpour, M.; Montemagno, C.; Tuszynski, J.A. An Overview of Molecular Modeling for Drug Discovery with Specific Illustrative Examples of Applications. Molecules 2019, 24, 1693. [Google Scholar] [CrossRef] [PubMed]
- Naithani, U.; Guleria, V. Integrative Computational Approaches for Discovery and Evaluation of Lead Compound for Drug Design. Front. Drug Discov. 2024, 4, 1362456. [Google Scholar] [CrossRef]
- Colman, P. Zanamivir: An Influenza Virus Neuraminidase Inhibitor. Expert. Rev. Anti-Infect. Ther. 2005, 3, 191–199. [Google Scholar] [CrossRef]
- Kaldor, S.W.; Kalish, V.J.; Davies, J.F.; Shetty, B.V.; Fritz, J.E.; Appelt, K.; Burgess, J.A.; Campanale, K.M.; Chirgadze, N.Y.; Clawson, D.K.; et al. Viracept (Nelfinavir Mesylate, AG1343): A Potent, Orally Bioavailable Inhibitor of HIV-1 Protease. J. Med. Chem. 1997, 40, 3979–3985. [Google Scholar] [CrossRef]
- Qayed, W.S.; Ferreira, R.S.; Silva, J.R.A. In Silico Study towards Repositioning of FDA-Approved Drug Candidates for Anticoronaviral Therapy: Molecular Docking, Molecular Dynamics and Binding Free Energy Calculations. Molecules 2022, 27, 5988. [Google Scholar] [CrossRef]
- Ginex, T.; Garaigorta, U.; Ramírez, D.; Castro, V.; Nozal, V.; Maestro, I.; García-Cárceles, J.; Campillo, N.E.; Martinez, A.; Gastaminza, P.; et al. Host-Directed FDA-Approved Drugs with Antiviral Activity against SARS-CoV-2 Identified by Hierarchical In Silico/In Vitro Screening Methods. Pharmaceuticals 2021, 14, 332. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int. J. Mol. Sci. 2022, 23, 1445. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, V.; Kanwar, S.S. Chapter 4—Bioactive Peptides: Synthesis, Functions and Biotechnological Applications. In Biotechnological Production of Bioactive Compounds; Verma, M.L., Chandel, A.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 107–137. ISBN 978-0-444-64323-0. [Google Scholar]
- Du, Z.; Li, Y. Review and Perspective on Bioactive Peptides: A Roadmap for Research, Development, and Future Opportunities. J. Agric. Food Res. 2022, 9, 100353. [Google Scholar] [CrossRef]
- Karami, Z.; Akbari-adergani, B. Bioactive Food Derived Peptides: A Review on Correlation between Structure of Bioactive Peptides and Their Functional Properties. J. Food Sci. Technol. 2019, 56, 535–547. [Google Scholar] [CrossRef]
- Purohit, K.; Reddy, N.; Sunna, A. Exploring the Potential of Bioactive Peptides: From Natural Sources to Therapeutics. Int. J. Mol. Sci. 2024, 25, 1391. [Google Scholar] [CrossRef]
- Rossino, G.; Marchese, E.; Galli, G.; Verde, F.; Finizio, M.; Serra, M.; Linciano, P.; Collina, S. Peptides as Therapeutic Agents: Challenges and Opportunities in the Green Transition Era. Molecules 2023, 28, 7165. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic Peptides: Current Applications and Future Directions. Sig. Transduct. Target Ther. 2022, 7, 48. [Google Scholar] [CrossRef]
- Birk, A.V.; Liu, S.; Soong, Y.; Mills, W.; Singh, P.; Warren, J.D.; Seshan, S.V.; Pardee, J.D.; Szeto, H.H. The Mitochondrial-Targeted Compound SS-31 Re-Energizes Ischemic Mitochondria by Interacting with Cardiolipin. J. Am. Soc. Nephrol. 2013, 24, 1250. [Google Scholar] [CrossRef]
- Chang, Y.S.; Graves, B.; Guerlavais, V.; Tovar, C.; Packman, K.; To, K.-H.; Olson, K.A.; Kesavan, K.; Gangurde, P.; Mukherjee, A.; et al. Stapled A−helical Peptide Drug Development: A Potent Dual Inhibitor of MDM2 and MDMX for P53-Dependent Cancer Therapy. Proc. Natl. Acad. Sci. USA 2013, 110, E3445–E3454. [Google Scholar] [CrossRef]
- Scott, L.J. Dulaglutide: A Review in Type 2 Diabetes. Drugs 2020, 80, 197–208. [Google Scholar] [CrossRef]
- Trujillo, J.M.; Nuffer, W. Albiglutide: A New GLP-1 Receptor Agonist for the Treatment of Type 2 Diabetes. Ann. Pharmacother. 2014, 48, 1494–1501. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.H.; Martin, T.S.; Jones, J.D.; Seal, D.; Emanuel, F. Liraglutide (Victoza). Pharm. Ther. 2010, 35, 498–529. [Google Scholar]
- Holst, J.J. The Physiology of Glucagon-like Peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef]
- Al-Salama, Z.T.; Syed, Y.Y. Plecanatide: First Global Approval. Drugs 2017, 77, 593–598. [Google Scholar] [CrossRef]
- Wilson, A.C.; Vadakkadath Meethal, S.; Bowen, R.L.; Atwood, C.S. Leuprolide Acetate: A Drug of Diverse Clinical Applications. Expert Opin. Investig. Drugs 2007, 16, 1851–1863. [Google Scholar] [CrossRef]
- Jonat, W. Goserelin (Zoladex TM)—Its Role in Early Breast Cancer in Pre- and Perimenopausal Women. Br. J. Cancer 2001, 85, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lamberts, S.W.J.; van der Lely, A.-J.; de Herder, W.W.; Hofland, L.J. Octreotide. N. Engl. J. Med. 1996, 334, 246–254. [Google Scholar] [CrossRef]
- Caplin, M.E.; Pavel, M.; Ćwikła, J.B.; Phan, A.T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Lanreotide in Metastatic Enteropancreatic Neuroendocrine Tumors. N. Engl. J. Med. 2014, 371, 224–233. [Google Scholar] [CrossRef]
- Anand, U.; Bandyopadhyay, A.; Jha, N.K.; Pérez de la Lastra, J.M.; Dey, A. Translational Aspect in Peptide Drug Discovery and Development: An Emerging Therapeutic Candidate. Bio. Factors 2023, 49, 251–269. [Google Scholar] [CrossRef]
- Drucker, D.J. Advances in Oral Peptide Therapeutics. Nat. Rev. Drug Discov. 2020, 19, 277–289. [Google Scholar] [CrossRef]
- Romanova, E.V.; Sweedler, J.V. Peptidomics for the Discovery and Characterization of Neuropeptides and Hormones. Trends Pharmacol. Sci. 2015, 36, 579–586. [Google Scholar] [CrossRef]
- Ferreira, R.; Amado, F.; Vitorino, R. Empowering Peptidomics: Utilizing Computational Tools and Approaches. Bioanalysis 2023, 15, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Köcher, T.; Superti-Furga, G. Mass Spectrometry–Based Functional Proteomics: From Molecular Machines to Protein Networks. Nat. Methods 2007, 4, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, Z.S.; Zarei, M.; Fath, M.K.; Ganji, M.; Farahani, M.S.; Afsharnouri, F.; Pourzardosht, N.; Khalesi, B.; Jahangiri, A.; Rahbar, M.R.; et al. In Silico Approaches for the Design and Optimization of Interfering Peptides Against Protein–Protein Interactions. Front. Mol. Bio. Sci. 2021, 8, 669431. [Google Scholar] [CrossRef]
- Kuczera, K. Molecular Modeling of Peptides. In Computational Peptidology; Zhou, P., Huang, J., Eds.; Springer: New York, NY, USA, 2015; pp. 15–41. ISBN 978-1-4939-2285-7. [Google Scholar]
- Redkar, A.; Ramakrishnan, V. Chapter 2—Modeling and Simulation of Peptides. In De Novo Peptide Design; Ramakrishnan, V., Patel, K., Goyal, R., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 35–56. ISBN 978-0-323-99917-5. [Google Scholar]
- Vidal-Limon, A.; Aguilar-Toalá, J.E.; Liceaga, A.M. Integration of Molecular Docking Analysis and Molecular Dynamics Simulations for Studying Food Proteins and Bioactive Peptides. J. Agric. Food Chem. 2022, 70, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Stebe, K.J.; De La Fuente-Nunez, C.; Radhakrishnan, R. Computational Design of Peptides for Biomaterials Applications. ACS Appl. Bio. Mater. 2024, 7, 617–625. [Google Scholar] [CrossRef]
- Cardoso, M.H.; Orozco, R.Q.; Rezende, S.B.; Rodrigues, G.; Oshiro, K.G.N.; Cândido, E.S.; Franco, O.L. Computer-Aided Design of Antimicrobial Peptides: Are We Generating Effective Drug Candidates? Front. Microbiol. 2020, 10, 3097. [Google Scholar] [CrossRef]
- Chang, L.; Mondal, A.; Perez, A. Towards Rational Computational Peptide Design. Front Bio. Inform 2022, 2, 1046493. [Google Scholar] [CrossRef]
- Vincenzi, M.; Mercurio, F.A.; Leone, M. Virtual Screening of Peptide Libraries: The Search for Peptide-Based Therapeutics Using Computational Tools. Int. J. Mol. Sci. 2024, 25, 1798. [Google Scholar] [CrossRef]
- FitzGerald, R.J.; Cermeño, M.; Khalesi, M.; Kleekayai, T.; Amigo-Benavent, M. Application of in Silico Approaches for the Generation of Milk Protein-Derived Bioactive Peptides. J. Funct. Foods 2020, 64, 103636. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; Dellafiora, L.; Paolella, S.; Galaverna, G.; Cozzini, P.; FitzGerald, R.J. In Silico Approaches Applied to the Study of Peptide Analogs of Ile-Pro-Ile in Relation to Their Dipeptidyl Peptidase IV Inhibitory Properties. Front. Endocrinol. 2018, 9, 329. [Google Scholar] [CrossRef]
- Vukic, V.R.; Vukic, D.V.; Milanovic, S.D.; Ilicic, M.D.; Kanuric, K.G.; Johnson, M.S. In Silico Identification of Milk Antihypertensive Di- and Tripeptides Involved in Angiotensin I–Converting Enzyme Inhibitory Activity. Nutr. Res. 2017, 46, 22–30. [Google Scholar] [CrossRef]
- Olğaç, A.; Orhan, I.E.; Banoglu, E. The Potential Role of In Silico Approaches to Identify Novel Bioactive Molecules from Natural Resources. Future Med. Chem. 2017, 9, 1665–1686. [Google Scholar] [CrossRef]
- Shuli, Z.; Linlin, L.; Li, G.; Yinghu, Z.; Nan, S.; Haibin, W.; Hongyu, X. Bioinformatics and Computer Simulation Approaches to the Discovery and Analysis of Bioactive Peptides. Curr. Pharm. Biotechnol. 2022, 23, 1541–1555. [Google Scholar] [CrossRef] [PubMed]
- Audie, J.; Swanson, J. Recent Work In The Development And Application Of Protein–Peptide Docking. Future Med. Chem. 2012, 4, 1619–1644. [Google Scholar] [CrossRef]
- Das, R. Four Small Puzzles That Rosetta Doesn’t Solve. PLoS ONE 2011, 6, e20044. [Google Scholar] [CrossRef]
- Pike, D.H.; Nanda, V. Empirical Estimation of Local Dielectric Constants: Toward Atomistic Design of Collagen Mimetic Peptides. Pept. Sci. 2015, 104, 360–370. [Google Scholar] [CrossRef]
- Rentzsch, R.; Renard, B.Y. Docking Small Peptides Remains a Great Challenge: An Assessment Using AutoDock Vina. Brief. Bio. Inform. 2015, 16, 1045–1056. [Google Scholar] [CrossRef]
- Agüero-Chapin, G.; Galpert-Cañizares, D.; Domínguez-Pérez, D.; Marrero-Ponce, Y.; Pérez-Machado, G.; Teijeira, M.; Antunes, A. Emerging Computational Approaches for Antimicrobial Peptide Discovery. Antibiotics 2022, 11, 936. [Google Scholar] [CrossRef]
- Doherty, A.; Wall, A.; Khaldi, N.; Kussmann, M. Artificial Intelligence in Functional Food Ingredient Discovery and Characterisation: A Focus on Bioactive Plant and Food Peptides. Front. Genet. 2021, 12, 768979. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; dos Santos Costa, A.; Fazel-Zarandi, M.; Sercu, T.; Candido, S.; et al. Language Models of Protein Sequences at the Scale of Evolution Enable Accurate Structure Prediction. bioRxiv 2022, 500902. [Google Scholar]
- Perpetuo, L.; Klein, J.; Ferreira, R.; Guedes, S.; Amado, F.; Leite-Moreira, A.; Silva, A.M.S.; Thongboonkerd, V.; Vitorino, R. How Can Artificial Intelligence Be Used for Peptidomics? Expert Rev. Proteom. 2021, 18, 527–556. [Google Scholar] [CrossRef]
- Rein, D.; Ternes, P.; Demin, R.; Gierke, J.; Helgason, T.; Schön, C. Artificial Intelligence Identified Peptides Modulate Inflammation in Healthy Adults. Food Funct. 2019, 10, 6030–6041. [Google Scholar] [CrossRef]
- Zhang, H.; Saravanan, K.M.; Wei, Y.; Jiao, Y.; Yang, Y.; Pan, Y.; Wu, X.; Zhang, J.Z.H. Deep-Learning Based Bioactive Therapeutic Peptides Generation and Screening. J. Chem. Inf. Model. 2023, 63, 835–845. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Ma, Y.; Wang, J.; Chen, Y. Artificial Intelligence Accelerates the Mining of Bioactive Small Molecules from Human Microbiome. Clin. Transl. Med. 2022, 12, e1011. [Google Scholar] [CrossRef]
- Alzaydi, A.; Barbhuiya, R.I.; Routray, W.; Elsayed, A.; Singh, A. Bioactive Peptides: Synthesis, Applications, and Associated Challenges. Food Bioeng. 2023, 2, 273–290. [Google Scholar] [CrossRef]
- Hou, H.; Wang, J.; Wang, J.; Tang, W.; Shaikh, A.S.; Li, Y.; Fu, J.; Lu, L.; Wang, F.; Sun, F.; et al. A Review of Bioactive Peptides: Chemical Modification, Structural Characterization and Therapeutic Applications. J. Biomed. Nanotechnol. 2020, 16, 1687–1718. [Google Scholar] [CrossRef]
- Li, Y.-W.; Li, B.; He, J.; Qian, P. Quantitative Structure–Activity Relationship Study of Antioxidative Peptide by Using Different Sets of Amino Acids Descriptors. J. Mol. Struct. 2011, 998, 53–61. [Google Scholar] [CrossRef]
- Merritt, H.I.; Sawyer, N.; Arora, P.S. Bent Into Shape: Folded Peptides to Mimic Protein Structure and Modulate Protein Function. Pept. Sci. 2020, 112, e24145. [Google Scholar] [CrossRef]
- Hong, S.Y.; Oh, J.E.; Lee, K.-H. Effect of D-Amino Acid Substitution on the Stability, the Secondary Structure, and the Activity of Membrane-Active Peptide. Biochem. Pharmacol. 1999, 58, 1775–1780. [Google Scholar] [CrossRef]
- Rivera-Jiménez, J.; Berraquero-García, C.; Pérez-Gálvez, R.; García-Moreno, P.J.; Espejo-Carpio, F.J.; Guadix, A.; Guadix, E.M. Peptides and Protein Hydrolysates Exhibiting Anti-Inflammatory Activity: Sources, Structural FeatuRes. and Modulation Mechanisms. Food Funct. 2022, 13, 12510–12540. [Google Scholar] [CrossRef]
- Schmidt, M.M.; Wittrup, K.D. A Modeling Analysis of the Effects of Molecular Size and Binding Affinity on Tumor Targeting. Mol. Cancer Ther. 2009, 8, 2861–2871. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, C.; Li, T.; Zhang, M.; Liu, Y.; Gauthier, M.A.; Zhao, Y.; Wu, C. The Interplay of Disulfide Bonds, α-Helicity, and Hydrophobic Interactions Leads to Ultrahigh Proteolytic Stability of Peptides. Biomacromolecules 2015, 16, 2347–2355. [Google Scholar] [CrossRef]
- Góngora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Multifaceted Roles of Disulfide Bonds. Pept. Therapeutics. Chem. Rev. 2014, 114, 901–926. [Google Scholar] [CrossRef]
- Yang, N.J.; Hinner, M.J. Getting Across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins. Methods Mol. Biol. 2015, 1266, 29–53. [Google Scholar] [CrossRef]
- Pf, A.; Tp, B.; Ls, G.; Rw, H.; Dr, T. Evidence for a Polarized Efflux System in CACO-2 Cells Capable of Modulating Cyclosporin A Transport. Biochem. Biophys. Res. Commun. 1993, 197, 360–365. [Google Scholar] [CrossRef]
- Pauletti, G.M.; Okumu, F.W.; Borchardt, R.T. Effect of Size and Charge on the Passive Diffusion of Peptides across Caco-2 Cell Monolayers via the Paracellular Pathway. Pharm. Res. 1997, 14, 164–168. [Google Scholar] [CrossRef]
- Sánchez-Navarro, M.; Teixidó, M.; Giralt, E. Jumping Hurdles: Peptides Able To Overcome Biological Barriers. Acc. Chem. Res. 2017, 50, 1847–1854. [Google Scholar] [CrossRef]
- Bhavsar, J.; Kasture, K.; Salvi, B.V.; Shende, P. Strategies for Transportation of Peptides across the Skin for Treatment of Multiple Diseases. Ther. Deliv. 2025, 16, 63–86. [Google Scholar] [CrossRef]
- Kurabi, A.; Pak, K.; Chavez, E.; Doan, J.; Ryan, A.F. A Transcytotic Transport Mechanism across the Tympanic Membrane. Sci. Rep. 2022, 12, 984. [Google Scholar] [CrossRef]
- Stauffer, M.; Jeckelmann, J.-M.; Ilgü, H.; Ucurum, Z.; Boggavarapu, R.; Fotiadis, D. Peptide Transporter Structure Reveals Binding and Action Mechanism of a Potent PEPT1 and PEPT2 Inhibitor. Commun. Chem. 2022, 5, 23. [Google Scholar] [CrossRef]
- Smith, D.E.; Clémençon, B.; Hediger, M.A. Proton-Coupled Oligopeptide Transporter Family SLC15: Physiological, Pharmacological and Pathological Implications. Mol. Asp. Med. 2013, 34, 323–336. [Google Scholar] [CrossRef]
- Khandelia, H.; Ipsen, J.H.; Mouritsen, O.G. The Impact of Peptides on Lipid Membranes. Biochim. Biophys. Acta (BBA)—Biomembr. 2008, 1778, 1528–1536. [Google Scholar] [CrossRef]
- Cardenas, A.E.; Shrestha, R.; Webb, L.J.; Elber, R. Membrane Permeation of a Peptide: It Is Better to Be Positive. J. Phys. Chem. B 2015, 119, 6412. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Zhang, W.; Xing, L.; Luo, R.; Cao, S. Obstacles, Research Progress, and Prospects of Oral Delivery of Bioactive Peptides: A Comprehensive Review. Front. Nutr. 2024, 11, 1496706. [Google Scholar] [CrossRef]
- Xiao, W.; Jiang, W.; Chen, Z.; Huang, Y.; Mao, J.; Zheng, W.; Hu, Y.; Shi, J. Advance in Peptide-Based Drug Development: Delivery Platforms, Therapeutics and Vaccines. Sig. Transduct. Target Ther. 2025, 10, 74. [Google Scholar] [CrossRef]
- Lopez, M.J.; Mohiuddin, S.S. Biochemistry, Essential Amino Acids. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. The Shape and Structure of Proteins. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Fujiwara, K.; Toda, H.; Ikeguchi, M. Dependence of α-Helical and β-Sheet Amino Acid Propensities on the Overall Protein Fold Type. BMC Struct. Biol. 2012, 12, 18. [Google Scholar] [CrossRef]
- Damodaran, S.; Parkin, K.L.; Fennema, O.R. Fennema’s Food Chemistry; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-1-4200-2052-6. [Google Scholar]
- Maloy, S. Amino Acids. In Brenner’s Encyclopedia of Genetics, Maloy, S., Hughes, K., Eds.; 2nd ed.; Academic Press: San Diego, CA, USA, 2013; pp. 108–110. ISBN 978-0-08-096156-9. [Google Scholar]
- Stollar, E.J.; Smith, D.P. Uncovering Protein Structure. Essays Biochem. 2020, 64, 649–680. [Google Scholar] [CrossRef]
- Dietzen, D.J. Proteins. In Principles and Applications of Molecular Diagnostics; Rifai, N., Horvath, A.R., Wittwer, C.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 345–380. ISBN 978-0-12-816061-9. [Google Scholar]
- Ouellette, R.J.; Rawn, J.D. Proteins. In Organic Chemistry, Ouellette, R.J., Rawn, J.D., Eds.; 2nd ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 929–971. ISBN 978-0-12-812838-1. [Google Scholar]
- Al Musaimi, O.; Lombardi, L.; Williams, D.R.; Albericio, F. Strategies for Improving Peptide Stability and Delivery. Pharmaceuticals 2022, 15, 1283. [Google Scholar] [CrossRef]
- Pei, J.; Gao, X.; Pan, D.; Hua, Y.; He, J.; Liu, Z.; Dang, Y. Advances in the Stability Challenges of Bioactive Peptides and Improvement Strategies. Curr. Res. Food Sci. 2022, 5, 2162–2170. [Google Scholar] [CrossRef] [PubMed]
- Acquah, C.; Stefano, E.D.; Udenigwe, C.C. Role of Hydrophobicity in Food Peptide Functionality and Bioactivity. J. Food Bio. Act. 2018, 4, 88–98. [Google Scholar] [CrossRef]
- Ahmed, T.; Sun, X.; Udenigwe, C.C. Role of Structural Properties of Bioactive Peptides in Their Stability during Simulated Gastrointestinal Digestion: A Systematic Review. Trends Food Sci. Technol. 2022, 120, 265–273. [Google Scholar] [CrossRef]
- Amigo, L.; Hernández-Ledesma, B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020, 25, 4479. [Google Scholar] [CrossRef]
- Xie, N.; Wang, B.; Jiang, L.; Liu, C.; Li, B. Hydrophobicity Exerts Different Effects on Bioavailability and Stability of Antioxidant Peptide Fractions from Casein during Simulated Gastrointestinal Digestion and Caco-2 Cell Absorption. Food Res. Int. 2015, 76, 518–526. [Google Scholar] [CrossRef]
- Avci, F.G.; Sariyar Akbulut, B.; Ozkirimli, E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Qing, R.; Hao, S.; Smorodina, E.; Jin, D.; Zalevsky, A.; Zhang, S. Protein Design: From the Aspect of Water Solubility and Stability. Chem. Rev. 2022, 122, 14085–14179. [Google Scholar] [CrossRef]
- Sikora, K.; Jaśkiewicz, M.; Neubauer, D.; Migoń, D.; Kamysz, W. The Role of Counter-Ions in Peptides—An Overview. Pharmaceuticals 2020, 13, 442. [Google Scholar] [CrossRef]
- Vascon, F.; Gasparotto, M.; Giacomello, M.; Cendron, L.; Bergantino, E.; Filippini, F.; Righetto, I. Protein Electrostatics: From Computational and Structural Analysis to Discovery of Functional Fingerprints and Biotechnological Design. Comput. Struct. Biotechnol. J. 2020, 18, 1774–1789. [Google Scholar] [CrossRef]
- Zhou, H.-X.; Pang, X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem. Rev. 2018, 118, 1691–1741. [Google Scholar] [CrossRef]
- Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE 2012, 7, e46688. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mishra, B.; Lushnikova, T.; Narayana, J.L.; Wang, G. Amino Acid Composition Determines Peptide Activity Spectrum and Hot-Spot-Based Design of Merecidin. Adv. Biosyst. 2018, 2, 1700259. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Puga, M.D.C.; Plisson, F. Structure-Aware Machine Learning Strategies for Antimicrobial Peptide Discovery. Sci. Rep. 2024, 14, 11995. [Google Scholar] [CrossRef]
- Ma, J.; Yan, L.; Yang, J.; He, Y.; Wu, L. Effect of Modification Strategies on the Biological Activity of Peptides/Proteins. ChemBiochem 2024, 25, e202300481. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Eck, M.J. Chapter 6—Protein Architecture: Relationship of Form and Function. In Hematology, Hoffman, R., Benz, E.J., Silberstein, L.E., Heslop, H.E., Weitz, J.I., Anastasi, J., Salama, M.E., Abutalib, S.A., Eds.; 7th ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 59–67. ISBN 978-0-323-35762-3. [Google Scholar]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef]
- Davenport, A.P.; Scully, C.C.G.; de Graaf, C.; Brown, A.J.H.; Maguire, J.J. Advances in Therapeutic Peptides Targeting G Protein-Coupled Receptors. Nat. Rev. Drug Discov. 2020, 19, 389–413. [Google Scholar] [CrossRef]
- Saw, P.E.; Xu, X.; Kim, S.; Jon, S. Biomedical Applications of a Novel Class of High-Affinity Peptides. Acc. Chem. Res. 2021, 54, 3576–3592. [Google Scholar] [CrossRef]
- Ohashi, Y.; Onuma, R.; Naganuma, T.; Ogawa, T.; Naude, R.; Nokihara, K.; Muramoto, K. Antioxidant Properties of Tripeptides Revealed by a Comparison of Six Different Assays. Food Sci. Technol. Res. 2015, 21, 695–704. [Google Scholar] [CrossRef]
- Saito, K.; Jin, D.-H.; Ogawa, T.; Muramoto, K.; Hatakeyama, E.; Yasuhara, T.; Nokihara, K. Antioxidative Properties of Tripeptide Libraries Prepared by the Combinatorial Chemistry. J. Agric. Food Chem. 2003, 51, 3668–3674. [Google Scholar] [CrossRef]
- Lu, J.; Xu, H.; Xia, J.; Ma, J.; Xu, J.; Li, Y.; Feng, J. D- and Unnatural Amino Acid Substituted Antimicrobial Peptides With Improved Proteolytic Resistance and Their Proteolytic Degradation Characteristics. Front. Microbiol. 2020, 11, 563030. [Google Scholar] [CrossRef]
- Chen, H.-M.; Muramoto, K.; Yamauchi, F. Structural Analysis of Antioxidative Peptides from Soybean. Beta.-Conglycinin. J. Agric. Food Chem. 1995, 43, 574–578. [Google Scholar] [CrossRef]
- Chan, L.Y.; Zhang, V.M.; Huang, Y.; Waters, N.C.; Bansal, P.S.; Craik, D.J.; Daly, N.L. Cyclization of the Antimicrobial Peptide Gomesin with Native Chemical Ligation: Influences on Stability and Bioactivity. ChemBiochem 2013, 14, 617–624. [Google Scholar] [CrossRef]
- Costa, L.; Sousa, E.; Fernandes, C. Cyclic Peptides in Pipeline: What Future for These Great Molecules? Pharmaceuticals 2023, 16, 996. [Google Scholar] [CrossRef]
- Ji, X.; Nielsen, A.L.; Heinis, C. Cyclic Peptides for Drug Development. Angew. Chem. Int. Ed. 2024, 63, e202308251. [Google Scholar] [CrossRef]
- Joo, S.H. Cyclic Peptides as Therapeutic Agents and Biochemical Tools. Biomol. Ther. 2012, 20, 19–26. [Google Scholar] [CrossRef]
- Zhang, R.-Y.; Thapa, P.; Espiritu, M.J.; Menon, V.; Bingham, J.-P. From Nature to Creation: Going around in Circles, the Art of Peptide Cyclization. Bioorg. Med. Chem. 2018, 26, 1135–1150. [Google Scholar] [CrossRef] [PubMed]
- Bozovičar, K.; Bratkovič, T. Small and Simple, yet Sturdy: Conformationally Constrained Peptides with Remarkable Properties. Int. J. Mol. Sci. 2021, 22, 1611. [Google Scholar] [CrossRef]
- Huang, H.; Damjanovic, J.; Miao, J.; Lin, Y.-S. Cyclic Peptides: Backbone Rigidification and Capability of Mimicking Motifs at Protein–Protein Interfaces. Phys. Chem. Chem. Phys. 2021, 23, 607–616. [Google Scholar] [CrossRef]
- Dougherty, P.G.; Sahni, A.; Pei, D. Understanding Cell Penetration of Cyclic Peptides. Chem. Rev. 2019, 119, 10241–10287. [Google Scholar] [CrossRef]
- Kalafatovic, D.; Giralt, E. Cell-Penetrating Peptides: Design Strategies beyond Primary Structure and Amphipathicity. Molecules 2017, 22, 1929. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, E.H.M.; Lohan, S.; Ghaffari, T.; Gupta, S.; Tiwari, R.K.; Parang, K. Membrane-Active Cyclic Amphiphilic Peptides: Broad-Spectrum Antibacterial Activity Alone and in Combination with Antibiotics. J. Med. Chem. 2022, 65, 15819–15839. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.A.; McGaw, L.J. Natural Cyclic Peptides as an Attractive Modality for Therapeutics: A Mini Review. Molecules 2018, 23, 2080. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Singh, P.; Sharma, R.; Mohapatra, T.M. Nonribosomal Peptide Synthesis in Microbes. Recent Adv. Microbiol. 2012, 1, 183. [Google Scholar]
- Goto, Y.; Suga, H. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides. Acc. Chem. Res. 2021, 54, 3604–3617. [Google Scholar] [CrossRef]
- Saadi, S.; Ghazali, H.M.; Saari, N.; Abdulkarim, S.M. The Structural Reconformation of Peptides in Enhancing Functional and Therapeutic Properties: Insights into Their Solid State Crystallizations. Biophys. Chem. 2021, 273, 106565. [Google Scholar] [CrossRef]
- London, N.; Movshovitz-Attias, D.; Schueler-Furman, O. The Structural Basis of Peptide-Protein Binding Strategies. Structure 2010, 18, 188–199. [Google Scholar] [CrossRef]
- Shi, S.M.; Di, L. Strategies to Optimize Peptide Stability and Prolong Half-Life. In Peptide Therapeutics: Fundamentals of Design, Development, and Delivery; Jois, S.D., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 163–182. ISBN 978-3-031-04544-8. [Google Scholar]
- Bellavita, R.; Braccia, S.; Galdiero, S.; Falanga, A. Glycosylation and Lipidation Strategies: Approaches for Improving Antimicrobial Peptide Efficacy. Pharmaceuticals 2023, 16, 439. [Google Scholar] [CrossRef]
- Ma, Y.; Lee, C.-J.; Park, J.-S. Strategies for Optimizing the Production of Proteins and Peptides with Multiple Disulfide Bonds. Antibiotics 2020, 9, 541. [Google Scholar] [CrossRef]
- SOLÁ, R.J.; GRIEBENOW, K. Effects of Glycosylation on the Stability of Protein Pharmaceuticals. J. Pharm. Sci. 2009, 98, 1223–1245. [Google Scholar] [CrossRef]
- Zhang, L.; Chou, C.; Moo-Young, M. Disulfide Bond Formation and Its Impact on the Biological Activity and Stability of Recombinant Therapeutic Proteins Produced by Escherichia Coli Expression System. Biotechnol. Adv. 2011, 29, 923–929. [Google Scholar] [CrossRef]
- Lau, J.; Bloch, P.; Schäffer, L.; Pettersson, I.; Spetzler, J.; Kofoed, J.; Madsen, K.; Knudsen, L.B.; McGuire, J.; Steensgaard, D.B.; et al. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J. Med. Chem. 2015, 58, 7370–7380. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, L.; Li, T.; Xu, W.; Liu, D.; Sheng, J.; Cao, H.; Shi, Y.; Wang, F. Improve Stability of Bioactive Peptides by Enzymatic Modular Synthesis of Peptides with O-Linked Sialyl Lewis x. ACS Catal. 2021, 11, 8042–8048. [Google Scholar] [CrossRef]
- Gonzalez, N.A.; Li, B.A.; McCully, M.E. The Stability and Dynamics of Computationally Designed Proteins. Protein Eng. Des. Sel. 2022, 35, gzac001. [Google Scholar] [CrossRef]
- Wang, F.; Sangfuang, N.; McCoubrey, L.E.; Yadav, V.; Elbadawi, M.; Orlu, M.; Gaisford, S.; Basit, A.W. Advancing Oral Delivery of Biologics: Machine Learning Predicts Peptide Stability in the Gastrointestinal Tract. Int. J. Pharm. 2023, 634, 122643. [Google Scholar] [CrossRef]
- Nie, C.; Zou, Y.; Liao, S.; Gao, Q.; Li, Q. Peptides as Carriers of Active Ingredients: A Review. Curr. Res. Food Sci. 2023, 7, 100592. [Google Scholar] [CrossRef]
- Rahban, M.; Ahmad, F.; Piatyszek, M.A.; Haertlé, T.; Saso, L.; Saboury, A.A. Stabilization Challenges and Aggregation in Protein-Based Therapeutics in the Pharmaceutical Industry. RSC Adv. 2023, 13, 35947–35963. [Google Scholar] [CrossRef]
- Rajan, R.; Ahmed, S.; Sharma, N.; Kumar, N.; Debas, A.; Matsumura, K. Review of the Current State of Protein Aggregation Inhibition from a Materials Chemistry Perspective: Special Focus on Polymeric Materials. Mater. Adv. 2021, 2, 1139–1176. [Google Scholar] [CrossRef]
- Zapadka, K.L.; Becher, F.J.; Gomes dos Santos, A.L.; Jackson, S.E. Factors Affecting the Physical Stability (Aggregation) of Peptide Therapeutics. Interface Focus 2017, 7, 20170030. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.G.; Meade, R.M.; White Stenner, L.L.; Mason, J.M. Peptide-Based Approaches to Directly Target Alpha-Synuclein in Parkinson’s Disease. Mol. Neurodegener. 2023, 18, 80. [Google Scholar] [CrossRef] [PubMed]
- Soto, C.; Pritzkow, S. Protein Misfolding, Aggregation, and Conformational Strains in Neurodegenerative Diseases. Nat. Neurosci. 2018, 21, 1332–1340. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, P.; Park, H.; Baumann, M.; Dunlop, J.; Frydman, J.; Kopito, R.; McCampbell, A.; Leblanc, G.; Venkateswaran, A.; Nurmi, A.; et al. Protein Misfolding in Neurodegenerative Diseases: Implications and Strategies. Transl. Neurodegener. 2017, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Villanueva, J.F.; Díaz-Molina, R.; García-González, V. Protein Folding and Mechanisms of Proteostasis. Int. J. Mol Sci. 2015, 16, 17193–17230. [Google Scholar] [CrossRef]
- Khan, A.N.; Khan, R.H. Protein Misfolding and Related Human Diseases: A Comprehensive Review of Toxicity, Proteins Involved, and Current Therapeutic Strategies. Int. J. Biol. Macromol. 2022, 223, 143–160. [Google Scholar] [CrossRef]
- Ha, J.-H.; Loh, S.N. Protein Conformational Switches: From Nature to Design. Chemistry 2012, 18, 7984–7999. [Google Scholar] [CrossRef]
- Shea, J.-E.; Friedel, M.R.; Baumketner, A. Simulations of Protein Folding. In Reviews in Computational Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 169–228. ISBN 978-0-471-78036-6. [Google Scholar]
- Zhang, J.; Li, W.; Wang, J.; Qin, M.; Wu, L.; Yan, Z.; Xu, W.; Zuo, G.; Wang, W. Protein Folding Simulations: From Coarse-Grained Model to All-Atom Model. IUBMB Life 2009, 61, 627–643. [Google Scholar] [CrossRef]
- Jahn, T.R.; Radford, S.E. Folding versus Aggregation: Polypeptide Conformations on Competing Pathways. Arch. Biochem. Biophys. 2008, 469, 100–117. [Google Scholar] [CrossRef] [PubMed]
- Galano-Frutos, J.J.; Nerín-Fonz, F.; Sancho, J. Calculation of Protein Folding Thermodynamics Using Molecular Dynamics Simulations. J. Chem. Inf. Model. 2023, 63, 7791–7806. [Google Scholar] [CrossRef]
- Seibert, M.M.; Patriksson, A.; Hess, B.; van der Spoel, D. Reproducible Polypeptide Folding and Structure Prediction Using Molecular Dynamics Simulations. J. Mol. Biol. 2005, 354, 173–183. [Google Scholar] [CrossRef]
- Díaz-Gómez, J.L.; Neundorf, I.; López-Castillo, L.-M.; Castorena-Torres, F.; Serna-Saldívar, S.O.; García-Lara, S. In Silico Analysis and In Vitro Characterization of the Bioactive Profile of Three Novel Peptides Identified from 19 kDa α-Zein Sequences of Maize. Molecules 2020, 25, 5405. [Google Scholar] [CrossRef] [PubMed]
- Prakash Nirmal, N.; Singh Rajput, M.; Bhojraj Rathod, N.; Mudgil, P.; Pati, S.; Bono, G.; Nalinanon, S.; Li, L.; Maqsood, S. Structural Characteristic and Molecular Docking Simulation of Fish Protein-Derived Peptides: Recent Updates on Antioxidant, Anti-Hypertensive and Anti-Diabetic Peptides. Food Chem. 2023, 405, 134737. [Google Scholar] [CrossRef]
- Luca, S.; Heise, H.; Baldus, M. High-Resolution Solid-State NMR Applied to Polypeptides and Membrane Proteins. Acc. Chem. Res. 2003, 36, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Rienstra, C.M.; Tucker-Kellogg, L.; Jaroniec, C.P.; Hohwy, M.; Reif, B.; McMahon, M.T.; Tidor, B.; Lozano-Pérez, T.; Griffin, R.G. De Novo Determination of Peptide Structure with Solid-State Magic-Angle Spinning NMR Spectroscopy. Proc. Natl. Acad. Sci. USA 2002, 99, 10260–10265. [Google Scholar] [CrossRef]
- Schroeder, C.I.; Rosengren, K.J. Three-Dimensional Structure Determination of Peptides Using Solution Nuclear Magnetic Resonance Spectroscopy. In Snake and Spider Toxins: Methods and Protocols; Priel, A., Ed.; Springer: New York, NY, USA, 2020; pp. 129–162. ISBN 978-1-4939-9845-6. [Google Scholar]
- Andrushchenko, V.V.; Vogel, H.J.; Prenner, E.J. Solvent-Dependent Structure of Two Tryptophan-Rich Antimicrobial Peptides and Their Analogs Studied by FTIR and CD Spectroscopy. Biochim. Biophys. Acta (BBA) Biomembr. 2006, 1758, 1596–1608. [Google Scholar] [CrossRef] [PubMed]
- Bagińska, K.; Makowska, J.; Wiczk, W.; Kasprzykowski, F.; ChmurzyńSKI, L. Conformational Studies of Alanine-Rich Peptide Using CD and FTIR Spectroscopy. J. Pept. Sci. 2008, 14, 283–289. [Google Scholar] [CrossRef]
- Allison, J.R. Computational Methods for Exploring Protein Conformations. Biochem. Soc. Trans 2020, 48, 1707–1724. [Google Scholar] [CrossRef]
- Mondal, A.; Chang, L.; Perez, A. Modelling Peptide–Protein Complexes: Docking, Simulations and Machine Learning. QRB Discov. 2022, 3, e17. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, C.; Ren, Y.; Yang, C.; Tian, F. Computational Peptidology: A New and Promising Approach to Therapeutic Peptide Design. Curr. Med. Chem. 2013, 20, 1985–1996. [Google Scholar] [CrossRef]
- Du, Z.; Comer, J.; Li, Y. Bioinformatics Approaches to Discovering Food-Derived Bioactive Peptides: Reviews and Perspectives. TrAC Trends Anal. Chem. 2023, 162, 117051. [Google Scholar] [CrossRef]
- Geng, H.; Chen, F.; Ye, J.; Jiang, F. Applications of Molecular Dynamics Simulation in Structure Prediction of Peptides and Proteins. Comput. Struct. Biotechnol. J. 2019, 17, 1162–1170. [Google Scholar] [CrossRef]
- Jalily Hasani, H.; Barakat, K. Homology Modeling: An Overview of Fundamentals and Tools. Int. Rev. Model. Simul. (IREMOS) 2017, 10, 129. [Google Scholar] [CrossRef]
- Muhammed, M.T.; Aki-Yalcin, E. Homology Modeling in Drug Discovery: Overview, Current Applications, and Future Perspectives. Chem Biol. Drug Des. 2019, 93, 12–20. [Google Scholar] [CrossRef] [PubMed]
- John, B.; Sali, A. Comparative Protein Structure Modeling by Iterative Alignment, Model Building and Model Assessment. Nucleic Acids Res. 2003, 31, 3982–3992. [Google Scholar] [CrossRef]
- MacCallum, J.L.; Pérez, A.; Schnieders, M.J.; Hua, L.; Jacobson, M.P.; Dill, K.A. Assessment of Protein Structure Refinement in CASP9. Proteins 2011, 79 (Suppl. S10), 74–90. [Google Scholar] [CrossRef]
- Schmidt, T.; Bergner, A.; Schwede, T. Modelling Three-Dimensional Protein StructuRes. for Applications in Drug Design. Drug Discov. Today 2014, 19, 890–897. [Google Scholar] [CrossRef]
- Majumder, P. Computational Methods Used in Prediction of Protein Structure. In Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications; Srinivasa, K.G., Siddesh, G.M., Manisekhar, S.R., Eds.; Springer: Singapore, 2020; pp. 119–133. ISBN 9789811524455. [Google Scholar]
- Fiser, A. Template-Based Protein Structure Modeling. In Computational Biology; Fenyö, D., Ed.; Humana Press: Totowa, NJ, USA, 2010; pp. 73–94. ISBN 978-1-60761-842-3. [Google Scholar]
- Xiang, Z. Advances in Homology Protein Structure Modeling. Curr. Protein. Pept. Sci. 2006, 7, 217–227. [Google Scholar] [PubMed]
- Floudas, C.A.; Fung, H.K.; McAllister, S.R.; Mönnigmann, M.; Rajgaria, R. Advances in Protein Structure Prediction and de Novo Protein Design: A Review. Chem. Eng. Sci. 2006, 61, 966–988. [Google Scholar] [CrossRef]
- Tiwari, A.; Chauhan, R.P.; Agarwal, A.; Ramteke, P.W. Molecular Modeling of Proteins: Methods, Recent Advances, and Future Prospects. In Computer-Aided Drug Design; Singh, D.B., Ed.; Springer: Singapore, 2020; pp. 23–47. ISBN 9789811568152. [Google Scholar]
- Abdou, Y.T.; Saleeb, S.M.; Abdel-Raouf, K.M.A.; Allam, M.; Adel, M.; Amleh, A. Characterization of a Novel Peptide Mined from the Red Sea Brine Pools and Modified to Enhance Its Anticancer Activity. BMC Cancer 2023, 23, 699. [Google Scholar] [CrossRef]
- Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A Unified Platform for Automated Protein Structure and Function Prediction. Nat. Protoc. 2010, 5, 725–738. [Google Scholar] [CrossRef]
- Durme, J.V.; Maurer-Stroh, S.; Gallardo, R.; Wilkinson, H.; Rousseau, F.; Schymkowitz, J. Accurate Prediction of DnaK-Peptide Binding via Homology Modelling and Experimental Data. PLoS Comput. Biol. 2009, 5, e1000475. [Google Scholar] [CrossRef]
- Chakraborty, S.; Bhattacharya, S.; Ghosh, S.; Bera, A.K.; Haldar, U.; Pal, A.K.; Mukhopadhyay, B.P.; Banerjee, A. Structural and Interactional Homology of Clinically Potential Trypsin Inhibitors: Molecular Modelling of Cucurbitaceae Family Peptides Using the X-Ray Structure of MCTI-II. Protein Eng. Des. Sel. 2000, 13, 551–555. [Google Scholar] [CrossRef]
- Ostberg, N.; Kaznessis, Y. Protegrin Structure–Activity Relationships: Using Homology Models of Synthetic Sequences to Determine Structural Characteristics Important for Activity. Peptides 2005, 26, 197–206. [Google Scholar] [CrossRef]
- Rodrigues, J.P.G.L.M.; Melquiond, A.S.J.; Karaca, E.; Trellet, M.; van Dijk, M.; van Zundert, G.C.P.; Schmitz, C.; de Vries, S.J.; Bordogna, A.; Bonati, L.; et al. Defining the Limits of Homology Modeling in Information-Driven Protein Docking. Proteins Struct. Funct. Bioinform. 2013, 81, 2119–2128. [Google Scholar] [CrossRef]
- Monzon, A.M.; Zea, D.J.; Marino-Buslje, C.; Parisi, G. Homology Modeling in a Dynamical World. Protein Sci. 2017, 26, 2195–2206. [Google Scholar] [CrossRef] [PubMed]
- Haddad, Y.; Adam, V.; Heger, Z. Ten Quick Tips for Homology Modeling of High-Resolution Protein 3D Structures. PLoS Comput. Biol. 2020, 16, e1007449. [Google Scholar] [CrossRef]
- Stanzione, F.; Giangreco, I.; Cole, J.C. Chapter Four—Use of Molecular Docking Computational Tools in Drug Discovery. In Progress in Medicinal Chemistry; Witty, D.R., Cox, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 60, pp. 273–343. [Google Scholar]
- Andreani, J.; Quignot, C.; Guerois, R. Structural Prediction of Protein Interactions and Docking Using Conservation and Coevolution. WIRes. Comput. Mol. Sci. 2020, 10, e1470. [Google Scholar] [CrossRef]
- Hetényi, C.; van der Spoel, D. Efficient Docking of Peptides to Proteins without Prior Knowledge of the Binding Site. Protein Sci. 2002, 11, 1729–1737. [Google Scholar] [CrossRef]
- Singh, S.; Bani Baker, Q.; Singh, D.B. Chapter 18—Molecular Docking and Molecular Dynamics Simulation. In Bioinformatics; Singh, D.B., Pathak, R.K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 291–304. ISBN 978-0-323-89775-4. [Google Scholar]
- Morris, G.M.; Lim-Wilby, M. Molecular Docking. In Molecular Modeling of Proteins; Kukol, A., Ed.; Humana Press: Totowa, NJ, USA, 2008; pp. 365–382. ISBN 978-1-59745-177-2. [Google Scholar]
- Pantsar, T.; Poso, A. Binding Affinity via Docking: Fact and Fiction. Molecules 2018, 23, 1899. [Google Scholar] [CrossRef]
- Agu, P.C.; Afiukwa, C.A.; Orji, O.U.; Ezeh, E.M.; Ofoke, I.H.; Ogbu, C.O.; Ugwuja, E.I.; Aja, P.M. Molecular Docking as a Tool for the Discovery of Molecular Targets of Nutraceuticals in Diseases Management. Sci. Rep. 2023, 13, 13398. [Google Scholar] [CrossRef]
- Meng, X.-Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146–157. [Google Scholar]
- Paggi, J.M.; Pandit, A.; Dror, R.O. The Art and Science of Molecular Docking. Annu. Rev. Biochem. 2024, 93, 389–410. [Google Scholar] [CrossRef]
- Atkovska, K.; Samsonov, S.A.; Paszkowski-Rogacz, M.; Pisabarro, M.T. Multipose Binding in Molecular Docking. Int. J. Mol. Sci. 2014, 15, 2622–2645. [Google Scholar] [CrossRef] [PubMed]
- Kundrotas, P.J.; Zhu, Z.; Janin, J.; Vakser, I.A. Templates Are Available to Model Nearly All Complexes of Structurally Characterized Proteins. Proc. Natl. Acad. Sci. USA 2012, 109, 9438–9441. [Google Scholar] [CrossRef]
- Lensink, M.F.; Velankar, S.; Wodak, S.J. Modeling Protein-Protein and Protein-Peptide Complexes: CAPRI 6th Edition. Proteins 2017, 85, 359–377. [Google Scholar] [CrossRef]
- Ciemny, M.; Kurcinski, M.; Kamel, K.; Kolinski, A.; Alam, N.; Schueler-Furman, O.; Kmiecik, S. Protein–Peptide Docking: Opportunities and Challenges. Drug Discov. Today 2018, 23, 1530–1537. [Google Scholar] [CrossRef]
- Agrawal, P.; Singh, H.; Srivastava, H.K.; Singh, S.; Kishore, G.; Raghava, G.P.S. Benchmarking of Different Molecular Docking Methods for Protein-Peptide Docking. BMC Bioinform. 2019, 19, 426. [Google Scholar] [CrossRef]
- Corbeil, C.R.; Williams, C.I.; Labute, P. Variability in Docking Success Rates Due to Dataset Preparation. J. Comput. Aided Mol. Des. 2012, 26, 775–786. [Google Scholar] [CrossRef]
- Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for Molecular Docking: A Review. Biophys. Rev. 2017, 9, 91–102. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Kellenberger, E.; Rodrigo, J.; Muller, P.; Rognan, D. Comparative Evaluation of Eight Docking Tools for Docking and Virtual Screening Accuracy. Proteins Struct. Funct. Bioinform. 2004, 57, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Weng, G.; Gao, J.; Wang, Z.; Wang, E.; Hu, X.; Yao, X.; Cao, D.; Hou, T. Comprehensive Evaluation of Fourteen Docking Programs on Protein–Peptide Complexes. J. Chem. Theory Comput. 2020, 16, 3959–3969. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Jiang, D.; Shen, C.; Zhang, J.; Zhang, X.; Wang, X.; Nie, D.; Hou, T.; Kang, Y. Comprehensive Evaluation of 10 Docking Programs on a Diverse Set of Protein–Cyclic Peptide Complexes. J. Chem. Inf. Model. 2024, 64, 2112–2124. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, T.; Chen, D.; Gu, H.; Mao, X. Identification and Molecular Docking of Antioxidant Peptides from Hemp Seed Protein Hydrolysates. LWT 2021, 147, 111453. [Google Scholar] [CrossRef]
- Wen-Tao, C.H.E.N.; Zhang, Y.-Y.; Qiang, Q.; Zou, P.; Xu, Y.; Sun, C.; Badar, I.H. Characterizations and Molecular Docking Mechanism of the Interactions between Peptide FDGDF (Phe-Asp-Gly-Asp-Phe) and SOD Enzyme. Heliyon 2024, 10, e24515. [Google Scholar] [CrossRef] [PubMed]
- London, N.; Raveh, B.; Schueler-Furman, O. Peptide Docking and Structure-Based Characterization of Peptide Binding: From Knowledge to Know-How. Curr. Opin. Struct. Biol. 2013, 23, 894–902. [Google Scholar] [CrossRef]
- Meyer, K.; Selbach, M. Peptide-Based Interaction Proteomics. Mol. Cell Proteom. 2020, 19, 1070–1075. [Google Scholar] [CrossRef] [PubMed]
- Petsalaki, E.; Russell, R.B. Peptide-Mediated Interactions in Biological Systems: New Discoveries and Applications. Curr. Opin Biotechnol. 2008, 19, 344–350. [Google Scholar] [CrossRef]
- Raghavender, U.S.; Rathore, R.S. Protein-Peptide Interactions in Regulatory Events. In Encyclopedia of Bioinformatics and Computational Biology; Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C., Eds.; Academic Press: Oxford, UK, 2019; pp. 688–696. ISBN 978-0-12-811432-2. [Google Scholar]
- Mudgil, P.; Al Dhaheri, M.K.O.; Alsubousi, M.S.M.; Khan, H.; Redha, A.A.; Yap, P.-G.; Gan, C.-Y.; Maqsood, S. Molecular Docking Studies on α-Amylase Inhibitory Peptides from Milk of Different Farm Animals. J. Dairy Sci. 2024, 107, 2633–2652. [Google Scholar] [CrossRef]
- Auwal, S.M.; Abidin, N.Z.; Zarei, M.; Tan, C.P.; Saari, N. Identification, Structure-Activity Relationship and in Silico Molecular Docking Analyses of Five Novel Angiotensin I-Converting Enzyme (ACE)-Inhibitory Peptides from Stone Fish (Actinopyga Lecanora) Hydrolysates. PLoS ONE 2019, 14, e0197644. [Google Scholar] [CrossRef]
- Zhou, P.; Jin, B.; Li, H.; Huang, S.-Y. HPEPDOCK: A Web Server for Blind Peptide–Protein Docking Based on a Hierarchical Algorithm. Nucleic Acids Res. 2018, 46, W443–W450. [Google Scholar] [CrossRef]
- Kurcinski, M.; Badaczewska-Dawid, A.; Kolinski, M.; Kolinski, A.; Kmiecik, S. Flexible Docking of Peptides to Proteins Using CABS-dock. Protein Sci. 2020, 29, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sanner, M.F. AutoDock CrankPep: Combining Folding and Docking to Predict Protein–Peptide Complexes. Bioinformatics 2019, 35, 5121–5127. [Google Scholar] [CrossRef]
- Lee, H.; Heo, L.; Lee, M.S.; Seok, C. GalaxyPepDock: A Protein–Peptide Docking Tool Based on Interaction Similarity and Energy Optimization. Nucleic Acids Res. 2015, 43, W431–W435. [Google Scholar] [CrossRef] [PubMed]
- London, N.; Raveh, B.; Cohen, E.; Fathi, G.; Schueler-Furman, O. Rosetta FlexPepDock Web Server—High Resolution Modeling of Peptide–Protein Interactions. Nucleic Acids Res. 2011, 39, W249–W253. [Google Scholar] [CrossRef]
- Donsky, E.; Wolfson, H.J. PepCrawler: A Fast RRT-Based Algorithm for High-Resolution Refinement and Binding Affinity Estimation of Peptide Inhibitors. Bioinformatics 2011, 27, 2836–2842. [Google Scholar] [CrossRef]
- Dominguez, C.; Boelens, R.; Bonvin, A.M.J.J. HADDOCK: A Protein-Protein Docking Approach Based on Biochemical or Biophysical Information. J. Am. Chem. Soc. 2003, 125, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- de Vries, S.J.; Rey, J.; Schindler, C.E.M.; Zacharias, M.; Tuffery, P. The pepATTRACT Web Server for Blind, Large-Scale Peptide–Protein Docking. Nucleic Acids Res. 2017, 45, W361–W364. [Google Scholar] [CrossRef]
- Alam, N.; Goldstein, O.; Xia, B.; Porter, K.A.; Kozakov, D.; Schueler-Furman, O. High-Resolution Global Peptide-Protein Docking Using Fragments-Based PIPER-FlexPepDock. PLoS Comput. Biol. 2017, 13, e1005905. [Google Scholar] [CrossRef]
- Porter, K.A.; Xia, B.; Beglov, D.; Bohnuud, T.; Alam, N.; Schueler-Furman, O.; Kozakov, D. ClusPro PeptiDock: Efficient Global Docking of Peptide Recognition Motifs Using FFT. Bioinformatics 2017, 33, 3299–3301. [Google Scholar] [CrossRef]
- Antes, I. DynaDock: A New Molecular Dynamics-Based Algorithm for Protein-Peptide Docking Including Receptor Flexibility. Proteins 2010, 78, 1084–1104. [Google Scholar] [CrossRef]
- Ben-Shimon, A.; Niv, M.Y. AnchorDock: Blind and Flexible Anchor-Driven Peptide Docking. Structure 2015, 23, 929–940. [Google Scholar] [CrossRef]
- Xu, X.; Yan, C.; Zou, X. MDockPeP: An Ab-Initio Protein-Peptide Docking Server. J. Comput. Chem. 2018, 39, 2409–2413. [Google Scholar] [CrossRef]
- Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de Novo Structure Prediction for Linear Peptides in Solution and in Complex. Nucleic Acids Res. 2016, 44, W449–W454. [Google Scholar] [CrossRef] [PubMed]
- Antunes, D.A.; Moll, M.; Devaurs, D.; Jackson, K.R.; Lizée, G.; Kavraki, L.E. DINC 2.0: A New Protein-Peptide Docking Webserver Using an Incremental Approach. Cancer Res. 2017, 77, e55–e57. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking1. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [PubMed]
- Raveh, B.; London, N.; Zimmerman, L.; Schueler-Furman, O. Rosetta FlexPepDock Ab-Initio: Simultaneous Folding, Docking and Refinement of Peptides onto Their Receptors. PLoS ONE 2011, 6, e18934. [Google Scholar] [CrossRef]
- Li, H.; Lu, L.; Chen, R.; Quan, L.; Xia, X.; Lü, Q. PaFlexPepDock: Parallel Ab-Initio Docking of Peptides onto Their Receptors with Full Flexibility Based on Rosetta. PLoS ONE 2014, 9, e94769. [Google Scholar] [CrossRef]
- Obarska-Kosinska, A.; Iacoangeli, A.; Lepore, R.; Tramontano, A. PepComposer: Computational Design of Peptides Binding to a given Protein Surface. Nucleic. Acids Res. 2016, 44, W522. [Google Scholar] [CrossRef]
- London, N.; Raveh, B.; Schueler-Furman, O. Modeling Peptide-Protein Interactions. Methods Mol. Biol. 2012, 857, 375–398. [Google Scholar] [CrossRef]
- Khramushin, A.; Marcu, O.; Alam, N.; Shimony, O.; Padhorny, D.; Brini, E.; Dill, K.A.; Vajda, S.; Kozakov, D.; Schueler-Furman, O. Modeling Beta-Sheet Peptide-Protein Interactions: Rosetta FlexPepDock in CAPRI Rounds 38-45. Proteins 2020, 88, 1037–1049. [Google Scholar] [CrossRef]
- Tuffery, P.; Derreumaux, P. Flexibility and Binding Affinity in Protein–Ligand, Protein–Protein and Multi-Component Protein Interactions: Limitations of Current Computational Approaches. J. R Soc. Interface 2012, 9, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Antunes, D.A.; Devaurs, D.; Kavraki, L.E. Understanding the Challenges of Protein Flexibility in Drug Design. Expert Opin. Drug Discov. 2015, 10. [Google Scholar] [CrossRef]
- Buonfiglio, R.; Recanatini, M.; Masetti, M. Protein Flexibility in Drug Discovery: From Theory to Computation. Chem. Med. Chem 2015, 10, 1141–1148. [Google Scholar] [CrossRef]
- Maus, H.; Hinze, G.; Hammerschmidt, S.J.; Schirmeister, T.; Basché, T. Conformational Selection and Induced Fit: The Behavior of Two Homologous Proteases. ChemistryEurope 2023, 1, e202300060. [Google Scholar] [CrossRef]
- Belorkar, S.A.; Jogaiah, S. Chapter 1—Enzymes—Past, Present, and Future. In Protocols and Applications in Enzymology; Belorkar, S.A., Jogaiah, S., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 1–15. ISBN 978-0-323-91268-6. [Google Scholar]
- Koshland, D.E.; Némethy, G.; Filmer, D. Comparison of Experimental Binding Data and Theoretical Models in Proteins Containing Subunits. Biochemistry 1966, 5, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.B.; Murphy, R.B.; Sindhikara, D.; Borrelli, K.W.; Grisewood, M.J.; Ranalli, F.; Dixon, S.L.; Jerome, S.; Boyles, N.A.; Day, T.; et al. Reliable and Accurate Solution to the Induced Fit Docking Problem for Protein–Ligand Binding. J. Chem. Theory Comput. 2021, 17, 2630–2639. [Google Scholar] [CrossRef]
- Kuzu, G.; Keskin, O.; Gursoy, A.; Nussinov, R. Expanding the Conformational Selection Paradigm in Protein-Ligand Docking. Methods Mol. Biol. 2012, 819, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Galburt, E.A.; Tomko, E.J. Conformational Selection and Induced Fit as a Useful Framework for Molecular Motor Mechanisms. Biophys. Chem. 2017, 223, 11. [Google Scholar] [CrossRef]
- Morando, M.A.; Saladino, G.; D.’Amelio, N.; Pucheta-Martinez, E.; Lovera, S.; Lelli, M.; López-Méndez, B.; Marenchino, M.; Campos-Olivas, R.; Gervasio, F.L. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the C-Src Kinase. Sci. Rep. 2016, 6, 24439. [Google Scholar] [CrossRef]
- Trellet, M.; Melquiond, A.S.J.; Bonvin, A.M.J.J. A Unified Conformational Selection and Induced Fit Approach to Protein-Peptide Docking. PLoS ONE 2013, 8, e58769. [Google Scholar] [CrossRef]
- Chaudhury, S.; Gray, J.J. Conformer Selection and Induced Fit in Flexible Backbone Protein-Protein Docking Using Computational and NMR Ensembles. J. Mol. Biol. 2008, 381, 1068–1087. [Google Scholar] [CrossRef]
- Mamidi, A.S.; Surolia, A. Mixed Mechanism of Conformational Selection and Induced Fit as a Molecular Recognition Process in the Calreticulin Family of Proteins. PLoS Comput. Biol. 2022, 18, e1010661. [Google Scholar] [CrossRef] [PubMed]
- Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved Protein-Ligand Docking Using GOLD. Proteins 2003, 52, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Kurcinski, M.; Oleniecki, T.; Ciemny, M.P.; Kuriata, A.; Kolinski, A.; Kmiecik, S. CABS-Flex Standalone: A Simulation Environment for Fast Modeling of Protein Flexibility. Bioinformatics 2019, 35, 694–695. [Google Scholar] [CrossRef] [PubMed]
- Sapundzhi, F.; Prodanova, K.; Lazarova, M. Survey of the Scoring Functions for Protein-Ligand Docking. AIP Conf. Proc. 2019, 2172, 100008. [Google Scholar] [CrossRef]
- Schneider, M.; Rosam, M.; Glaser, M.; Patronov, A.; Shah, H.; Back, K.C.; Daake, M.A.; Buchner, J.; Antes, I. BiPPred: Combined Sequence- and Structure-Based Prediction of Peptide Binding to the Hsp70 Chaperone BiP. Proteins Struct. Funct. Bioinform. 2016, 84, 1390–1407. [Google Scholar] [CrossRef]
- Jiménez-García, B.; Pons, C.; Fernández-Recio, J. pyDockWEB: A Web Server for Rigid-Body Protein–Protein Docking Using Electrostatics and Desolvation Scoring. Bioinformatics 2013, 29, 1698–1699. [Google Scholar] [CrossRef]
- Alam, N.; Schueler-Furman, O. Modeling Peptide-Protein Structure and Binding Using Monte Carlo Sampling Approaches: Rosetta FlexPepDock and FlexPepBind. In Modeling Peptide-Protein Interactions: Methods and Protocols; Schueler-Furman, O., London, N., Eds.; Springer: New York, NY, USA, 2017; pp. 139–169. ISBN 978-1-4939-6798-8. [Google Scholar]
- Ciemny, M.P.; Debinski, A.; Paczkowska, M.; Kolinski, A.; Kurcinski, M.; Kmiecik, S. Protein-Peptide Molecular Docking with Large-Scale Conformational Changes: The P53-MDM2 Interaction. Sci. Rep. 2016, 6, 37532. [Google Scholar] [CrossRef]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro Web Server for Protein–Protein Docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef]
- Yu, J.; Andreani, J.; Ochsenbein, F.; Guerois, R. Lessons from (Co-)Evolution in the Docking of Proteins and Peptides for CAPRI Rounds 28–35. Proteins Struct. Funct. Bioinform. 2017, 85, 378–390. [Google Scholar] [CrossRef]
- Huang, S.-Y. Exploring the Potential of Global Protein–Protein Docking: An Overview and Critical Assessment of Current Programs for Automatic Ab Initio Docking. Drug Discov. Today 2015, 20, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Xu, X.; Zou, X. Fully Blind Docking at the Atomic Level for Protein-Peptide Complex Structure Prediction. Structure 2016, 24, 1842–1853. [Google Scholar] [CrossRef] [PubMed]
- Acuner Ozbabacan, S.E.; Engin, H.B.; Gursoy, A.; Keskin, O. Transient Protein–Protein Interactions. Protein Eng. Des. Sel. 2011, 24, 635–648. [Google Scholar] [CrossRef]
- Lavi, A.; Ngan, C.H.; Movshovitz-Attias, D.; Bohnuud, T.; Yueh, C.; Beglov, D.; Schueler-Furman, O.; Kozakov, D. Detection of Peptide-Binding Sites on Protein Surfaces: The First Step towards the Modeling and Targeting of Peptide-Mediated Interactions. Proteins 2013, 81, 2096–2105. [Google Scholar] [CrossRef]
- Perkins, J.R.; Diboun, I.; Dessailly, B.H.; Lees, J.G.; Orengo, C. Transient Protein-Protein Interactions: Structural, Functional, and Network Properties. Structure 2010, 18, 1233–1243. [Google Scholar] [CrossRef]
- Haslam, N.J.; Shields, D.C. Peptide-Binding Domains: Are Limp Handshakes Safest? Sci. Signal. 2012, 5, pe40. [Google Scholar] [CrossRef]
- Staneva, I.; Wallin, S. Binding Free Energy Landscape of Domain-Peptide Interactions. PLoS Comput. Biol. 2011, 7, e1002131. [Google Scholar] [CrossRef] [PubMed]
- Bottegoni, G.; Rocchia, W.; Cavalli, A. Application of Conformational Clustering in Protein-Ligand Docking. Methods Mol. Biol. 2012, 819, 169–186. [Google Scholar] [CrossRef]
- Kozakov, D.; Clodfelter, K.H.; Vajda, S.; Camacho, C.J. Optimal Clustering for Detecting Near-Native Conformations in Protein Docking. Biophys. J. 2005, 89, 867–875. [Google Scholar] [CrossRef]
- Chermak, E.; Donato, R.D.; Lensink, M.F.; Petta, A.; Serra, L.; Scarano, V.; Cavallo, L.; Oliva, R. Introducing a Clustering Step in a Consensus Approach for the Scoring of Protein-Protein Docking Models. PLoS ONE 2016, 11, e0166460. [Google Scholar] [CrossRef]
- Kurcinski, M.; Pawel Ciemny, M.; Oleniecki, T.; Kuriata, A.; Badaczewska-Dawid, A.E.; Kolinski, A.; Kmiecik, S. CABS-Dock Standalone: A Toolbox for Flexible Protein–Peptide Docking. Bioinformatics 2019, 35, 4170–4172. [Google Scholar] [CrossRef]
- Osguthorpe, D.J.; Sherman, W.; Hagler, A.T. Generation of Receptor Structural Ensembles for Virtual Screening Using Binding Site Shape Analysis and Clustering. Chem. Biol. Drug Des. 2012, 80, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Monti, A.; Vitagliano, L.; Caporale, A.; Ruvo, M.; Doti, N. Targeting Protein–Protein Interfaces with Peptides: The Contribution of Chemical Combinatorial Peptide Library Approaches. Int. J. Mol. Sci. 2023, 24, 7842. [Google Scholar] [CrossRef]
- Klebe, G. Virtual Ligand Screening: Strategies, Perspectives and Limitations. Drug Discov. Today 2006, 11, 580–594. [Google Scholar] [CrossRef] [PubMed]
- Matter, H.; Sotriffer, C. Applications and Success Stories in Virtual Screening. In Virtual Screening; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 319–358. ISBN 978-3-527-63332-6. [Google Scholar]
- Tripathi, N.M.; Bandyopadhyay, A. High Throughput Virtual Screening (HTVS) of Peptide Library: Technological Advancement in Ligand Discovery. Eur. J. Med. Chem. 2022, 243, 114766. [Google Scholar] [CrossRef]
- Bhunia, S.S.; Saxena, M.; Saxena, A.K. Ligand- and Structure-Based Virtual Screening in Drug Discovery. In Biophysical and Computational Tools in Drug Discovery. In Biophysical and Computational Tools in Drug Discovery; Saxena, A.K., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 281–339. ISBN 978-3-030-85281-8. [Google Scholar]
- Amarasinghe, K.N.; De Maria, L.; Tyrchan, C.; Eriksson, L.A.; Sadowski, J.; Petrović, D. Virtual Screening Expands the Non-Natural Amino Acid Palette for Peptide Optimization. J. Chem. Inf. Model. 2022, 62, 2999–3007. [Google Scholar] [CrossRef]
- Carlsson, J.; Luttens, A. Structure-Based Virtual Screening of Vast Chemical Space as a Starting Point for Drug Discovery. Curr. Opin. Struct. Biol. 2024, 87, 102829. [Google Scholar] [CrossRef] [PubMed]
- Basciu, A.; Athar, M.; Kurt, H.; Neville, C.; Malloci, G.; Muredda, F.C.; Bosin, A.; Ruggerone, P.; Bonvin, A.M.J.J.; Vargiu, A.V. Toward the Prediction of Binding Events in Very Flexible, Allosteric, Multidomain Proteins. J. Chem. Inf. Model. 2025, 65, 2052–2065. [Google Scholar] [CrossRef]
- Maia, E.H.B.; Assis, L.C.; de Oliveira, T.A.; da Silva, A.M.; Taranto, A.G. Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Front. Chem. 2020, 8, 343. [Google Scholar] [CrossRef]
- Zhao, W.; Su, L.; Huo, S.; Yu, Z.; Li, J.; Liu, J. Virtual Screening, Molecular Docking and Identification of Umami Peptides Derived from Oncorhynchus Mykiss. Food Sci. Hum. Wellness 2023, 12, 89–93. [Google Scholar] [CrossRef]
- Xu, X.; Kao, W.-L.; Wang, A.; Lee, H.-J.; Duan, R.; Holmes, H.; Gallazzi, F.; Ji, J.; Sun, H.; Heng, X.; et al. In Silico Screening of Protein-Binding Peptides with an Application to Developing Peptide Inhibitors against Antibiotic Resistance. PNAS Nexus 2024, 3, pgae541. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, A.; Ojeda-Montes, M.J.; Tomás-Hernández, S.; Cereto-Massagué, A.; Beltrán-Debón, R.; Mulero, M.; Pujadas, G.; Garcia-Vallvé, S. The Light and Dark Sides of Virtual Screening: What Is There to Know? Int. J. Mol. Sci. 2019, 20, 1375. [Google Scholar] [CrossRef] [PubMed]
- Acharya, C.; Coop, A.; Polli, J.E.; MacKerell, A.D. Recent Advances in Ligand-Based Drug Design: Relevance and Utility of the Conformationally Sampled Pharmacophore Approach. Curr. Comput. Aided Drug Des. 2011, 7, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Phillips, P.D.; Andersen, T.; McDougal, O.M.; Phillips, P.D.; Andersen, T.; McDougal, O.M. Assessing the Utility and Limitations of High Throughput Virtual Screening. AIMSMOLES 2016, 3, 238–245. [Google Scholar] [CrossRef]
- Krüger, D.M.; Glas, A.; Bier, D.; Pospiech, N.; Wallraven, K.; Dietrich, L.; Ottmann, C.; Koch, O.; Hennig, S.; Grossmann, T.N. Structure-Based Design of Non-Natural Macrocyclic Peptides That Inhibit Protein–Protein Interactions. J. Med. Chem. 2017, 60, 8982–8988. [Google Scholar] [CrossRef]
- Mollica, A.; Zengin, G.; Durdagi, S.; Ekhteiari Salmas, R.; Macedonio, G.; Stefanucci, A.; Dimmito, M.P.; Novellino, E. Combinatorial Peptide Library Screening for Discovery of Diverse α-Glucosidase Inhibitors Using Molecular Dynamics Simulations and Binary QSAR Models. J. Biomol. Struct. Dyn. 2019, 37, 726–740. [Google Scholar] [CrossRef]
- Essegian, D.J.; Cunningham, T.A.; Zerio, C.J.; Chapman, E.; Schatz, J.; Schürer, S.C. Molecular Dynamics Simulations Identify Tractable Lead-like Phenyl-Piperazine Scaffolds as eIF4A1 ATP-Competitive Inhibitors. ACS Omega 2021, 6, 24432–24443. [Google Scholar] [CrossRef]
- Hussain, A.; Shaw, P.E.; Hirst, J.D. Molecular Dynamics Simulations and in Silico Peptide Ligand Screening of the Elk-1 ETS Domain. J. Cheminformatics 2011, 3, 49. [Google Scholar] [CrossRef]
- Stefanucci, A.; Dimmito, M.P.; Zengin, G.; Luisi, G.; Mirzaie, S.; Novellino, E.; Mollica, A. Discovery of Novel Amide Tripeptides as Pancreatic Lipase Inhibitors by Virtual Screening. New J. Chem. 2019, 43, 3208–3217. [Google Scholar] [CrossRef]
- Li, Y.; Gao, X.; Pan, D.; Liu, Z.; Xiao, C.; Xiong, Y.; Du, L.; Cai, Z.; Lu, W.; Dang, Y.; et al. Identification and Virtual Screening of Novel Anti-Inflammatory Peptides from Broccoli Fermented by Lactobacillus Strains. Front. Nutr. 2023, 9, 1118900. [Google Scholar] [CrossRef]
- Duffy, F.J.; Devocelle, M.; Shields, D.C. Computational Approaches to Developing Short Cyclic Peptide Modulators of Protein-Protein Interactions. Methods Mol. Biol. 2015, 1268, 241–271. [Google Scholar] [CrossRef] [PubMed]
- Shtatland, T.; Guettler, D.; Kossodo, M.; Pivovarov, M.; Weissleder, R. PepBank—A Database of Peptides Based on Sequence Text Mining and Public Peptide Data Sources. BMC Bioinform. 2007, 8, 280. [Google Scholar] [CrossRef]
- Das, D.; Jaiswal, M.; Khan, F.N.; Ahamad, S.; Kumar, S. PlantPepDB: A Manually Curated Plant Peptide Database. Sci. Rep. 2020, 10, 2194. [Google Scholar] [CrossRef]
- Quiroz, C.; Saavedra, Y.B.; Armijo-Galdames, B.; Amado-Hinojosa, J.; Olivera-Nappa, Á.; Sanchez-Daza, A.; Medina-Ortiz, D. Peptipedia: A User-Friendly Web Application and a Comprehensive Database for Peptide Research Supported by Machine Learning Approach. Database 2021, 2021, baab055. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef]
- Wang, G. The Antimicrobial Peptide Database Is 20 Years Old: Recent Developments and Future Directions. Protein Sci. 2023, 32, e4778. [Google Scholar] [CrossRef]
- Wang, J.; Yin, T.; Xiao, X.; He, D.; Xue, Z.; Jiang, X.; Wang, Y. StraPep: A Structure Database of Bioactive Peptides. Database 2018, 2018, bay038. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yang, L.; Cao, S.; Gao, Z.; Yang, B.; Zhang, G.; Zhu, R.; Wu, D. CyclicPepedia: A Knowledge Base of Natural and Synthetic Cyclic Peptides. Brief Bioinform. 2024, 25, bbae190. [Google Scholar] [CrossRef]
- Alder, B.J.; Wainwright, T.E. Studies in Molecular Dynamics. I. Gen. Method. J. Chem. Phys. 1959, 31, 459–466. [Google Scholar] [CrossRef]
- De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery. J. Med. Chem. 2016, 59, 4035–4061. [Google Scholar] [CrossRef]
- Karplus, M.; McCammon, J.A. Molecular Dynamics Simulations of Biomolecules. Nat. Struct. Biol. 2002, 9, 646–652. [Google Scholar] [CrossRef]
- Wieczorek, G.; Niedzialek, D. Molecular Dynamics. In eLS; John Wiley & Sons, Ltd: West Sussex, UK, 2020; pp. 1–18. ISBN 978-0-470-01590-2. [Google Scholar]
- Gioia, D.; Bertazzo, M.; Recanatini, M.; Masetti, M.; Cavalli, A. Dynamic Docking: A Paradigm Shift in Computational Drug Discovery. Molecules 2017, 22, 2029. [Google Scholar] [CrossRef] [PubMed]
- Salmaso, V.; Moro, S. Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview. Front. Pharmacol. 2018, 9, 923. [Google Scholar] [CrossRef]
- De Vivo, M.; Cavalli, A. Recent Advances in Dynamic Docking for Drug Discovery. WIRes. Comput. Mol. Sci. 2017, 7, e1320. [Google Scholar] [CrossRef]
- Salo-Ahen, O.M.H.; Alanko, I.; Bhadane, R.; Bonvin, A.M.J.J.; Honorato, R.V.; Hossain, S.; Juffer, A.H.; Kabedev, A.; Lahtela-Kakkonen, M.; Larsen, A.S.; et al. Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development. Processes 2021, 9, 71. [Google Scholar] [CrossRef]
- González, M.A. Force Fields and Molecular Dynamics Simulations. Jdn 2011, 12, 169–200. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef]
- Brooks, B.R.; Brooks, C.L.; MacKerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef]
- Eastman, P.; Swails, J.; Chodera, J.D.; McGibbon, R.T.; Zhao, Y.; Beauchamp, K.A.; Wang, L.-P.; Simmonett, A.C.; Harrigan, M.P.; Stern, C.D.; et al. OpenMM 7: Rapid Development of High Performance Algorithms for Molecular Dynamics. PLoS Comput. Biol. 2017, 13, e1005659. [Google Scholar] [CrossRef]
- Chiu, M.; Herbordt, M.C. Molecular Dynamics Simulations on High-Performance Reconfigurable Computing Systems. ACM Trans. Reconfigurable Technol. Syst. 2010, 3, 1–37. [Google Scholar] [CrossRef]
- Liu, W.; Schmidt, B.; Voss, G.; Müller-Wittig, W. Accelerating Molecular Dynamics Simulations Using Graphics Processing Units with CUDA. Comput. Phys. Commun. 2008, 179, 634–641. [Google Scholar] [CrossRef]
- Nobile, M.S.; Cazzaniga, P.; Tangherloni, A.; Besozzi, D. Graphics Processing Units in Bioinformatics, Computational Biology and Systems Biology. Brief Bioinform. 2017, 18, 870–885. [Google Scholar] [CrossRef] [PubMed]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef]
- Sinha, S.; Tam, B.; Wang, S.M. Applications of Molecular Dynamics Simulation in Protein Study. Membranes 2022, 12, 844. [Google Scholar] [CrossRef] [PubMed]
- Elghobashi-Meinhardt, N. Exploring Peptide–Solvent Interactions: A Computational Study. Molecules 2018, 23, 2355. [Google Scholar] [CrossRef]
- Wałęsa, R.; Broda, M.A. The Influence of Solvent on Conformational Properties of Peptides with Aib Residue—A DFT Study. J. Mol. Model 2017, 23, 349. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Marchut, A.J.; Hall, C.K. Solvent Effects on the Conformational Transition of a Model Polyalanine Peptide. Protein Sci. 2004, 13, 2909–2924. [Google Scholar] [CrossRef]
- Efremov, R.G.; Nolde, D.E.; Vergoten, G.; Arseniev, A.S. A Solvent Model for Simulations of Peptides in Bilayers. I. Membrane-Promoting α-Helix Formation. Biophys. J. 1999, 76, 2448–2459. [Google Scholar] [CrossRef]
- Florová, P.; Sklenovský, P.; Banáš, P.; Otyepka, M. Explicit Water Models Affect the Specific Solvation and Dynamics of Unfolded Peptides While the Conformational Behavior and Flexibility of Folded Peptides Remain Intact. J. Chem. Theory Comput. 2010, 6, 3569–3579. [Google Scholar] [CrossRef] [PubMed]
- Jalali, S.; Yang, Y.; Mahmoudinobar, F.; Singh, S.M.; Nilsson, B.L.; Dias, C. Using All-Atom Simulations in Explicit Solvent to Study Aggregation of Amphipathic Peptides into Amyloid-like Fibrils. J. Mol. Liq. 2022, 347, 118283. [Google Scholar] [CrossRef]
- Chen, J.; Brooks, C.L.; Khandogin, J. Recent Advances in Implicit Solvent Based Methods for Biomolecular Simulations. Curr. Opin. Struct. Biol. 2008, 18, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Juneja, A.; Ito, M.; Nilsson, L. Implicit Solvent Models and Stabilizing Effects of Mutations and Ligands on the Unfolding of the Amyloid β-Peptide Central Helix. J. Chem. Theory Comput. 2013, 9, 834–846. [Google Scholar] [CrossRef]
- Kleinjung, J.; Fraternali, F. Design and Application of Implicit Solvent Models in Biomolecular Simulations. Curr Opin Struct Biol. 2014, 25, 126–134. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Wu, T.; Wang, Q.; van der Spoel, D. Comparison of Implicit and Explicit Solvent Models for the Calculation of Solvation Free Energy in Organic Solvents. J. Chem. Theory Comput 2017, 13, 1034–1043. [Google Scholar] [CrossRef]
- Zhang, H.; Juraskova, V.; Duarte, F. Modelling Chemical Processes in Explicit Solvents with Machine Learning Potentials. Nat. Commun. 2024, 15, 6114. [Google Scholar] [CrossRef]
- Xiong, Y.; Izadi, S.; Onufriev, A.V. A Fast Polarizable Water Model for Atomistic Simulations. J. Chem. Theory Comput. 2022, 18, 6324–6333. [Google Scholar] [CrossRef]
- Huang, K.; Duan, L.; Zhang, J.Z.H. From Implicit to Explicit: An Interaction-Reorganization Approach to Molecular Solvation Energy. J. Chem. Theory Comput. 2024, 20, 10961–10971. [Google Scholar] [CrossRef]
- Alibakhshi, A.; Hartke, B. Improved Prediction of Solvation Free Energies by Machine-Learning Polarizable Continuum Solvation Model. Nat. Commun. 2021, 12, 3584. [Google Scholar] [CrossRef]
- Lindorff-Larsen, K.; Piana, S.; Dror, R.O.; Shaw, D.E. How Fast-Folding Proteins Fold. Science 2011, 334, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.C.R.; Bernardi, R.C. Fostering Discoveries in the Era of Exascale Computing: How the next Generation of Supercomputers Empowers Computational and Experimental Biophysics Alike. Biophys. J. 2023, 122, 2833–2840. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Melo, M.C.; Berglund, N.; Khan, A.; de la Fuente-Nunez, C.; Ulmschneider, J.P.; Ulmschneider, M.B. Understanding and Modelling the Interactions of Peptides with Membranes: From Partitioning to Self-Assembly. Curr. Opin. Struct. Biol. 2020, 61, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Rathee, P.; Moorkkannur, S.N.; Prabhakar, R. Chapter Seven—Structural Studies of Catalytic Peptides Using Molecular Dynamics Simulations. In Methods in Enzymology; Korendovych, I.V., Ed.; Peptide Catalysts, Including Catalytic Amyloids; Academic Press: Cambridge, MA, USA, 2024; Volume 697, pp. 151–180. [Google Scholar]
- Zhang, S.; Lv, S.; Fu, X.; Han, L.; Han, W.; Li, W. Molecular Dynamics Simulations Study of the Interactions between Human Dipeptidyl-Peptidase III and Two Substrates. Molecules 2021, 26, 6492. [Google Scholar] [CrossRef]
- Aslan, A.; Ari Yuka, S. Therapeutic Peptides for Coronary Artery Diseases: In Silico Methods and Current Perspectives. Amino Acids 2024, 56, 37. [Google Scholar] [CrossRef]
- Allsopp, R.; Pavlova, A.; Cline, T.; Salyapongse, A.M.; Gillilan, R.E.; Di, Y.P.; Deslouches, B.; Klauda, J.B.; Gumbart, J.C.; Tristram-Nagle, S. Antimicrobial Peptide Mechanism Studied by Scattering-Guided Molecular Dynamics Simulation. J. Phys. Chem. B 2022, 126, 6922–6935. [Google Scholar] [CrossRef]
- Maleš, M.; Zoranić, L. Simulation Study of the Effect of Antimicrobial Peptide Associations on the Mechanism of Action with Bacterial and Eukaryotic Membranes. Membranes 2022, 12, 891. [Google Scholar] [CrossRef]
- Palmer, N.; Maasch, J.R.M.A.; Torres, M.D.T.; de la Fuente-Nunez, C. Molecular Dynamics for Antimicrobial Peptide Discovery. Infect. Immun. 2021, 89, 10–1128. [Google Scholar] [CrossRef]
- Stephani, J.C.; Gerhards, L.; Khairalla, B.; Solov’yov, I.A.; Brand, I. How Do Antimicrobial Peptides Interact with the Outer Membrane of Gram-Negative Bacteria? Role of Lipopolysaccharides in Peptide Binding, Anchoring, and Penetration. ACS Infect. Dis. 2024, 10, 763–778. [Google Scholar] [CrossRef]
- Aghazadeh, H.; Ganjali Koli, M.; Ranjbar, R.; Pooshang Bagheri, K. Interactions of GF-17 Derived from LL-37 Antimicrobial Peptide with Bacterial Membranes: A Molecular Dynamics Simulation Study. J. Comput. Aided Mol. Des. 2020, 34, 1261–1273. [Google Scholar] [CrossRef]
- Benfield, A.H.; Henriques, S.T. Mode-of-Action of Antimicrobial Peptides: Membrane Disruption vs. Intracellular Mechanisms. Front. Med. Technol 2020, 2, 610997. [Google Scholar] [CrossRef]
- Bennett, W.F.D.; Hong, C.K.; Wang, Y.; Tieleman, D.P. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers. J. Chem. Theory Comput. 2016, 12, 4524–4533. [Google Scholar] [CrossRef]
- Cruz, V.L.; Ramos, J.; Melo, M.N.; Martinez-Salazar, J. Bacteriocin AS-48 Binding to Model Membranes and Pore Formation as Revealed by Coarse-Grained Simulations. Biochim. Biophys. Acta 2013, 1828, 2524–2531. [Google Scholar] [CrossRef]
- Su, J.; Marrink, S.J.; Melo, M.N. Localization Preference of Antimicrobial Peptides on Liquid-Disordered Membrane Domains. Front. Cell Dev. Biol. 2020, 8, 350. [Google Scholar] [CrossRef]
- Hazam, P.K.; Jerath, G.; Kumar, A.; Chaudhary, N.; Ramakrishnan, V. Effect of Tacticity-Derived Topological Constraints in Bactericidal Peptides. Biochim. Biophys. Acta (BBA) Biomembr. 2017, 1859, 1388–1395. [Google Scholar] [CrossRef]
- Chen, J.-N.; Jiang, F.; Wu, Y.-D. Accurate Prediction for Protein–Peptide Binding Based on High-Temperature Molecular Dynamics Simulations. J. Chem. Theory Comput. 2022, 18, 6386–6395. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.; Sheng, Y.; Wang, W. Recent Advances of Studies on Cell-Penetrating Peptides Based on Molecular Dynamics Simulations. Cells 2022, 11, 4016. [Google Scholar] [CrossRef]
- Reid, L.M.; Verma, C.S.; Essex, J.W. The Role of Molecular Simulations in Understanding the Mechanisms of Cell-Penetrating Peptides. Drug Discov. Today 2019, 24, 1821–1835. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.P.; Tada, S.; Yumoto, A.; Kitao, A.; Ito, Y.; Uzawa, T.; Tsuda, K. Using Molecular Dynamics Simulations to Prioritize and Understand AI-Generated Cell Penetrating Peptides. Sci. Rep. 2021, 11, 10630. [Google Scholar] [CrossRef]
- Damjanovic, J.; Miao, J.; Huang, H.; Lin, Y.-S. Elucidating Solution StructuRes. of Cyclic Peptides Using Molecular Dynamics Simulations. Chem. Rev. 2021, 121, 2292–2324. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lin, T.; Basu, R.; Ritchey, J.; Wang, S.; Luo, Y.; Li, X.; Pei, D.; Kara, L.B.; Cheng, X. Design of Target Specific Peptide Inhibitors Using Generative Deep Learning and Molecular Dynamics Simulations. Nat. Commun. 2024, 15, 1611. [Google Scholar] [CrossRef]
- Noé, F.; Tkatchenko, A.; Müller, K.-R.; Clementi, C. Machine Learning for Molecular Simulation. Annu. Rev. Phys. Chem. 2020, 71, 361–390. [Google Scholar] [CrossRef]
- Prašnikar, E.; Ljubič, M.; Perdih, A.; Borišek, J. Machine Learning Heralding a New Development Phase in Molecular Dynamics Simulations. Artif. Intell. Rev. 2024, 57, 102. [Google Scholar] [CrossRef]
- Best, R.B.; Hummer, G. Reaction Coordinates and Rates from Transition Paths. Proc. Natl. Acad. Sci. USA 2005, 102, 6732–6737. [Google Scholar] [CrossRef]
- Chmiela, S.; Sauceda, H.E.; Müller, K.-R.; Tkatchenko, A. Towards Exact Molecular Dynamics Simulations with Machine-Learned Force Fields. Nat. Commun. 2018, 9, 3887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, D.; Xia, Y.; Huang, Y.-P.; Lin, X.; Han, X.; Ni, N.; Wang, Z.; Yu, F.; Yang, L.; et al. Artificial Intelligence Enhanced Molecular Simulations. J. Chem. Theory Comput. 2023, 19, 4338–4350. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.K.; Morrone, J.A.; Kang, S.; Zhang, L.; Lang, L.; Chowell, D.; Krishna, C.; Huynh, T.; Parthasarathy, P.; Luan, B.; et al. Unsupervised and Supervised AI on Molecular Dynamics Simulations Reveals Complex Characteristics of HLA-A2-Peptide Immunogenicity. Brief. Bioinform. 2024, 25, bbad504. [Google Scholar] [CrossRef]
- Behler, J.; Parrinello, M. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces. Phys. Rev. Lett. 2007, 98, 146401. [Google Scholar] [CrossRef]
- Konovalov, K.A.; Unarta, I.C.; Cao, S.; Goonetilleke, E.C.; Huang, X. Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine Learning. JACS Au 2021, 1, 1330–1341. [Google Scholar] [CrossRef]
- Jephthah, S.; Pesce, F.; Lindorff-Larsen, K.; Skepö, M. Force Field Effects in Simulations of Flexible Peptides with Varying Polyproline II Propensity. J. Chem. Theory Comput. 2021, 17, 6634–6646. [Google Scholar] [CrossRef]
- Lopes, P.E.M.; Guvench, O.; MacKerell, A.D. Current Status of Protein Force Fields for Molecular Dynamics. Methods Mol. Biol. 2015, 1215, 47–71. [Google Scholar] [CrossRef] [PubMed]
- Ponder, J.W.; Case, D.A. Force Fields for Protein Simulations. In Advances in Protein Chemistry; Elsevier: Amsterdam, The Netherlands, 2003; Volume 66, pp. 27–85. ISBN 978-0-12-034266-2. [Google Scholar]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.M.; Mittal, J.; Feig, M.; MacKerell, A.D., Jr. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain Χ1 and Χ2 Dihedral Angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef]
- Oostenbrink, C.; Soares, T.A.; van der Vegt, N.F.A.; van Gunsteren, W.F. Validation of the 53A6 GROMOS Force Field. Eur. Biophys. J. 2005, 34, 273–284. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Huang, J.; Lopes, P.E.M.; Roux, B.; MacKerell, A.D., Jr. Recent Advances in Polarizable Force Fields for Macromolecules: Microsecond Simulations of Proteins Using the Classical Drude Oscillator Model. J. Phys. Chem. Lett. 2014, 5, 3144–3150. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.; Liu, C.; Cheng, S.Y.; Qi, R.; Walker, B.D.; Piquemal, J.-P.; Ren, P. Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications. Annu. Rev. Biophys. 2019, 48, 371–394. [Google Scholar] [CrossRef]
- Ponder, J.W.; Wu, C.; Ren, P.; Pande, V.S.; Chodera, J.D.; Schnieders, M.J.; Haque, I.; Mobley, D.L.; Lambrecht, D.S.; DiStasio, R.A., Jr.; et al. Current Status of the AMOEBA Polarizable Force Field. J. Phys. Chem. B 2010, 114, 2549–2564. [Google Scholar] [CrossRef]
- Robustelli, P.; Piana, S.; Shaw, D.E. Developing a Molecular Dynamics Force Field for Both Folded and Disordered Protein States. Proc. Natl. Acad. Sci. USA 2018, 115, E4758. [Google Scholar] [CrossRef]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved Side-Chain Torsion Potentials for the Amber ff99SB Protein Force Field. Proteins Struct. Funct. Bioinform. 2010, 78, 1950–1958. [Google Scholar] [CrossRef]
- Liu, H.; Song, D.; Zhang, Y.; Yang, S.; Luo, R.; Chen, H.-F. Extensive Tests and Evaluation of the CHARMM36IDPSFF Force Field for Intrinsically Disordered Proteins and Folded Proteins. Phys. Chem. Chem. Phys. 2019, 21, 21918–21931. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; MacKerell, A.D. CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods 2017, 14, 71–73. [Google Scholar] [CrossRef]
- Arnautova, Y.A.; Jagielska, A.; Scheraga, H.A. A New Force Field (ECEPP-05) for Peptides, Proteins, and Organic Molecules. J. Phys. Chem. B 2006, 110, 5025–5044. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Elcock, A.H. Residue-Specific Force Field (RSFF2) Improves the Modeling of Conformational Behavior of Peptides and Proteins. J. Phys. Chem. Lett. 2015, 6, 2127–2133. [Google Scholar] [CrossRef]
- Geng, H.; Jiang, F.; Wu, Y.-D. Accurate Structure Prediction and Conformational Analysis of Cyclic Peptides with Residue-Specific Force Fields. J. Phys. Chem. Lett. 2016, 7, 1805–1810. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Ghosh, A.P.; Ho, M.N.; Li, C.; Huang, X.; Pentelute, B.L.; Baleja, J.D.; Lin, Y.-S. Assessing the Performance of Peptide Force Fields for Modeling the Solution Structural Ensembles of Cyclic Peptides. J. Phys. Chem. B 2024, 128, 5281–5292. [Google Scholar] [CrossRef]
- Hickey, J.L.; Sindhikara, D.; Zultanski, S.L.; Schultz, D.M. Beyond 20 in the 21st Century: Prospects and Challenges of Non-Canonical Amino Acids in Peptide Drug Discovery. ACS Med. Chem. Lett. 2023, 14, 557–565. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, X.; Zhang, L.; Chen, X.; Wen, Y.; Gu, Z.; Li, X.; Zheng, M. The Emergence of Machine Learning Force Fields in Drug Design. Med. Res. Rev. 2024, 44, 1147–1182. [Google Scholar] [CrossRef]
- Lazim, R.; Suh, D.; Choi, S. Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems. Int. J. Mol. Sci. 2020, 21, 6339. [Google Scholar] [CrossRef]
- Shen, W.; Zhou, T.; Shi, X. Enhanced Sampling in Molecular Dynamics Simulations and Their Latest Applications—A Review. Nano Res. 2023, 16, 13474–13497. [Google Scholar] [CrossRef]
- Bernardi, R.C.; Melo, M.C.R.; Schulten, K. Enhanced Sampling Techniques in Molecular Dynamics Simulations of Biological Systems. Biochim. Biophys. Acta 2015, 1850, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Hukushima, K. Extended Ensemble Monte Carlo Approach to Hardly Relaxing Problems. Comput. Phys. Commun. 2002, 147, 77–82. [Google Scholar] [CrossRef]
- Kästner, J. Umbrella Sampling. WIRes. Comput. Mol. Sci. 2011, 1, 932–942. [Google Scholar] [CrossRef]
- Mori, T.; Miyashita, N.; Im, W.; Feig, M.; Sugita, Y. Molecular Dynamics Simulations of Biological Membranes and Membrane Proteins Using Enhanced Conformational Sampling Algorithms. Biochim. Biophys. Acta 2016, 1858, 1635–1651. [Google Scholar] [CrossRef] [PubMed]
- Laio, A.; Gervasio, F.L. Metadynamics: A Method to Simulate Rare Events and Reconstruct the Free Energy in Biophysics, Chemistry and Material Science. Rep. Prog. Phys. 2008, 71, 126601. [Google Scholar] [CrossRef]
- Pfaendtner, J. Metadynamics to Enhance Sampling in Biomolecular Simulations. Methods Mol. Biol. 2019, 2022, 179–200. [Google Scholar] [CrossRef]
- Hamelberg, D.; Mongan, J.; McCammon, J.A. Accelerated Molecular Dynamics: A Promising and Efficient Simulation Method for Biomolecules. J. Chem. Phys. 2004, 120, 11919–11929. [Google Scholar] [CrossRef]
- Tóth, J.; Tomán, H.; Hajdu, A. Efficient Sampling-Based Energy Function Evaluation for Ensemble Optimization Using Simulated Annealing. Pattern Recognit. 2020, 107, 107510. [Google Scholar] [CrossRef]
- Wang, J.; Arantes, P.R.; Bhattarai, A.; Hsu, R.V.; Pawnikar, S.; Huang, Y.M.; Palermo, G.; Miao, Y. Gaussian Accelerated Molecular Dynamics: Principles and Applications. WIRes. Comput. Mol. Sci. 2021, 11, e1521. [Google Scholar] [CrossRef]
- Barducci, A.; Pfaendtner, J.; Bonomi, M. Tackling Sampling Challenges in Biomolecular Simulations. Methods Mol. Biol. 2015, 1215, 151–171. [Google Scholar] [CrossRef]
- Turner, M.; Mutter, S.T.; Kennedy-Britten, O.D.; Platts, J.A. Replica Exchange Molecular Dynamics Simulation of the Coordination of Pt(II)-Phenanthroline to Amyloid-β. RSC Adv. 2019, 9, 35089–35097. [Google Scholar] [CrossRef] [PubMed]
- Leahy, C.T.; Kells, A.; Hummer, G.; Buchete, N.-V.; Rosta, E. Peptide Dimerization-Dissociation Rates from Replica Exchange Molecular Dynamics. J. Chem. Phys. 2017, 147, 152725. [Google Scholar] [CrossRef]
- Clayton, J.; Baweja, L.; Wereszczynski, J. Peptide Dynamics and Metadynamics: Leveraging Enhanced Sampling Molecular Dynamics to Robustly Model Long-Timescale Transitions. Methods Mol. Biol. 2022, 2405, 151. [Google Scholar] [CrossRef]
- Hao, G.-F.; Xu, W.-F.; Yang, S.-G.; Yang, G.-F. Multiple Simulated Annealing-Molecular Dynamics (MSA-MD) for Conformational Space Search of Peptide and Miniprotein. Sci. Rep. 2015, 5, 15568. [Google Scholar] [CrossRef]
- Wang, J.; Miao, Y. Peptide Gaussian Accelerated Molecular Dynamics (Pep-GaMD): Enhanced Sampling and Free Energy and Kinetics Calculations of Peptide Binding. J. Chem. Phys 2020, 153, 154109. [Google Scholar] [CrossRef]
- Frazee, N.; Billlings, K.R.; Mertz, B. Gaussian Accelerated Molecular Dynamics Simulations Facilitate Prediction of the Permeability of Cyclic Peptides. PLoS ONE 2024, 19, e0300688. [Google Scholar] [CrossRef]
- Barducci, A.; Bonomi, M.; Parrinello, M. Metadynamics. WIRes. Comput. Mol. Sci. 2011, 1, 826–843. [Google Scholar] [CrossRef]
- Sugita, Y.; Okamoto, Y. Replica-Exchange Molecular Dynamics Method for Protein Folding. Chem. Phys. Lett. 1999, 314, 141–151. [Google Scholar] [CrossRef]
- Faller, C.E.; Reilly, K.A.; Hills, R.D., Jr.; Guvench, O. Peptide Backbone Sampling Convergence with the Adaptive Biasing Force Algorithm. J. Phys. Chem. B 2013, 117, 518–526. [Google Scholar] [CrossRef]
- Do, P.-C.; Lee, E.H.; Le, L. Steered Molecular Dynamics Simulation in Rational Drug Design. J. Chem. Inf. Model. 2018, 58, 1473–1482. [Google Scholar] [CrossRef]
- Izrailev, S.; Stepaniants, S.; Isralewitz, B.; Kosztin, D.; Lu, H.; Molnar, F.; Wriggers, W.; Schulten, K. Steered Molecular Dynamics. In Proceedings of the Computational Molecular Dynamics: Challenges, Methods, Ideas; Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 39–65. [Google Scholar]
- Miao, Y.; Feixas, F.; Eun, C.; McCammon, J.A. Accelerated Molecular Dynamics Simulations of Protein Folding. J. Comput. Chem. 2015, 36, 1536–1549. [Google Scholar] [CrossRef]
- Perez, D.; Uberuaga, B.P.; Shim, Y.; Amar, J.G.; Voter, A.F. Chapter 4 Accelerated Molecular Dynamics Methods: Introduction and Recent Developments. In Annual Reports in Computational Chemistry; Wheeler, R.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 5, pp. 79–98. [Google Scholar]
- Chong, L.T.; Saglam, A.S.; Zuckerman, D.M. Path-Sampling Strategies for Simulating Rare Events in Biomolecular Systems. Curr. Opin. Struct. Biol. 2017, 43, 88–94. [Google Scholar] [CrossRef]
- Valsson, O.; Parrinello, M. Variationally Enhanced Sampling. In Handbook of Materials Modeling: Methods: Theory and Modeling; Andreoni, W., Yip, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 621–634. ISBN 978-3-319-44677-6. [Google Scholar]
- Terziyska, M.; Deseva, I.; Terziyski, Z. Food-Derived Bioactive Peptides And Artificial Intelligence Techniques For Their Prediction: A Brief Review. Int. J. Sci. Technol. Res. 2021, 10, 141–147. [Google Scholar]
- Chen, Z.; Wang, R.; Guo, J.; Wang, X. The Role and Future Prospects of Artificial Intelligence Algorithms in Peptide Drug Development. Biomed. Pharmacother. 2024, 175, 116709. [Google Scholar] [CrossRef]
- Goles, M.; Daza, A.; Cabas-Mora, G.; Sarmiento-Varón, L.; Sepúlveda-Yañez, J.; Anvari-Kazemabad, H.; Davari, M.D.; Uribe-Paredes, R.; Olivera-Nappa, Á.; Navarrete, M.A.; et al. Peptide-Based Drug Discovery through Artificial Intelligence: Towards an Autonomous Design of Therapeutic Peptides. Brief. Bioinform. 2024, 25, bbae275. [Google Scholar] [CrossRef]
- Gao, W.; Mahajan, S.P.; Sulam, J.; Gray, J.J. Deep Learning in Protein Structural Modeling and Design. Patterns 2020, 1, 100142. [Google Scholar] [CrossRef]
- Kussmann, M. Prediction, Discovery, and Characterization of Plant- and Food-Derived Health-Beneficial Bioactive Peptides. Nutrients 2022, 14, 4810. [Google Scholar] [CrossRef]
- Raschka, S.; Kaufman, B. Machine Learning and AI-Based Approaches for Bioactive Ligand Discovery and GPCR-Ligand Recognition. Methods 2020, 180, 89–110. [Google Scholar] [CrossRef]
- Ye, J.; Li, A.; Zheng, H.; Yang, B.; Lu, Y. Machine Learning Advances in Predicting Peptide/Protein-Protein Interactions Based on Sequence Information for Lead Peptides Discovery. Adv. Biol. 2023, 7, 2200232. [Google Scholar] [CrossRef]
- Yin, S.; Mi, X.; Shukla, D. Leveraging Machine Learning Models for Peptide-Protein Interaction Prediction. arXiv 2024, arXiv:2310.18249v2. [Google Scholar]
- Watson, J.L.; Juergens, D.; Bennett, N.R.; Trippe, B.L.; Yim, J.; Eisenach, H.E.; Ahern, W.; Borst, A.J.; Ragotte, R.J.; Milles, L.F.; et al. De Novo Design of Protein Structure and Function with RFdiffusion. Nature 2023, 620, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; He, Q.; Song, H.; Zhou, T.; Luo, A.; Wen, Z.; Wang, T.; Lin, X. Protein A-like Peptide Design Based on Diffusion and ESM2 Models. Molecules 2024, 29, 4965. [Google Scholar] [CrossRef] [PubMed]
- Aithani, L.; Alcaide, E.; Bartunov, S.; Cooper, C.D.O.; Doré, A.S.; Lane, T.J.; Maclean, F.; Rucktooa, P.; Shaw, R.A.; Skerratt, S.E. Advancing Structural Biology through Breakthroughs in AI. Curr. Opin. Struct. Biol. 2023, 80, 102601. [Google Scholar] [CrossRef]
- Schauperl, M.; Denny, R.A. AI-Based Protein Structure Prediction in Drug Discovery: Impacts and Challenges. J. Chem. Inf. Model. 2022, 62, 3142–3156. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Liu, S.; Xu, J. RaptorX-Property: A Web Server for Protein Structure Property Prediction. Nucleic Acids Res. 2016, 44, W430–W435. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, W.; Li, Y.; Pearce, R.; Zhang, C.; Bell, E.W.; Zhang, G.; Zhang, Y. I-TASSER-MTD: A Deep-Learning-Based Platform for Multi-Domain Protein Structure and Function Prediction. Nat. Protoc. 2022, 17, 2326–2353. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta Server for Fast and Accurate Protein Structure Prediction. Nat. Protoc. 2021, 16, 5634–5651. [Google Scholar] [CrossRef]
- Timmons, P.B.; Hewage, C.M. APPTEST Is a Novel Protocol for the Automatic Prediction of Peptide Tertiary Structures. Brief. Bioinform. 2021, 22, bbab308. [Google Scholar] [CrossRef]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate Prediction of Protein StructuRes. and Interactions Using a Three-Track Neural Network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Evolutionary-Scale Prediction of Atomic-Level Protein Structure with a Language Model. Science 2023, 379, 1123–1130. [Google Scholar] [CrossRef]
- Ko, J.; Lee, J. Can AlphaFold2 Predict Protein-Peptide Complex StructuRes. Accurately? bioRxiv 2021. [Google Scholar] [CrossRef]
- Tsaban, T.; Varga, J.K.; Avraham, O.; Ben-Aharon, Z.; Khramushin, A.; Schueler-Furman, O. Harnessing Protein Folding Neural Networks for Peptide–Protein Docking. Nat. Commun. 2022, 13, 176. [Google Scholar] [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Shang, T.; Zhu, N.; Wu, X.; Duan, H. HighFold: Accurately Predicting StructuRes. of Cyclic Peptides and Complexes with Head-to-Tail and Disulfide Bridge Constraints. Brief. Bioinform. 2024, 25, bbae215. [Google Scholar] [CrossRef]
- Rettie, S.A.; Campbell, K.V.; Bera, A.K.; Kang, A.; Kozlov, S.; De La Cruz, J.; Adebomi, V.; Zhou, G.; DiMaio, F.; Ovchinnikov, S.; et al. Cyclic Peptide Structure Prediction and Design Using AlphaFold. bioRxiv 2023. bioRxiv:2023.02.25.529956. [Google Scholar] [CrossRef]
- Wu, R.; Ding, F.; Wang, R.; Shen, R.; Zhang, X.; Luo, S.; Su, C.; Wu, Z.; Xie, Q.; Berger, B.; et al. High-Resolution de Novo Structure Prediction from Primary Sequence. bioRxiv 2022. bioRxiv:2022.07.21.500999. [Google Scholar]
- Cordoves-Delgado, G.; García-Jacas, C.R. Predicting Antimicrobial Peptides Using ESMFold-Predicted StructuRes. and ESM-2-Based Amino Acid FeatuRes. with Graph Deep Learning. J. Chem. Inf. Model. 2024, 64, 4310–4321. [Google Scholar] [CrossRef] [PubMed]
- Abdin, O.; Kim, P.M. Direct Conformational Sampling from Peptide Energy Landscapes through Hypernetwork-Conditioned Diffusion. Nat. Mach. Intell. 2024, 6, 775–786. [Google Scholar] [CrossRef]
- Yang, Z.; Zeng, X.; Zhao, Y.; Chen, R. AlphaFold2 and Its Applications in the Fields of Biology and Medicine. Sig. Transduct. Target Ther. 2023, 8, 1–14. [Google Scholar] [CrossRef]
- Chang, L.; Mondal, A.; Singh, B.; Martínez-Noa, Y.; Perez, A. Revolutionizing Peptide-Based Drug Discovery: Advances in the Post-AlphaFold Era. WIRes. Comput. Mol. Sci. 2024, 14, e1693. [Google Scholar] [CrossRef]
- Desai, D.; Kantliwala, S.V.; Vybhavi, J.; Ravi, R.; Patel, H.; Patel, J. Review of AlphaFold 3: Transformative Advances in Drug Design and Therapeutics. Cureus 2024, 16, e63646. [Google Scholar] [CrossRef] [PubMed]
- Mikhaylov, V.; Brambley, C.A.; Keller, G.L.J.; Arbuiso, A.G.; Weiss, L.I.; Baker, B.M.; Levine, A.J. Accurate Modeling of Peptide-MHC StructuRes. with AlphaFold. Structure 2024, 32, 228–241.e4. [Google Scholar] [CrossRef]
- McDonald, E.F.; Jones, T.; Plate, L.; Meiler, J.; Gulsevin, A. Benchmarking AlphaFold2 on Peptide Structure Prediction. Structure 2023, 31, 111–119.e2. [Google Scholar] [CrossRef] [PubMed]
- Johansson-Åkhe, I.; Wallner, B. Improving Peptide-Protein Docking with AlphaFold-Multimer Using Forced Sampling. Front. Bioinform. 2022, 2, 959160. [Google Scholar] [CrossRef]
- Kosugi, T.; Ohue, M. Design of Cyclic Peptides Targeting Protein–Protein Interactions Using AlphaFold. Int. J. Mol. Sci. 2023, 24, 13257. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Guan, S.; Chen, Y.; Zeb, A.; Sun, Q.; Lu, R.; Dong, J.; Wang, J.; Cao, D. Application of a Deep Generative Model Produces Novel and Diverse Functional Peptides against Microbial Resistance. Comput. Struct. Biotechnol. J. 2022, 21, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Kontogiorgos-Heintz, D.; de la Fuente-Nunez, C. Deep Generative Models for Peptide Design. Digit. Discov. 2022, 1, 195–208. [Google Scholar] [CrossRef]
- Alhumaid, N.K.; Tawfik, E.A. Reliability of AlphaFold2 Models in Virtual Drug Screening: A Focus on Selected Class A GPCRs. Int. J. Mol. Sci. 2024, 25, 10139. [Google Scholar] [CrossRef]
- Borkakoti, N.; Thornton, J.M. AlphaFold2 Protein Structure Prediction: Implications for Drug Discovery. Curr. Opin. Struct. Biol. 2023, 78, 102526. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, H.; Sharma, P.; Sahi, S. Advances in Artificial Intelligence (AI)-Assisted Approaches in Drug Screening. Artif. Intell. Chem. 2024, 2, 100039. [Google Scholar] [CrossRef]
- Ding, X.; Chen, X.; Sullivan, E.E.; Shay, T.F.; Gradinaru, V. Fast, Accurate Ranking of Engineered Proteins by Target-Binding Propensity Using Structure Modeling. Mol. Ther. 2024, 32, 1687–1700. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Perez, A. Ranking Peptide Binders by Affinity with AlphaFold. Angew. Chem. Int. Ed. 2023, 62, e202213362. [Google Scholar] [CrossRef]
- Scardino, V.; Filippo, J.I.D.; Cavasotto, C.N. How Good Are AlphaFold Models for Docking-Based Virtual Screening? iScience 2023, 26, 105920. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Simpkin, A.J.; Mesdaghi, S.; Sánchez Rodríguez, F.; Elliott, L.; Murphy, D.L.; Kryshtafovych, A.; Keegan, R.M.; Rigden, D.J. Tertiary Structure Assessment at CASP15. Proteins 2023, 91, 1616–1635. [Google Scholar] [CrossRef]
- Miller, R.D.; Iinishi, A.; Modaresi, S.M.; Yoo, B.-K.; Curtis, T.D.; Lariviere, P.J.; Liang, L.; Son, S.; Nicolau, S.; Bargabos, R.; et al. Computational Identification of a Systemic Antibiotic for Gram-Negative Bacteria. Nat. Microbiol. 2022, 7, 1661–1672. [Google Scholar] [CrossRef]
- Zhong, G.; Wang, Z.-J.; Yan, F.; Zhang, Y.; Huo, L. Recent Advances in Discovery, Bioengineering, and Bioactivity-Evaluation of Ribosomally Synthesized and Post-Translationally Modified Peptides. ACS Biomed. Chem. Au 2022, 3, 1–31. [Google Scholar] [CrossRef]
- Süssmuth, R.D.; Kulike-Koczula, M.; Gao, P.; Kosol, S. Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research. Angew. Chem. Int. Ed. 2025, 64, e202414325. [Google Scholar] [CrossRef]
Tool | Synopsis | Server |
---|---|---|
HPEPDOCK 2.0 [210] | -Web server for blind peptide–protein docking that uses a hierarchical algorithm to efficiently sample peptide conformations and perform global docking across the protein surface.-Generates peptide structures with MODPEP and has demonstrated competitive performance in benchmarks, achieving high success rates in both global and local docking.-No licence required.-Available only as a web server. | http://huanglab.phys.hust.edu.cn/hpepdock/ (accessed on 12 December 2024) |
CABS-Dock [211] | -Emphasises conformational flexibility for peptides and proteins using coarse-grained modelling, making it ideal for flexible docking scenarios.-Is available as a user-friendly web server and stand-alone tool, enabling efficient exploration of binding sites and poses.-Standalone executable available.-Free for academic and non-profit use under the MIT licence. | https://biocomp.chem.uw.edu.pl/CABSdock (accessed on 30 November 2024) |
AutoDock CrankPep (ADCP) v1.1 [212] | -Tailored for peptide docking, offering flexible sampling of peptide conformations and achieving strong performance in predicting peptide–protein interactions.-Its emphasis on flexibility makes ADCP a valuable tool for exploring diverse binding modes in peptide–protein complexes.-Available under the GNU LGPL v2.0 OpenSource licence.-ADCP is part of the ADFR suite, which can be downloaded as a standalone package.-Not available as a standalone executable. | https://ccsb.scripps.edu/adcp/ (accessed on 30 November 2024) |
GalaxyPepDock [213] | -Specialises in predicting peptide–protein interactions by refining docking poses using molecular dynamics.-Excels when target protein structures are known, providing reliable binding affinity predictions.-Freely accessible and does not require licence for use.-The Galaxy source code, which GalaxyPepDock is part of, is licenced under the Academic Free Licence version 3.0.-Standalone executable available. | https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=PEPDOCK (accessed on 30 November 2024) |
Rosetta FlexPepDock [214] | -High-resolution local docking algorithm that refines peptide binding modes within predefined binding sites.-Ideal for accurate predictions when detailed structural information about the binding site is available.-Rosetta licence required.-Command line options available. | http://flexpepdock.furmanlab.cs.huji.ac.il/overview.php (accessed on 30 November 2024) |
PepCrawler [215] | -Refines peptide–protein interactions using a Rapidly Exploring Random Tree (RRT) algorithm.-Predicts and optimises peptide binding conformation and estimates binding affinity.-Useful for designing peptide inhibitors by refining docking solutions and improving peptide–protein binding. | Not available |
HADDOCK2.2 [216] | -Suitable for peptide–protein docking, especially when binding site or interaction data is available.-Integrates biochemical and biophysical information to improve docking accuracy.-Standalone executable available.-Requires licence for non-commercial agreement. | https://www.bonvinlab.org/software/haddock2.2/ (accessed on 30 November 2024) |
pepATTRACT [217] | -Flexible protein–peptide docking algorithm that performs efficient, coarse-grained global searches on the protein surface.-Enables rapid identification of potential binding modes for peptide–protein interactions.-Freely available. | https://bioserv.rpbs.univ-paris-diderot.fr/services/pepATTRACT/ (accessed on 30 November 2024) |
PIPER-FlexPepDock [218] | -Fragment-based high-resolution peptide–protein docking protocol, integrating Rosetta’s fragment picker, PIPER for rigid-body docking, and FlexPepDock for flexible refinement.-Approach achieves accurate global peptide–protein docking, validated against X-ray crystallography data, enabling high-resolution modelling of peptide–protein interactions.-Requires a Rosetta licence for the FlexPepDock component.-PIPER component requires a separate commercial licence. | http://piperfpd.furmanlab.cs.huji.ac.il/ (accessed on 30 November 2024) |
ClusPro PeptiDock 2.0 [219] | -An efficient method for docking peptide motifs to free receptor structures by conducting a motif-based search to retrieve structural fragments from the Protein Data Bank (PDB) that closely resemble the peptide’s bound conformation.-Utilises a Fast Fourier Transform (FFT)-based docking approach to perform global rigid-body docking of fragments to the receptor.-Freely available.-No standalone executable. | https://cluspro.org/peptide/index.php (accessed on 30 November 2024) |
DynaDock [220] | -For docking peptides into flexible receptors, utilising the following two-step procedure: scanning the protein–peptide conformational space to identify approximate ligand poses, followed by refinement using optimised potential molecular dynamics (OPMD).-OPMD method employs soft-core potentials for protein–peptide interactions and a novel optimisation scheme, demonstrating significant improvements in sampling capability compared to conventional molecular dynamics and soft-core scaling methods. | Not available |
AnchorDock [221] | -Automatically targets the docking search to the most relevant parts of the conformational space by precomputing the free peptide’s structure and by computationally identifying anchoring spots on the protein surface.-Free peptide conformation undergoes anchor-driven simulated annealing molecular dynamics simulations around the predicted anchoring spots. | Not available |
MDockPep [222] | -User-friendly server for global docking of flexible peptides to protein receptors, starting from a peptide sequence and protein structure.-Docking results are scored using ITScorePeP, a statistical potential-based function, and validated with the peptiDB benchmark, showing high accuracy in both bound and unbound cases.-No licence required.-No standalone executable. | https://zougrouptoolkit.missouri.edu/mdockpep/ (accessed on 30 November 2024) |
PEPFOLD3 [223] | -Predicting 3D structures of linear peptides (5–50 amino acids) in aqueous solution and peptide–protein interactions.-Supports both de novo and biased predictions, generating native-like peptide conformations when the interaction site is known.-No licence required.-No standalone executable. | http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3 (accessed on 30 November 2024) |
DINC 2.0 [224] | -Meta-docking strategy that overcomes this by incrementally docking ligand fragments, enabling accurate prediction of peptide-based inhibitors.-Improves upon the original by allowing docking of larger ligands (over 25 flexible bonds). -No licence required.-No standalone executable. | https://dinc-ensemble.kavrakilab.rice.edu/ (accessed on 30 November 2024) |
GOLD [225] | -Automated program that predicts small-molecule binding to macromolecules by using a genetic algorithm.-Accounts for ligand flexibility and partial protein flexibility while ensuring displacement of loosely bound water molecules during binding.-Licence required.-No standalone executable. | Not available |
Rosetta FlexPepDock ab initio [226] | -Allows for simultaneous docking and de novo folding of flexible peptides starting from an approximate peptide binding site specification.-Utilises the Rosetta fragments library and a coarse-grained structural model to effectively sample peptide conformations and rigid-body orientations on the receptor surface, followed by all-atom refinement to accurately model side-chain interactions.-Rosetta licence required.-Command line options available.-No standalone executable. | Not available |
PaFlexPepDock [227] | -Parallel docking approach combining ab initio peptide folding, peptide docking, and flexible receptor refinement.-Showed improved interface modelling and energy funnel construction by refining receptor flexibility during docking.-Rosetta licence required. | Not available |
PepComposer [228] | -Requires only the target protein structure and a rough definition of the binding site to start the design process.-Identifies peptide scaffolds with similar backbone arrangements and optimises sequences to best fit the target binding site.-Freely available. | Not available |
Tool | Synopsis | Availability |
---|---|---|
AlphaFold [55,421,422] | -Alignment-based deep learning model that predicts protein structures with high accuracy, including peptide conformations.-Adapted for cyclic peptides and can predict structures based on single sequences. | -AlphaFold Server is freely available for non-commercial research.-The code for AlphaFold3 is now downloadable for academic use.-Training weights on request for scientists with academic affiliations. |
ColabFoldv1.5.5 [423] | -User-friendly interface implementing AlphaFold technology.-Allows batch predictions of structures in a single session. | -Web server-like interface implemented as a Google Colab notebook.-Can be installed and run locally.-Code is open-source and shared on GitHub at https://github.com/sokrypton/ColabFold (accessed on 30 November 2024).-Uses AlphaFold2 models, which typically include shared model weights for local deployment.-Can be run on high-performance computing (HPC) clusters. |
Highfold v1.0 [424] | -AlphaFold implementation specifically designed for predicting cyclic peptide structures and their complexes.-Incorporates constraints like head-to-tail connections and disulfide bridges. | -The code for HighFold is shared on GitHub at https://github.com/hongliangduan/HighFold (accessed on 30 November 2024).-Uses AlphaFold2 models, which typically include shared model weights for local deployment.-https://github.com/sokrypton/ColabDesign/blob/main/af/examples/af_cyc_design.ipynb (accessed on). |
AfCycDesign [425] | -AlphaFold implementation tailored for the rapid and accurate prediction and design of cyclic peptide monomers.-Addresses limitations related to insufficient training data. | -Available as an online web server through Neurosnap.-Implemented within the ColabDesign framework, which utilises AlphaFold for structure prediction and design.-Accessible via Google Colab, allowing users to run it without local installation.-Source code available at https://github.com/sokrypton/ColabDesign/blob/main/af/examples/af_cyc_design.ipynb (accessed on 30 November 2024). |
RoseTTAFold [419] | -Deep-learning approach that excels in protein structure prediction and can be applied to peptide structures.-Provides high accuracy compared to traditional methods. | -Accessible via the Robetta web server.-Source code for RoseTTAFold is available on https://github.com/RosettaCommons/RoseTTAFold (accessed on 30 November 2024).-Model weights available and shared along with the code. |
OmegaFold [426] | -Alignment-based deep learning model alternative to AlphaFold. | -Available as a standalone package.-Source code available on GitHub (OmegaFold GitHub Repository).-Model weights available and downloadable during execution. |
ESMFold-2 [420,427] | -Deep learning built on Meta AI’s ESM-2 PLM.-Predicts 3D structures directly from amino acid sequences without relying on extensive homology (i.e., no alignments used in training or prediction). | -Available as a standalone package.-Open-source and does not require a commercial licence.-Code and pre-trained weights available on GitHub.-API available through BioLM.ai. |
PepFlow [428] | -Deep-learning model trained on peptides of 15 or fewer residues to predict a wide range of dynamic folding patterns in peptides based on their energy landscapes.-Accurately predicts peptide structures and effectively recapitulates experimental peptide ensembles at a fraction of the running time of traditional approaches. | -Available as a GitLab repository at https://gitlab.com/oabdin/pepflow with code and documentation (accessed on 30 November 2024). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agoni, C.; Fernández-Díaz, R.; Timmons, P.B.; Adelfio, A.; Gómez, H.; Shields, D.C. Molecular Modelling in Bioactive Peptide Discovery and Characterisation. Biomolecules 2025, 15, 524. https://doi.org/10.3390/biom15040524
Agoni C, Fernández-Díaz R, Timmons PB, Adelfio A, Gómez H, Shields DC. Molecular Modelling in Bioactive Peptide Discovery and Characterisation. Biomolecules. 2025; 15(4):524. https://doi.org/10.3390/biom15040524
Chicago/Turabian StyleAgoni, Clement, Raúl Fernández-Díaz, Patrick Brendan Timmons, Alessandro Adelfio, Hansel Gómez, and Denis C. Shields. 2025. "Molecular Modelling in Bioactive Peptide Discovery and Characterisation" Biomolecules 15, no. 4: 524. https://doi.org/10.3390/biom15040524
APA StyleAgoni, C., Fernández-Díaz, R., Timmons, P. B., Adelfio, A., Gómez, H., & Shields, D. C. (2025). Molecular Modelling in Bioactive Peptide Discovery and Characterisation. Biomolecules, 15(4), 524. https://doi.org/10.3390/biom15040524