Regenerative Strategies in Dentistry: Harnessing Stem Cells, Biomaterials and Bioactive Materials for Tissue Repair
Abstract
:1. Introduction
2. Stem Cells in Dental Tissue Regeneration
2.1. Types of Stem Cells Utilized in Dental Tissue Regeneration
2.1.1. Dental-Derived Stem Cells
2.1.2. Non-Dental Mesenchymal Stem Cells (MSCs)
2.1.3. iPSCs (Induced Pluripotent Stem Cells)
2.2. Mechanisms Underlying Stem Cell-Mediated Tissue Repair and Regeneration
3. Biomaterials in Dental Regeneration
3.1. Types of Biomaterials Used in Dental Regeneration
3.2. Advances in Biomaterial Design for Enhanced Dental Tissue Repair
4. Techniques in Regenerative Dentistry
4.1. Protocols for Incorporating Stem Cells and Biomaterials in Dental Repair
4.2. Application of Platelet-Rich Plasma (PRP) and Platelet-Derived Growth Factors
4.3. Tissue Engineering and Biomolecules in Dentistry
5. Clinical Applications and Success in Regenerative Dentistry
5.1. Clinical Studies and Success Rates in Tissue Repair
5.2. Case Reports Demonstrating Regeneration of Dental and Periodontal Tissues
5.3. Novel Approaches in Regenerative Dentistry
5.4. Challenges and Factors Affecting Clinical Outcomes
6. Future Directions and Innovations
6.1. Emerging Technologies
6.2. Personalized Medicine
6.3. Regulatory, Ethical Issues and Economic Implications
7. Challenges
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thalakiriyawa, D.S.; Dissanayaka, W.L. Advances in regenerative dentistry approaches: An update. Int. Dent. J. 2024, 74, 25–34. [Google Scholar] [CrossRef]
- Torvi, S.; Munniswamy, K. Regenerative dentistry: Current and future perspectives to rejuvenate and reclaim dental tissues. J. Int. Clin. Dent. Res. Organ. 2014, 6, 112. [Google Scholar] [CrossRef]
- Cohn, S.A. Endodontic therapy 6th Edition: By Franklin S. Weine. Aust. Endod. J. 2004, 30, 33. [Google Scholar] [CrossRef]
- Perrone, M. Advancements in regenerative dentistry. J. Stem Cells Res. 2004, 5, 62. [Google Scholar] [CrossRef]
- Jain, A.; Bansal, R. Current overview on dental stem cells applications in regenerative dentistry. J. Nat. Sci. Biol. Med. 2015, 6, 29. [Google Scholar] [CrossRef]
- Polezhaev, L.V. Loss and restoration of regenerative capacity in tissues and organs of Animals. Q. Rev. Biol. 1973, 48 Pt 1, 33–34. [Google Scholar] [CrossRef]
- Sharpe, P. Regenerative dentistry. Front. Dent. Med. 2020, 1, 3. [Google Scholar] [CrossRef]
- Sloan, A.; Smith, A. Stem cells and the dental pulp: Potential roles in dentine regeneration and repair. Oral Dis. 2007, 13, 151–157. [Google Scholar] [CrossRef]
- Mao, J.; Prockop, D. Stem cells in the face: Tooth regeneration and beyond. Cell Stem Cell 2012, 11, 579. [Google Scholar] [CrossRef]
- Al-Habib, M.; Huang, G.T. Dental Mesenchymal stem cells: Dental pulp stem cells, periodontal ligament stem cells, apical papilla stem cells, and primary teeth stem cells—Isolation, characterization, and expansion for tissue engineering. In Odontogenesis: Methods and Protocols; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2019; pp. 59–76. [Google Scholar] [CrossRef]
- Nakashima, M.; Akamine, A. The application of tissue engineering to regeneration of pulp and dentin in Endodontics. J. Endod. 2005, 31, 711–718. [Google Scholar] [CrossRef]
- Almutairi, W.; Al-Dahman, Y.; Alnassar, F.; Albalawi, O. Intracanal calcification following regenerative endodontic treatment: A systematic review and meta-analysis. Clin. Oral Investig. 2002, 26, 3333–3342. [Google Scholar] [CrossRef] [PubMed]
- Alyahya, Y. A narrative review of minimally invasive techniques in restorative dentistry. Saudi Dent. J. 2024, 36, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Paul, K.; Islam, A.; Volponi, A.A. Future horizons: Embedding the evolving science of regenerative dentistry in a modern, sustainable dental curriculum. Br. Dent. J. 2022, 232, 207–210. [Google Scholar] [CrossRef]
- Shah, P.; Aghazadeh, M.; Rajasingh, S.; Dixon, D.; Jain, V.; Rajasingh, J. Stem cells in regenerative dentistry: Current understanding and future directions. J. Oral Biosci. 2024, 66, 288–299. [Google Scholar] [CrossRef]
- Tafazoli Moghadam, E.; Yazdanian, M.; Alam, M.; Tebyanian, H.; Tafazoli, A.; Tahmasebi, E.; Ranjbar, R.; Yazdanian, A.; Seifalian, A. Current natural bioactive materials in bone and tooth regeneration in dentistry: A comprehensive overview. J. Mater. Res. Technol. 2021, 13, 2078–2114. [Google Scholar] [CrossRef]
- Zhang, W.; Yelick, P.C. Tooth repair and regeneration: Potential of dental stem cells. Trends Mol. Med. 2021, 27, 501–511. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, C.; Huang, G.T.; Cheung, G.S.; Dissanayaka, W.L.; Zhu, W. Transplantation of dental pulp stem cells and platelet-rich plasma for pulp regeneration. J. Endod. 2012, 38, 1604–1609. [Google Scholar] [CrossRef]
- Potdar, P.D. Human dental pulp stem cells: Applications in future regenerative medicine. World J. Stem Cells 2015, 7, 839. [Google Scholar] [CrossRef]
- Yuan, W.; Ferreira, L.D.; Yu, B.; Ansari, S.; Moshaverinia, A. Dental-derived stem cells in tissue engineering: The role of biomaterials and host response. Regen. Biomater. 2023, 11, rbad100. [Google Scholar] [CrossRef]
- Su, W.; Ko, C.; Chen, J. Stem cells from human exfoliated deciduous teeth: A concise review. Curr. Stem Cell Res. Ther. 2020, 15, 61–76. [Google Scholar] [CrossRef]
- Zhu, W.; Liang, M. Periodontal ligament stem cells: Current status, concerns, and future prospects. Stem Cells Int. 2015, 2015, 972313. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Gao, Y.; He, J. Stem cells from the apical papilla (SCAPs): Past, present, prospects, and challenges. Biomedicines 2023, 11, 2047. [Google Scholar] [CrossRef]
- Bi, R.; Lyu, P.; Song, Y.; Li, P.; Song, D.; Cui, C.; Fan, Y. Function of dental follicle progenitor/Stem cells and their potential in regenerative medicine: From mechanisms to applications. Biomolecules 2021, 11, 997. [Google Scholar] [CrossRef]
- Huang, G.; Gronthos, S.; Shi, S. Mesenchymal stem cells derived from dental tissues vs. Those from other sources: Their biology and role in regenerative medicine. J. Dent. Res. 2009, 88, 792–806. [Google Scholar] [CrossRef]
- Gao, P.; Liu, S.; Wang, X.; Ikeya, M. Dental applications of induced pluripotent stem cells and their derivatives. Jpn. Dent. Sci. Rev. 2022, 58, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Volponi, A.A.; Pang, Y.; Sharpe, P.T. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol. 2010, 20, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Baraniak, P.R.; McDevitt, T.C. Stem cell Paracrine actions and tissue regeneration. Regen. Med. 2009, 5, 121–143. [Google Scholar] [CrossRef]
- Hong, H.; Chen, X.; Li, K.; Wang, N.; Li, M.; Yang, B.; Yu, X.; Wei, X. Dental follicle stem cells rescue the regenerative capacity of inflamed rat dental pulp through a paracrine pathway. Stem Cell Res. Therapy 2020, 11, 333. [Google Scholar] [CrossRef]
- Bergamo, M.; Zhang, Z.; Oliveira, T.; Nör, J. VEGFR1 primes a unique cohort of dental pulp stem cells for vasculogenic differentiation. Eur. Cells Mater. 2021, 41, 332–344. [Google Scholar] [CrossRef]
- Andrukhov, O.; Behm, C.; Blufstein, A.; Rausch-Fan, X. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: Implication in disease and tissue regeneration. World J. Stem Cells 2019, 11, 604–617. [Google Scholar] [CrossRef]
- Ana, I.D.; Rachmawati, M.W.; Anggraeni, R. Stem cell and cell products for tissue engineering and regenerative therapies in dentistry. In Comprehensive Hematology and Stem Cell Research; Elsevier: Amsterdam, The Netherlands, 2024; pp. 530–538. [Google Scholar] [CrossRef]
- Sybil, D.; Rana, A.; Singh, S. Different biomaterials for dental tissue regeneration from clinical point of view. In Engineering Materials for Stem Cell Regeneration; Springer: Singapore, 2021; pp. 181–215. [Google Scholar] [CrossRef]
- Nie, H.; Kim, J.; Fu, S.; Mao, J. Biomaterials selection for dental pulp regeneration. In Comprehensive Biomaterials; Elsevier: Amsterdam, The Netherlands, 2011; pp. 245–254. [Google Scholar] [CrossRef]
- Yuan, Z.; Nie, H.; Wang, S.; Lee, C.H.; Li, A.; Fu, S.Y.; Zhou, H.; Chen, L.; Mao, J.J. Biomaterial selection for tooth regeneration. Tissue Eng. Part B Rev. 2011, 17, 373–388. [Google Scholar] [CrossRef] [PubMed]
- Sugiaman, V.K.; Jeffrey; Naliani, S.; Pranata, N.; Djuanda, R.; Saputri, R.I. Polymeric scaffolds used in dental pulp regeneration by tissue engineering approach. Polymers 2023, 15, 1082. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.T.; Munguia-Lopez, J.G.; Cho, Y.W.; Ma, X.; Song, V.; Zhu, Z.; Tran, S.D. Polymeric scaffolds for dental, oral, and Craniofacial regenerative medicine. Molecules 2021, 26, 7043. [Google Scholar] [CrossRef]
- Díaz Lantada, A.; Michel, A. Tissue engineering scaffolds for bone repair: Application to dental repair. In Microsystems for Enhanced Control of Cell Behavior: Fundamentals, Design and Manufacturing Strategies, Applications and Challenges; Studies in Mechanobiology, Tissue Engineering and Biomaterials; Springer: Cham, Switzerland, 2016; pp. 287–299. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, B.; Mostafavi, E. Nano-based 3D-printed biomaterials for regenerative and translational medicine applications. In Nanomedicine; Woodhead Publishing: Sawston, UK, 2023; pp. 483–499. [Google Scholar] [CrossRef]
- Hynes, K.; Menicanin, D.; Gronthos, S.; Bartold, P.M. Clinical utility of stem cells for periodontal regeneration. Periodontology 2000 2012, 59, 203–227. [Google Scholar] [CrossRef]
- Xu, J.; Gou, L.; Zhang, P.; Li, H.; Qiu, S. Platelet-rich plasma and regenerative dentistry. Aust. Dent. J. 2020, 65, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Bornstein, M.M.; Lambrichts, I.; Yu, H.; Politis, C.; Jacobs, R. Platelet-rich plasma for regeneration of neural feedback pathways around dental implants: A concise review and outlook on future possibilities. Int. J. Oral Sci. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Jamalpour, M.R.; Vahdatinia, F.; Vargas, J.; Tayebi, L. Clinical functions of regenerative dentistry and tissue engineering in treatment of oral and maxillofacial soft tissues. In Applications of Biomedical Engineering in Dentistry; Springer: Cham, Switzerland, 2019; pp. 223–238. [Google Scholar] [CrossRef]
- Ferrarotti, F.; Romano, F.; Gamba, M.N.; Quirico, A.; Giraudi, M.; Audagna, M.; Aimetti, M. Human intrabony defect regeneration with micrografts containing dental pulp stem cells: A randomized controlled clinical trial. J. Clin. Periodontol. 2018, 45, 841–850. [Google Scholar] [CrossRef]
- Abou Neel, E.A.; Chrzanowski, W.; Salih, V.M.; Kim, H.; Knowles, J.C. Tissue engineering in dentistry. J. Dent. 2014, 42, 915–928. [Google Scholar] [CrossRef]
- De Ry, S.P.; Roccuzzo, A.; Lang, N.P.; Sculean, A.; Salvi, G.E. Long-term clinical outcomes of periodontal regeneration with enamel matrix derivative: A retrospective cohort study with a mean follow-up of 10 years. J. Periodontol. 2021, 93, 548–559. [Google Scholar] [CrossRef]
- Safi, I.N.; Hussein, B.M.; Al-Shammari, A.M. Bio-hybrid dental implants prepared using stem cells with β-TCP-coated titanium and zirconia. J. Periodontal Implant Sci. 2022, 52, 242. [Google Scholar] [CrossRef]
- Xu, F.; Ren, H.; Zheng, M.; Shao, X.; Dai, T.; Wu, Y.; Tian, L.; Liu, Y.; Liu, B.; Gunster, J.; et al. Development of biodegradable bioactive glass ceramics by DLP printed containing EPCs/BMSCs for bone tissue engineering of rabbit mandible defects. J. Mech. Behav. Biomed. Mater. 2020, 103, 103532. [Google Scholar] [CrossRef]
- Zhuang, X.; Ji, L.; Jiang, H.; Liu, Y.; Liu, X.; Bi, J.; Zhao, W.; Ding, Z.; Chen, X. Exosomes derived from stem cells from the apical papilla promote dentine-pulp complex regeneration by inducing specific Dentinogenesis. Stem Cells Int. 2020, 2020, 5816723. [Google Scholar] [CrossRef] [PubMed]
- Meza, G.; Urrejola, D.; Saint Jean, N.; Inostroza, C.; López, V.; Khoury, M.; Brizuela, C. Personalized cell therapy for Pulpitis using autologous dental pulp stem cells and leukocyte platelet-rich fibrin: A case report. J. Endod. 2019, 45, 144–149. [Google Scholar] [CrossRef]
- Bezgin, T.; Yilmaz, A.D.; Celik, B.N.; Kolsuz, M.E.; Sonmez, H. Efficacy of platelet-rich plasma as a scaffold in regenerative Endodontic treatment. J. Endod. 2015, 41, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wei, L.; Chang, J.; Miron, R.J.; Shi, B.; Yi, S.; Wu, C. Strontium-incorporated mesoporous bioactive glass scaffolds stimulating in vitro proliferation and differentiation of bone marrow stromal cells and in vivo regeneration of osteoporotic bone defects. J. Mater. Chem. B 2013, 1, 5711–5722. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Takimoto, K.; Jeon, M.; Vadakekalam, J.; Ruparel, N.; Diogenes, A. Decellularized human dental pulp as a scaffold for regenerative Endodontics. J. Dent. Res. 2017, 96, 640–646. [Google Scholar] [CrossRef]
- Saghiri, M.A.; Asatourian, A.; Sheibani, N. Angiogenesis in regenerative dentistry. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 119, 122. [Google Scholar] [CrossRef]
- Simon, S.R.; Tomson, P.L.; Berdal, A. Regenerative Endodontics: Regeneration or repair? J. Endod. 2014, 40, S70–S75. [Google Scholar] [CrossRef]
- Mohabatpour, F.; Chen, X.; Papagerakis, S.; Papagerakis, P. Novel trends, challenges and new perspectives for enamel repair and regeneration to treat dental defects. Biomater. Sci. 2022, 10, 3062–3087. [Google Scholar] [CrossRef]
- Yang, B.; Yang, X.; Luo, X.; Chen, G.; Chen, J.; Huo, F.; Zhu, Z.; Tian, Y.; Guo, W.; Tian, W. DFCs/TDM based artificial bio-root to obtain long-term functional root regeneration in non-human primate. Chem. Eng. J. 2023, 451, 138738. [Google Scholar] [CrossRef]
- Yuan, X.; Yuan, Z.; Wang, Y.; Wan, Z.; Wang, X.; Yu, S.; Han, J.; Huang, J.; Xiong, C.; Ge, L.; et al. Vascularized pulp regeneration via injecting simvastatin functionalized GelMA cryogel microspheres loaded with stem cells from human exfoliated deciduous teeth. Mater. Today Bio 2022, 13, 100209. [Google Scholar] [CrossRef]
- De Mendonça Costa, A.; Bueno, D.F.; Martins, M.T.; Kerkis, I.; Kerkis, A.; Fanganiello, R.D.; Cerruti, H.; Alonso, N.; Passos-Bueno, M.R. undefined. J. Craniofacial Surg. 2008, 19, 204–210. [Google Scholar] [CrossRef]
- Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L.W.; Robey, P.G.; Shi, S. SHED: Stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. USA 2003, 100, 5807–5812. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zhang, Z.; Guo, W. The 3-dimensional printing for dental tissue regeneration: The state of the art and future challenges. Front. Bioeng. Biotechnol. 2024, 12, 1356580. [Google Scholar] [CrossRef]
- Mohd, N.; Razali, M.; Ghazali, M.J.; Abu Kasim, N.H. Current advances of three-dimensional Bioprinting application in dentistry: A scoping review. Materials 2022, 15, 6398. [Google Scholar] [CrossRef]
- Fu, B.; Shen, J.; Chen, Y.; Wu, Y.; Zhang, H.; Liu, H.; Huang, W. Narrative review of gene modification: Applications in three-dimensional (3D) bioprinting. Ann. Transl. Med. 2021, 9, 1502. [Google Scholar] [CrossRef]
- Bates, K.; Gallicchio, V.S. Dental stem cell banking and applications of dental stem cells for regenerative medicine. In Novel Perspectives of Stem Cell Manufacturing and Therapies; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
Stem Cells Sources | Explanation | Applications | Reference |
---|---|---|---|
Dental Pulp Stem Cells (DPSCs) | Derived from the dental pulp of permanent teeth. | Pulp and dentin regeneration, repair of damaged tissues in the oral cavity. | [11] |
Stem Cells from Human Exfoliated Deciduous Teeth (SHED) | Harvested from baby teeth (deciduous teeth). | Formation of dentin and connective tissue, regeneration of damaged or lost dental tissues. | [19] |
Periodontal Ligament Stem Cells (PDLSCs) | Isolated from the periodontal ligament of extracted teeth. | Regeneration of periodontal ligament, cementum, and alveolar bone; treatment of periodontal diseases. | [17] |
Stem Cells from the Apical Papilla (SCAP) | Found in the apical region of the developing root of immature permanent teeth. | Root development, pulp and dentin regeneration, repair of immature tooth injuries. | [18] |
Dental Follicle Progenitor Cells (DFPCs) | Obtained from the dental follicle of developing teeth. | Differentiation into osteoblasts and fibroblasts; regeneration of periodontal and alveolar bone tissues. | [15] |
Condition | Type of Stem Cell | Bioactive Material/Scaffold/PRP | Outcome | Reference |
---|---|---|---|---|
Severe Periodontal Attachment Loss | DPSCs (Dental Pulp Stem Cells) | Collagen Hydrogels + PRP | Favorable periodontal ligament regeneration, increased bone density, and improved pocket depth values | [27] |
Severe Bone Resorption Post Tooth Extraction | BMSCs (Bone Marrow Stem Cells) | Bioactive Glass Scaffolds | Significant bone regeneration, scaffold integration with new bone tissue, enhanced implant site quality | [28] |
Pulp Necrosis after Traumatic Injury | SCAP (Stem Cells from Apical Papilla) | Collagen Scaffold | Partial pulp vitality restoration, successful revascularization, dentin-like tissue formation, and root lengthening | [28] |
Chronic Periodontitis with Bone Defects | PDLSCs (Periodontal Ligament Stem Cells) | PRP + Biodegradable Scaffold | Regeneration of periodontal ligament and alveolar bone, reduced inflammation, improved tissue attachment | [36] |
Tooth Root Resorption Post-Orthodontics | SHED (Stem Cells from Human Exfoliated Deciduous Teeth) | Gelatin-Based Scaffold + VEGF | Reduced root resorption, increased cementum and periodontal tissue regeneration, improved root structure integrity | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umapathy, V.R.; Natarajan, P.M.; Swamikannu, B. Regenerative Strategies in Dentistry: Harnessing Stem Cells, Biomaterials and Bioactive Materials for Tissue Repair. Biomolecules 2025, 15, 546. https://doi.org/10.3390/biom15040546
Umapathy VR, Natarajan PM, Swamikannu B. Regenerative Strategies in Dentistry: Harnessing Stem Cells, Biomaterials and Bioactive Materials for Tissue Repair. Biomolecules. 2025; 15(4):546. https://doi.org/10.3390/biom15040546
Chicago/Turabian StyleUmapathy, Vidhya Rekha, Prabhu Manickam Natarajan, and Bhuminathan Swamikannu. 2025. "Regenerative Strategies in Dentistry: Harnessing Stem Cells, Biomaterials and Bioactive Materials for Tissue Repair" Biomolecules 15, no. 4: 546. https://doi.org/10.3390/biom15040546
APA StyleUmapathy, V. R., Natarajan, P. M., & Swamikannu, B. (2025). Regenerative Strategies in Dentistry: Harnessing Stem Cells, Biomaterials and Bioactive Materials for Tissue Repair. Biomolecules, 15(4), 546. https://doi.org/10.3390/biom15040546