The Role of Senolytics in Osteoporosis
Abstract
1. Introduction
2. Cellular Senescence
3. Anti-Osteoporosis Drugs
4. Senolytics
4.1. Natural Compounds
4.1.1. Quercetin
4.1.2. Fisetin
4.1.3. Piperlongumine
4.1.4. Luteolin
4.1.5. Curcumin
4.2. Kinase Inhibitors
Dasatinib
4.3. Bcl-2 Family Inhibitors
4.3.1. Navitoclax (ABT-263)
4.3.2. ABT-737
4.4. MDM2/p53 Interaction Inhibitors
4.4.1. UBX0101
4.4.2. P5091
4.5. Hsp90 Inhibitors
4.5.1. Geldanamycin
4.5.2. Tanespimycin
4.5.3. Alvespimycin
4.6. p53-Binding Inhibitors
FOXO4-DRI
4.7. HDAC Inhibitors
Panobinostat
5. Clinical Trials
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2024 Summary of Results (UN DESAPOP2024TRNO. 9).pdf; United Nations Department of Economic and Social Affairs, Population Division: New York City, NY, USA, 2024. [Google Scholar] [CrossRef]
- Che, Y.; Xin, H.; Gu, Y.; Ma, X.; Xiang, Z.; He, C. Associated factors of frailty among community-dwelling older adults with multimorbidity from a health ecological perspective: A cross-sectional study. BMC Geriatr. 2025, 25, 172. [Google Scholar] [CrossRef]
- Wang, H.; Luo, Y.; Wang, H.; Li, F.; Yu, F. Mechanistic advances in osteoporosis and anti-osteoporosis therapies. MedComm 2023, 4, e244. [Google Scholar] [CrossRef]
- Freitas, P.; Garcia Rosa, M.L.; Gomes, A.M.; Wahrlich, V.; Di Luca, D.G.; da Cruz Filho, R.A.; da Silva Correia, D.M.; Faria, C.A.; Yokoo, E.M. Central and peripheral fat body mass have a protective effect on osteopenia or osteoporosis in adults and elderly? Osteoporos. Int. 2016, 27, 1659–1663. [Google Scholar] [CrossRef] [PubMed]
- Fuggle, N.; Laslop, A.; Rizzoli, R.; Al-Daghri, N.; Alokail, M.; Balkowiec-Iskra, E.; Beaudart, C.; Bruyère, O.; Bemden, A.B.; Burlet, N.; et al. Treatment of Osteoporosis and Osteoarthritis in the Oldest Old. Drugs 2025, 85, 343–360. [Google Scholar] [CrossRef]
- Stromsnes, K.; Fajardo, C.M.; Soto-Rodriguez, S.; Kajander, E.R.U.; Lupu, R.-I.; Pozo-Rodriguez, M.; Boira-Nacher, B.; Font-Alberich, M.; Gambini-Castell, M.; Olaso-Gonzalez, G.; et al. Osteoporosis: Causes, Mechanisms, Treatment and Prevention: Role of Dietary Compounds. Pharmaceuticals 2024, 17, 1697. [Google Scholar] [CrossRef]
- NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001, 285, 785–795. [Google Scholar] [CrossRef]
- Naso, C.M.; Lin, S.Y.; Song, G.; Xue, H. Time trend analysis of osteoporosis prevalence among adults 50 years of age and older in the USA, 2005–2018. Osteoporos. Int. 2025, 36, 547–554. [Google Scholar] [CrossRef]
- Wright, N.C.; Looker, A.C.; Saag, K.G.; Curtis, J.R.; Delzell, E.S.; Randall, S.; Dawson-Hughes, B. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2014, 29, 2520–2526. [Google Scholar] [CrossRef]
- Odén, A.; McCloskey, E.V.; Johansson, H.; Kanis, J.A. Assessing the impact of osteoporosis on the burden of hip fractures. Calcif. Tissue Int. 2013, 92, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.N.; Zhang, C.G.; Li, B.H.; Zhan, S.Y.; Wang, S.F.; Song, C.L. Global burden of hip fracture: The Global Burden of Disease Study. Osteoporos. Int. 2024, 35, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gao, R.; Rong, X.; Zhu, S.; Cui, Y.; Liu, H.; Li, M. Immunoporosis: Role of immune system in the pathophysiology of different types of osteoporosis. Front. Endocrinol. 2022, 13, 965258. [Google Scholar] [CrossRef]
- Lyu, Z.; Hu, Y.; Guo, Y.; Liu, D. Modulation of bone remodeling by the gut microbiota: A new therapy for osteoporosis. Bone Res. 2023, 11, 31. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, X.; Chen, Y.; Zhang, M.; Zheng, C. Estrogen deficiency-mediated osteoimmunity in postmenopausal osteoporosis. Med. Res. Rev. 2025, 45, 561–575. [Google Scholar] [CrossRef]
- Dong, X.; Liu, H.; Yuan, D.; Gulati, K.; Liu, Y. Re-engineering bone: Pathogenesis, diagnosis and emerging therapies for osteoporosis. J. Mater. Chem. B 2025, 13, 4938–4963. [Google Scholar] [CrossRef]
- Liang, B.; Burley, G.; Lin, S.; Shi, Y.-C. Osteoporosis pathogenesis and treatment: Existing and emerging avenues. Cell. Mol. Biol. Lett. 2022, 27, 72. [Google Scholar] [CrossRef]
- He, C.; He, P.; Ou, Y.; Tang, X.; Wei, H.; Xu, Y.; Bai, S.; Guo, Z.; Hu, R.; Xiong, K.; et al. Rectifying the Crosstalk between the Skeletal and Immune Systems Improves Osteoporosis Treatment by Core-Shell Nanocapsules. ACS Nano 2025, 19, 5549–5567. [Google Scholar] [CrossRef]
- Huo, S.; Tang, X.; Chen, W.; Gan, D.; Guo, H.; Yao, Q.; Liao, R.; Huang, T.; Wu, J.; Yang, J.; et al. Epigenetic regulations of cellular senescence in osteoporosis. Ageing Res. Rev. 2024, 99, 102235. [Google Scholar] [CrossRef] [PubMed]
- Föger-Samwald, U.; Kerschan-Schindl, K.; Butylina, M.; Pietschmann, P. Age Related Osteoporosis: Targeting Cellular Senescence. Int. J. Mol. Sci. 2022, 23, 2701. [Google Scholar] [CrossRef] [PubMed]
- Pignolo, R.J.; Law, S.F.; Chandra, A. Bone Aging, Cellular Senescence, and Osteoporosis. JBMR Plus 2021, 5, e10488. [Google Scholar] [CrossRef]
- Ajoolabady, A.; Pratico, D.; Bahijri, S.; Tuomilehto, J.; Uversky, V.N.; Ren, J. Hallmarks of cellular senescence: Biology, mechanisms, regulations. Exp. Mol. Med. 2025, 57, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Basilicata, M.G.; Sommella, E.; Scisciola, L.; Tortorella, G.; Malavolta, M.; Giordani, C.; Barbieri, M.; Campiglia, P.; Paolisso, G. Multi-omics strategies to decode the molecular landscape of cellular senescence. Ageing Res. Rev. 2025, 111, 102824. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Hu, S.; Chen, H. Cellular senescence and other age-related mechanisms in skeletal diseases. Bone Res. 2025, 13, 68. [Google Scholar] [CrossRef]
- Reed, R.; Miwa, S. Cellular Senescence and Ageing. Sub-Cell. Biochem. 2023, 102, 139–173. [Google Scholar] [CrossRef]
- Chen, X.; Li, M.; Yan, J.; Liu, T.; Pan, G.; Yang, H.; Pei, M.; He, F. Alcohol Induces Cellular Senescence and Impairs Osteogenic Potential in Bone Marrow-Derived Mesenchymal Stem Cells. Alcohol 2017, 52, 289–297. [Google Scholar] [CrossRef]
- Wang, D.; Guan, H. Mechanisms of aging-related secretory phenotype regulation in osteoporosis: Network regulation, trade-offs and homeostasis. Pathol. Res. Pract. 2025, 272, 156115. [Google Scholar] [CrossRef]
- Dong, B.; Hiasa, M.; Higa, Y.; Ohnishi, Y.; Endo, I.; Kondo, T.; Takashi, Y.; Tsoumpra, M.; Kainuma, R.; Sawatsubashi, S.; et al. Osteoblast/osteocyte-derived interleukin-11 regulates osteogenesis and systemic adipogenesis. Nat. Commun. 2022, 13, 7194. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Hickson, L.J.; Eirin, A.; Kirkland, J.L.; Lerman, L.O. Cellular senescence: The good, the bad and the unknown. Nat. Rev. Nephrol. 2022, 18, 611–627. [Google Scholar] [CrossRef]
- Laberge, R.M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 2015, 17, 1049–1061. [Google Scholar] [CrossRef]
- Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.-W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Ren, J.; Chen, Q.; Chen, Z.J. cGAS is essential for cellular senescence. Proc. Natl. Acad. Sci. USA 2017, 114, E4612–E4620. [Google Scholar] [CrossRef] [PubMed]
- Victorelli, S.; Salmonowicz, H.; Chapman, J.; Martini, H.; Vizioli, M.G.; Riley, J.S.; Cloix, C.; Hall-Younger, E.; Espindola-Netto, J.M.; Jurk, D.; et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 2023, 622, 627–636. [Google Scholar] [CrossRef]
- Bartold, M.; Gronthos, S.; Haynes, D.; Ivanovski, S. Mesenchymal stem cells and biologic factors leading to bone formation. J. Clin. Periodontol. 2019, 46 (Suppl. S21), 12–32. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, L.; Hou, J.; Li, J.; Chen, L.; Xia, J.; Wang, Z.; Xiao, M.; Wang, Y. Study on the Dynamic Biological Characteristics of Human Bone Marrow Mesenchymal Stem Cell Senescence. Stem Cells Int. 2019, 2019, 9271595. [Google Scholar] [CrossRef]
- Qadir, A.; Liang, S.; Wu, Z.; Chen, Z.; Hu, L. Senile Osteoporosis: The Involvement of Differentiation and Senescence of Bone Marrow Stromal Cells. Int. J. Mol. Sci. 2020, 21, 349. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Cai, B.; Xue, K.; Zhou, S.; Yin, G.; Fang, J. FKBP5 Induces Senescence in BMSCs and Inhibits Osteogenic Differentiation Through the Canonical WNT/β-Catenin Signalling Pathway in Senile Osteoporosis. J. Cell. Mol. Med. 2025, 29, e70552. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Kuang, S.; Cen, J.; Zhang, Y.; Shen, Z.; Qin, W.; Huang, Q.; Wang, Z.; Gao, X.; Huang, F.; et al. Multiomics profiling reveals VDR as a central regulator of mesenchymal stem cell senescence with a known association with osteoporosis after high-fat diet exposure. Int. J. Oral Sci. 2024, 16, 41. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, Q.; Liu, S.; Li, B.; Zheng, Z.; Liu, Y.; Hu, P.; Luo, E. Aging alters the effect of adiponectin receptor signaling on bone marrow-derived mesenchymal stem cells. Aging Cell 2025, 24, e14390. [Google Scholar] [CrossRef]
- Ukon, Y.; Kaito, T.; Hirai, H.; Kitahara, T.; Bun, M.; Kodama, J.; Tateiwa, D.; Nakagawa, S.; Ikuta, M.; Furuichi, T.; et al. Cellular senescence by loss of Men1 in osteoblasts is critical for age-related osteoporosis. Aging Cell 2024, 23, e14254. [Google Scholar] [CrossRef]
- Wu, Y.L.; Lin, Z.J.; Li, C.C.; Lin, X.; Shan, S.K.; Guo, B.; Zheng, M.-H.; Li, F.; Yuan, L.-Q.; Li, Z.-H. Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduct. Target. Ther. 2023, 8, 98. [Google Scholar] [CrossRef]
- Huang, B.; Wang, B.; Yuk-Wai Lee, W.; Pong, U.K.; Leung, K.T.; Li, X.; Liu, Z.; Chen, R.; Lin, J.C.; Tsang, L.L.; et al. KDM3A and KDM4C Regulate Mesenchymal Stromal Cell Senescence and Bone Aging via Condensin-mediated Heterochromatin Reorganization. iScience 2019, 21, 375–390. [Google Scholar] [CrossRef]
- Xie, Y.; Han, N.; Li, F.; Wang, L.; Liu, G.; Hu, M.; Wang, S.; Wei, X.; Guo, J.; Jiang, H.; et al. Melatonin enhances osteoblastogenesis of senescent bone marrow stromal cells through NSD2-mediated chromatin remodelling. Clin. Transl. Med. 2022, 12, e746. [Google Scholar] [CrossRef]
- Deng, P.; Yuan, Q.; Cheng, Y.; Li, J.; Liu, Z.; Liu, Y.; Li, Y.; Su, T.; Wang, J.; Salvo, M.E.; et al. Loss of KDM4B exacerbates bone-fat imbalance and mesenchymal stromal cell exhaustion in skeletal aging. Cell Stem Cell 2021, 28, 1057–1073.e1057. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Cao, M.M.; Li, Y.J.; Dai, G.C.; Lu, P.P.; Zhang, M.; Bai, L.Y.; Chen, X.X.; Shi, L.; Zhang, C.; et al. Dietary Protein Intake in Relation to the Risk of Osteoporosis in Middle-Aged and Older Individuals: A Cross-Sectional Study. J. Nutr. Health Aging 2022, 26, 252–258. [Google Scholar] [CrossRef]
- Li, M.; Gao, X.; Zhang, Y.; Wang, J.; Dong, R.; Li, P.; He, Y. Multi-omics Data Integration Analysis Identified Therapeutic Targets and Potential Reuse Drugs for Osteoporosis. Curr. Med. Chem. 2024, 31, 6357–6370. [Google Scholar] [CrossRef] [PubMed]
- Hoke, M.; Omar, N.B.; Amburgy, J.W.; Self, D.M.; Schnell, A.; Morgan, S.; Larios, E.A.; Chambers, M.R. Impact of exercise on bone mineral density, fall prevention, and vertebral fragility fractures in postmenopausal osteoporotic women. J. Clin. Neurosci. 2020, 76, 261–263. [Google Scholar] [CrossRef]
- Zhu, S.; He, H.; Zhang, C.; Wang, H.; Gao, C.; Yu, X.; He, C. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics 2017, 38, 406–424. [Google Scholar] [CrossRef]
- Ioppolo, F.; Rompe, J.D.; Furia, J.P.; Cacchio, A. Clinical application of shock wave therapy (SWT) in musculoskeletal disorders. Eur. J. Phys. Rehabil. Med. 2014, 50, 217–230. [Google Scholar] [PubMed]
- Chen, Y.J.; Jia, L.H.; Han, T.H.; Zhao, Z.H.; Yang, J.; Xiao, J.P.; Yang, H.J.; Yang, K. Osteoporosis treatment: Current drugs and future developments. Front. Pharmacol. 2024, 15, 1456796. [Google Scholar] [CrossRef]
- Tan, M.; Li, Q.; Yang, B.; Wang, S.; Chen, Z. Insight of Chinese Herbal Medicine in Treating Osteoporosis: Achievements from 2013 to 2023. Am. J. Chin. Med. 2024, 52, 1303–1328. [Google Scholar] [CrossRef] [PubMed]
- Watts, N.B.; Camacho, P.M.; Lewiecki, E.M.; Petak, S.M. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis-2020 Update. Endocr. Pract. 2021, 27, 379–380. [Google Scholar] [CrossRef]
- Hatano, M.; Sasabuchi, Y.; Okada, A.; Kimura, Y.; Ishikura, H.; Tanaka, T.; Saito, T.; Tanaka, S.; Yasunaga, H. Osteoarthritis risk associated with romosozumab compared with teriparatide in individuals with osteoporosis: A target trial emulation study. Ann. Rheum. Dis. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Kverka, M.; Stepan, J.J. Associations Among Estrogens, the Gut Microbiome and Osteoporosis. Curr. Osteoporos. Rep. 2024, 23, 2. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.Q.; Huang, Y.J.; Chen, Z.H.; Lu, C.Y.; Zhou, B.; Gong, X.H.; Shen, Z.; Wang, T. A decade of insight: Bibliometric analysis of gut microbiota’s role in osteoporosis (2014–2024). Front. Med. 2024, 11, 1409534. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Deng, M.; Huang, X.; Xie, D.; Gao, X.; Chen, J.; Shi, Z.; Lu, J.; Lin, H.; Li, P. Pueraria lobata-derived exosome-like nanovesicles alleviate osteoporosis by enhacning autophagy. J. Control. Release 2023, 364, 644–653. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, Y.; Yu, X. Progress of research on the gut microbiome and its metabolite short-chain fatty acids in postmenopausal osteoporosis: A literature review. Front. Med. 2025, 19, 474–492. [Google Scholar] [CrossRef]
- Li, C.; Gong, H.; Zhang, Y.; Shi, P.; Liu, S.; Zhang, Q. Ferroptosis as an Emerging Target in Diabetic Osteoporosis. FASEB J. 2025, 39, e70769. [Google Scholar] [CrossRef]
- He, Y.; Liu, T.; Peng, X.; Yao, C.; Zhou, D.; Song, C.; Wei, Z.; Chen, J.; Liu, Z.; Jiang, F. Molecular mechanism of mitochondrial autophagy mediating impaired energy metabolism leading to osteoporosis. Biochim. Biophys. Acta Mol. Basis Dis. 2025, 1871, 167685. [Google Scholar] [CrossRef]
- Song, S.; Guo, Y.; Yang, Y.; Fu, D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol. Ther. 2022, 237, 108168. [Google Scholar] [CrossRef]
- Chae, U.; Park, J.W.; Lee, S.R.; Lee, H.J.; Lee, H.S.; Lee, D.S. Reactive oxygen species-mediated senescence is accelerated by inhibiting Cdk2 in Idh2-deficient conditions. Aging 2019, 11, 7242–7256. [Google Scholar] [CrossRef]
- Zhang, X.; Englund, D.A.; Aversa, Z.; Jachim, S.K.; White, T.A.; LeBrasseur, N.K. Exercise Counters the Age-Related Accumulation of Senescent Cells. Exerc. Sport Sci. Rev. 2022, 50, 213–221. [Google Scholar] [CrossRef]
- Wiley, C.D.; Campisi, J. The metabolic roots of senescence: Mechanisms and opportunities for intervention. Nat. Metab. 2021, 3, 1290–1301. [Google Scholar] [CrossRef]
- Suda, M.; Paul, K.H.; Tripathi, U.; Minamino, T.; Tchkonia, T. Targeting Cell Senescence and Senolytics: Novel Interventions for Age-Related Endocrine Dysfunction. Endocr. Rev. 2024, 45, 655–675. [Google Scholar] [CrossRef]
- Lagoumtzi, S.M.; Chondrogianni, N. Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radic. Biol. Med. 2021, 171, 169–190. [Google Scholar] [CrossRef]
- Krishnamurthy, J.; Torrice, C.; Ramsey, M.R.; Kovalev, G.I.; Al-Regaiey, K.; Su, L.; Sharpless, N.E. Ink4a/Arf expression is a biomarker of aging. J. Clin. Investig. 2004, 114, 1299–1307. [Google Scholar] [CrossRef]
- Baker, D.J.; Wijshake, T.; Tchkonia, T.; LeBrasseur, N.K.; Childs, B.G.; van de Sluis, B.; Kirkland, J.L.; van Deursen, J.M. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011, 479, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Farr, J.N.; Xu, M.; Weivoda, M.M.; Monroe, D.G.; Fraser, D.G.; Onken, J.L.; Negley, B.A.; Sfeir, J.G.; Ogrodnik, M.B.; Hachfeld, C.M.; et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 2017, 23, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, J.L.; Tchkonia, T. Senolytic drugs: From discovery to translation. J. Intern. Med. 2020, 288, 518–536. [Google Scholar] [CrossRef]
- Ryan, P.; Lee, J. In vitro senescence and senolytic functional assays. Biomater. Sci. 2025, 13, 3509–3531. [Google Scholar] [CrossRef]
- Zhu, Y.; Tchkonia, T.; Pirtskhalava, T.; Gower, A.C.; Ding, H.; Giorgadze, N.; Palmer, A.K.; Ikeno, Y.; Hubbard, G.B.; Lenburg, M.; et al. The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell 2015, 14, 644–658. [Google Scholar] [CrossRef]
- Kim, E.C.; Kim, J.R. Senotherapeutics: Emerging strategy for healthy aging and age-related disease. BMB Rep. 2019, 52, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Doornebal, E.J.; Pirtskhalava, T.; Giorgadze, N.; Wentworth, M.; Fuhrmann-Stroissnigg, H.; Niedernhofer, L.J.; Robbins, P.D.; Tchkonia, T.; Kirkland, J.L. New agents that target senescent cells: The flavone, fisetin, and the BCL-X(L) inhibitors, A1331852 and A1155463. Aging 2017, 9, 955–963. [Google Scholar] [CrossRef]
- Fuhrmann-Stroissnigg, H.; Ling, Y.Y.; Zhao, J.; McGowan, S.J.; Zhu, Y.; Brooks, R.W.; Grassi, D.; Gregg, S.Q.; Stripay, J.L.; Dorronsoro, A.; et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 2017, 8, 422. [Google Scholar] [CrossRef]
- Muñoz-Espín, D.; Rovira, M. A versatile drug delivery system targeting senescent cells. EMBO Mol. Med. 2018, 10, e9355. [Google Scholar] [CrossRef]
- Triana-Martínez, F.; Picallos-Rabina, P. Identification and characterization of Cardiac Glycosides as senolytic compounds. Nat. Commun. 2019, 10, 4731. [Google Scholar] [CrossRef]
- Xu, M.; Tchkonia, T.; Ding, H.; Ogrodnik, M.; Lubbers, E.R.; Pirtskhalava, T.; White, T.A.; Johnson, K.O.; Stout, M.B.; Mezera, V.; et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl. Acad. Sci. USA 2015, 112, E6301–E6310. [Google Scholar] [CrossRef]
- Suda, M.; Shimizu, I.; Katsuumi, G. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging 2021, 1, 1117–1126. [Google Scholar] [CrossRef]
- Feng, Y.; Dang, X.; Zheng, P.; Liu, Y.; Liu, D.; Che, Z.; Yao, J.; Lin, Z.; Liao, Z.; Nie, X.; et al. Quercetin in Osteoporosis Treatment: A Comprehensive Review of Its Mechanisms and Therapeutic Potential. Curr. Osteoporos. Rep. 2024, 22, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Yi, R.; Liu, Y.; Zhang, X.; Sun, X.; Wang, N. Unraveling Quercetin’s Potential: A Comprehensive Review of Its Properties and Mechanisms of Action, in Diabetes and Obesity Complications. Phytother. Res. 2024, 38, 5641–5656. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, D.; Sharma, A.; Sak, K.; Tuli, H.S.; Buttar, H.S.; Bishayee, A. Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci. 2018, 194, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Hong, Y.; Gong, M.; Cai, S.; Yuan, Z.; Feng, S.; Chen, Q.; Liu, X.; Mei, Z. Fisetin exerts neuroprotective effects in vivo and in vitro by inhibiting ferroptosis and oxidative stress after traumatic brain injury. Front. Pharmacol. 2024, 15, 1480345. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Y.; Gao, Z.; Li, X.; Weng, M.; Shi, C.; Wang, C.; Sun, L. Fisetin inhibits the proliferation, migration and invasion of pancreatic cancer by targeting PI3K/AKT/mTOR signaling. Aging 2021, 13, 24753–24767. [Google Scholar] [CrossRef]
- Ji, X.M.; Dong, X.X.; Li, J.P.; Tai, G.J.; Qiu, S.; Wei, W.; Silumbwe, C.W.; Damdinjav, D.; Otieno, J.N.; Li, X.X.; et al. Fisetin Clears Senescent Cells Through the Pi3k-Akt-Bcl-2/Bcl-xl Pathway to Alleviate Diabetic Aortic Aging. Phytother. Res. 2025, 39, 2757–2775. [Google Scholar] [CrossRef]
- Zou, Y.; He, Y.; Tan, L.; Xu, X.; Qi, C.; Zhang, Y. Discovery of Cytotoxic Nitric Oxide-Releasing Piperlongumine Derivatives Targeting Wnt/β-Catenin in Colon Cancer Cells. J. Nat. Prod. 2024, 87, 1893–1902. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J.; Agathokleous, E.; Kapoor, R.; Dhawan, G.; Calabrese, V. Luteolin and hormesis. Mech. Ageing Dev. 2021, 199, 111559. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Nabavi, S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015, 119, 1–11. [Google Scholar] [CrossRef]
- Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018, 225, 342–358. [Google Scholar] [CrossRef]
- He, Y.; Liu, Y.; Zhang, M. The beneficial effects of curcumin on aging and age-related diseases: From oxidative stress to antioxidant mechanisms, brain health and apoptosis. Front. Aging Neurosci. 2025, 17, 1533963. [Google Scholar] [CrossRef]
- Zhang, M.; Fu, S.; Feng, J.; Hong, R.; Wei, G.; Zhao, H.; Zhao, M.; Xu, H.; Cui, J.; Huang, S.; et al. Dasatinib and CAR T-Cell Therapy in Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: A Nonrandomized Clinical Trial. JAMA Oncol. 2025, 11, 625. [Google Scholar] [CrossRef]
- Chang, J.; Wang, Y.; Shao, L.; Laberge, R.M.; Demaria, M.; Campisi, J.; Janakiraman, K.; Sharpless, N.E.; Ding, S.; Feng, W.; et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 2016, 22, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Ruvolo, V.R.; Wei, J.; Konopleva, M.; Reed, J.C.; Pellecchia, M.; Andreeff, M.; Ruvolo, P.P. Inhibition of Mcl-1 with the pan-Bcl-2 family inhibitor (-)BI97D6 overcomes ABT-737 resistance in acute myeloid leukemia. Blood 2015, 126, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yu, X.; Liu, X.; Zhou, T.; Nie, T.; Cheng, M.; Liu, H.; Dai, M.; Zhang, B. ABT-737 potentiates cisplatin-induced apoptosis in human osteosarcoma cells via the mitochondrial apoptotic pathway. Oncol. Rep. 2017, 38, 2301–2308. [Google Scholar] [CrossRef]
- Chin, A.F.; Han, J.; Clement, C.C.; Choi, Y.; Zhang, H.; Browne, M.; Jeon, O.H.; Elisseeff, J.H. Senolytic treatment reduces oxidative protein stress in an aging male murine model of post-traumatic osteoarthritis. Aging Cell 2023, 22, e13979. [Google Scholar] [CrossRef]
- Jeon, O.H.; Kim, C.; Laberge, R.M.; Demaria, M.; Rathod, S.; Vasserot, A.P.; Chung, J.W.; Kim, D.H.; Poon, Y.; David, N.; et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 2017, 23, 775–781. [Google Scholar] [CrossRef]
- He, Y.; Li, W.; Lv, D.; Zhang, X.; Zhang, X.; Ortiz, Y.T.; Budamagunta, V.; Campisi, J.; Zheng, G.; Zhou, D. Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity. Aging Cell 2020, 19, e13117. [Google Scholar] [CrossRef]
- Hioki, T.; Tokuda, H.; Nakashima, D.; Fujita, K.; Kawabata, T.; Sakai, G.; Kim, W.; Tachi, J.; Tanabe, K.; Matsushima-Nishiwaki, R.; et al. HSP90 inhibitors strengthen extracellular ATP-stimulated synthesis of interleukin-6 in osteoblasts: Amplification of p38 MAP kinase. Cell Biochem. Funct. 2021, 39, 88–97. [Google Scholar] [CrossRef] [PubMed]
- van der Kraan, A.G.; Chai, R.C.; Singh, P.P.; Lang, B.J.; Xu, J.; Gillespie, M.T.; Price, J.T.; Quinn, J.M. HSP90 inhibitors enhance differentiation and MITF (microphthalmia transcription factor) activity in osteoclast progenitors. Biochem. J. 2013, 451, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Gong, Y.; Jin, Y.; Gao, R.; He, Q.; Xu, Y.; Shen, T.; Mei, L.; Xu, C.; Hussain, M.; et al. HSP90β chaperoning SMURF1-mediated LATS proteasomal degradation in the regulation of bone formation. Cell. Signal. 2023, 102, 110523. [Google Scholar] [CrossRef]
- Bertram, K.L.; Narendran, N.; Tailor, P.; Jablonski, C.; Leonard, C.; Irvine, E.; Hess, R.; Masson, A.O.; Abubacker, S.; Rinker, K.; et al. 17-DMAG regulates p21 expression to induce chondrogenesis in vitro and in vivo. Dis. Model. Mech. 2018, 11, dmm033662. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Y.; Chen, H.; Lv, L.; Yao, J.; Zhang, M.; Xia, K.; Feng, X.; Li, Y.; Liang, X.; et al. FOXO4-DRI alleviates age-related testosterone secretion insufficiency by targeting senescent Leydig cells in aged mice. Aging 2020, 12, 1272–1284. [Google Scholar] [CrossRef]
- Huang, Y.; He, Y.; Makarcyzk, M.J.; Lin, H. Senolytic Peptide FOXO4-DRI Selectively Removes Senescent Cells From in vitro Expanded Human Chondrocytes. Front. Bioeng. Biotechnol. 2021, 9, 677576. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.H.; Huang, J.S.; Lin, Y.Y.; Yao, Z.K.; Lai, Y.-C.; Chen, W.-F.; Liu, H.-T.; Lin, S.-C.; Tsai, Y.-C.; Tsai, T.-C.; et al. Chondroprotective Effects of a Histone Deacetylase Inhibitor, Panobinostat, on Pain Behavior and Cartilage Degradation in Anterior Cruciate Ligament Transection-Induced Experimental Osteoarthritic Rats. Int. J. Mol. Sci. 2021, 22, 7290. [Google Scholar] [CrossRef]
- Deng, T.T.; Ding, W.Y.; Lu, X.X.; Zhang, Q.H.; Du, J.X.; Wang, L.J.; Yang, M.N.; Yin, Y.; Liu, F.J. Pharmacological and mechanistic aspects of quercetin in osteoporosis. Front. Pharmacol. 2024, 15, 1338951. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Huang, C.W.; Shi, C.; Peng, L.; Cheng, Y.T.; Hong, W.; Liao, J. Quercetin suppresses ovariectomy-induced osteoporosis in rat mandibles by regulating autophagy and the NLRP3 pathway. Exp. Biol. Med. 2023, 248, 2363–2380. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Shen, J.; Li, X.; Bao, Y.; Zhao, T.; Li, B.; Zhang, X.; Wang, J.; Bao, Y.; Gao, J.; et al. Regulatory Effects of Quercetin on Bone Homeostasis: Research Updates and Future Perspectives. Am. J. Chin. Med. 2023, 51, 2077–2094. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Lee, Y.H.; Kim, J.C.; Sharma, A.R.; Lee, S.S. Bone Regeneration Enhanced by Quercetin-Capped Selenium Nanoparticles via miR206/Connexin43, WNT, and BMP signaling pathways. Aging Dis. 2025, 17, 2. [Google Scholar] [CrossRef]
- Rayalam, S.; Della-Fera, M.A.; Baile, C.A. Synergism between resveratrol and other phytochemicals: Implications for obesity and osteoporosis. Mol. Nutr. Food Res. 2011, 55, 1177–1185. [Google Scholar] [CrossRef]
- Zhang, L.; Pitcher, L.E.; Prahalad, V.; Niedernhofer, L.J.; Robbins, P.D. Targeting cellular senescence with senotherapeutics: Senolytics and senomorphics. FEBS J. 2023, 290, 1362–1383. [Google Scholar] [CrossRef]
- Wang, Y.; Che, L.; Chen, X.; He, Z.; Song, D.; Yuan, Y.; Liu, C. Repurpose dasatinib and quercetin: Targeting senescent cells ameliorates postmenopausal osteoporosis and rejuvenates bone regeneration. Bioact. Mater. 2023, 25, 13–28. [Google Scholar] [CrossRef]
- Chandra, A.; Lagnado, A.B.; Farr, J.N.; Monroe, D.G.; Park, S.; Hachfeld, C.; Tchkonia, T.; Kirkland, J.L.; Khosla, S.; Passos, J.F.; et al. Targeted Reduction of Senescent Cell Burden Alleviates Focal Radiotherapy-Related Bone Loss. J. Bone Miner. Res. 2020, 35, 1119–1131. [Google Scholar] [CrossRef]
- Molagoda, I.M.N.; Kang, C.H.; Lee, M.H.; Choi, Y.H.; Lee, C.M.; Lee, S.; Kim, G.Y. Fisetin promotes osteoblast differentiation and osteogenesis through GSK-3β phosphorylation at Ser9 and consequent β-catenin activation, inhibiting osteoporosis. Biochem. Pharmacol. 2021, 192, 114676. [Google Scholar] [CrossRef]
- Liang, G.; Zhao, J. Network pharmacology identifies fisetin as a treatment for osteoporosis that activates the Wnt/β-catenin signaling pathway in BMSCs. J. Orthop. Surg. Res. 2023, 18, 312. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, J.L.; Lee, E.J.; Park, S.H.; Han, S.Y.; Kang, S.A.; Kang, Y.H. Fisetin antagonizes cell fusion, cytoskeletal organization and bone resorption in RANKL-differentiated murine macrophages. J. Nutr. Biochem. 2014, 25, 295–303. [Google Scholar] [CrossRef]
- Kim, S.C.; Kim, Y.H.; Son, S.W.; Moon, E.Y.; Pyo, S.; Um, S.H. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 2015, 467, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Zhang, L.; Xiu, C.; Luo, X.; Hu, S.; Ji, K.; Liu, Q.; Chen, J. Piperlongumine, a Piper longum-derived amide alkaloid, protects mice from ovariectomy-induced osteoporosis by inhibiting osteoclastogenesis via suppression of p38 and JNK signaling. Food Funct. 2024, 15, 2154–2169. [Google Scholar] [CrossRef] [PubMed]
- Piao, M.; Jin, Y.; Jin, S.; Min, J.; Lee, S.H.; Cho, Y.C.; Lee, K.Y. Piperlongumine inhibits the early stage of adipogenesis in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 2024, 735, 150458. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Fan, X.; Xu, Y.; Zhang, Y.; Li, G. Luteolin Inhibits Dexamethasone-Induced Osteoporosis by Autophagy Activation Through miR-125b-5p/SIRT3/AMPK/mTOR Axis, an In Vitro and In Vivo Study. Food Sci. Nutr. 2025, 13, e70071. [Google Scholar] [CrossRef]
- Chai, S.; Yang, Y.; Wei, L.; Cao, Y.; Ma, J.; Zheng, X.; Teng, J.; Qin, N. Luteolin rescues postmenopausal osteoporosis elicited by OVX through alleviating osteoblast pyroptosis via activating PI3K-AKT signaling. Phytomedicine 2024, 128, 155516. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Jung, J.W.; Ha, B.G.; Hong, J.M.; Park, E.K.; Kim, H.J.; Kim, S.Y. The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss. J. Nutr. Biochem. 2011, 22, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zheng, M.; Cai, H.; Chen, J.; Lin, Y.; Wang, F.; Wang, L.; Zhang, X.; Liu, J. The activity comparison of six dietary flavonoids identifies that luteolin inhibits 3T3-L1 adipocyte differentiation through reducing ROS generation. J. Nutr. Biochem. 2023, 112, 109208. [Google Scholar] [CrossRef]
- Wang, K. The potential therapeutic role of curcumin in osteoporosis treatment: Based on multiple signaling pathways. Front. Pharmacol. 2024, 15, 1446536. [Google Scholar] [CrossRef]
- Id Boufker, H.; Lagneaux, L.; Najar, M.; Piccart, M.; Ghanem, G.; Body, J.J.; Journé, F. The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mesenchymal stromal cells into osteoblasts. BMC Cancer 2010, 10, 298. [Google Scholar] [CrossRef] [PubMed]
- Grezella, C.; Fernandez-Rebollo, E.; Franzen, J.; Ventura Ferreira, M.S.; Beier, F.; Wagner, W. Effects of senolytic drugs on human mesenchymal stromal cells. Stem Cell Res. Ther. 2018, 9, 108. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Roberts, R.L.; Benson, R.D.; Pierce, J.L.; Yu, K.; Hamrick, M.W.; McGee-Lawrence, M.E. The Senolytic Drug Navitoclax (ABT-263) Causes Trabecular Bone Loss and Impaired Osteoprogenitor Function in Aged Mice. Front. Cell Dev. Biol. 2020, 8, 354. [Google Scholar] [CrossRef]
- Lin, Y.C.; Zheng, G.; Liu, H.T.; Wang, P.; Yuan, W.Q.; Zhang, Y.H.; Peng, X.S.; Li, G.J.; Wu, Y.F.; Shen, H.Y. USP7 promotes the osteoclast differentiation of CD14+ human peripheral blood monocytes in osteoporosis via HMGB1 deubiquitination. J. Orthop. Transl. 2023, 40, 80–91. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, Z.; Li, H.; Wang, D.; Wu, Z.; Bai, F.; Wang, Q.; Luo, W.; Zhang, G.; Xiong, Y.; et al. USP7 Inhibition Promotes Early Osseointegration in Senile Osteoporotic Mice. J. Dent. Res. 2025, 104, 86–96. [Google Scholar] [CrossRef]
- Steinert, S.; White, D.M.; Zou, Y.; Shay, J.W.; Wright, W.E. Telomere biology and cellular aging in nonhuman primate cells. Exp. Cell Res. 2002, 272, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.J.; Childs, B.G.; Durik, M.; Wijers, M.E.; Sieben, C.J.; Zhong, J.; Saltness, R.A.; Jeganathan, K.B.; Verzosa, G.C.; Pezeshki, A.; et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 2016, 530, 184–189. [Google Scholar] [CrossRef]
- Wang, L.; Wang, B.; Gasek, N.S.; Zhou, Y.; Cohn, R.L.; Martin, D.E.; Zuo, W.; Flynn, W.F.; Guo, C.; Jellison, E.R.; et al. Targeting p21(Cip1) highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metab. 2022, 34, 75–89.e78. [Google Scholar] [CrossRef]
- Alharbi, K.S.; Afzal, O.; Altamimi, A.S.A.; Almalki, W.H.; Kazmi, I.; Al-Abbasi, F.A.; Alzarea, S.I.; Makeen, H.A.; Albratty, M. A study of the molecular mechanism of quercetin and dasatinib combination as senolytic in alleviating age-related and kidney diseases. J. Food Biochem. 2022, 46, e14471. [Google Scholar] [CrossRef]
- Nieto, M.; Konigsberg, M.; Silva-Palacios, A. Quercetin and dasatinib, two powerful senolytics in age-related cardiovascular disease. Biogerontology 2024, 25, 71–82. [Google Scholar] [CrossRef]
- Garbarino, V.R.; Palavicini, J.P.; Melendez, J.; Barthelemy, N.R.; He, Y.; Kautz, T.F.; Lopez-Cruzan, M.; Mathews, J.J.; Xu, P.; Zhang, B.; et al. Evaluation of exploratory fluid biomarkers from a phase 1 senolytic trial in mild Alzheimer’s disease. Neurotherapeutics 2025, 22, e00591. [Google Scholar] [CrossRef]
- Godoy, M.C.X.; Monteiro, G.A.; Moraes, B.H.; Macedo, J.A.; Gonçalves, G.M.S.; Gambero, A. Addition of Polyphenols to Drugs: The Potential of Controlling “Inflammaging” and Fibrosis in Human Senescent Lung Fibroblasts In Vitro. Int. J. Mol. Sci. 2024, 25, 7163. [Google Scholar] [CrossRef] [PubMed]
- Wissler Gerdes, E.O.; Misra, A.; Netto, J.M.E.; Tchkonia, T.; Kirkland, J.L. Strategies for late phase preclinical and early clinical trials of senolytics. Mech. Ageing Dev. 2021, 200, 111591. [Google Scholar] [CrossRef] [PubMed]
- Farr, J.N.; Atkinson, E.J.; Achenbach, S.J.; Volkman, T.L.; Tweed, A.J.; Vos, S.J.; Ruan, M.; Sfeir, J. Effects of intermittent senolytic therapy on bone metabolism in postmenopausal women: A phase 2 randomized controlled trial. Nat. Med. 2024, 30, 2605–2612. [Google Scholar] [CrossRef]
- Pemmaraju, N.; Somervaille, T.C.P.; Palandri, F.; Harrison, C.; Komrokji, R.S.; Perkins, A.; Ayala Diaz, R.M.; Lavie, D.; Tomita, A.; Feng, Y.; et al. Addition of navitoclax to ruxolitinib for patients with myelofibrosis with progression or suboptimal response. Blood Neoplasia 2025, 2, 100056. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.C.; Farago, A.; Lai, W.V.; Zahurak, M.; Rudek, M.A.; Murray, J.; Carducci, M.A.; Uziel, T.; Takebe, N.; Gore, S.D.; et al. A phase 1 study of the combination of BH3-mimetic, navitoclax, and mTORC1/2 inhibitor, vistusertib, in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2025, 95, 37. [Google Scholar] [CrossRef]
- Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schäfer, B.; Hirsch-Ernst, K.I.; Lampen, A. Safety Aspects of the Use of Quercetin as a Dietary Supplement. Mol. Nutr. Food Res. 2018, 62, 1700447. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, J.; Dai, Y.; Liu, Y.; Li, F.; Gong, S.; Zhang, Y.; Kou, J. Ruscogenin ameliorates dasatinib-induced intestinal barrier dysfunction via ErbB4/YAP and ROCK/MLC pathways. J. Nat. Med. 2023, 77, 735–747. [Google Scholar] [CrossRef]
- Park, C.M.; Bruncko, M.; Adickes, J.; Bauch, J.; Ding, H.; Kunzer, A.; Marsh, K.C.; Nimmer, P.; Shoemaker, A.R.; Song, X.; et al. Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J. Med. Chem. 2008, 51, 6902–6915. [Google Scholar] [CrossRef]
- Aguilar, A.; Zhou, H.; Chen, J.; Liu, L.; Bai, L.; McEachern, D.; Yang, C.Y.; Meagher, J.; Stuckey, J.; Wang, S. A potent and highly efficacious Bcl-2/Bcl-xL inhibitor. J. Med. Chem. 2013, 56, 3048–3067. [Google Scholar] [CrossRef]
Category | Agent | References |
---|---|---|
Natural compounds | Quercetin | [78,79] |
Fisetin | [80,81,82,83] | |
Piperlongumine | [84] | |
Luteolin | [85,86,87] | |
Curcumin | [88] | |
Kinase inhibitors | Dasatinib | [89] |
Bcl-2 family inhibitors | Navitoclax (ABT-263) | [90] |
ABT-737 | [91,92] | |
MDM2/p53 interaction inhibitors | UBX0101 | [93,94] |
P5091 | [95] | |
Hsp90 inhibitors | Geldanamycin | [96] |
Tanespimycin | [97,98] | |
Alvespimycin | [99] | |
p53-binding inhibitors | FOXO4-DRI | [100,101] |
HDAC inhibitors EYA1 | Panobinostat | [102] |
Senolytic Compound | Targeted Pathology | ClinicalTrials.gov ID |
---|---|---|
Quercetin | Bone Health and Markers | NCT05371340 |
Quercetin and Dasatinib | Osteoporosis | NCT06018467 |
Fisetin | Osteoarthritis | NCT04815902 |
Luteolin | Osteoarthritis | NCT04638387 |
UBX0101 | Osteoarthritis | NCT04229225, NCT03513016, NCT04349956 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, E.; Zhang, J.; Chen, H.; Li, W. The Role of Senolytics in Osteoporosis. Biomolecules 2025, 15, 1176. https://doi.org/10.3390/biom15081176
Chen E, Zhang J, Chen H, Li W. The Role of Senolytics in Osteoporosis. Biomolecules. 2025; 15(8):1176. https://doi.org/10.3390/biom15081176
Chicago/Turabian StyleChen, Erman, Jingjing Zhang, Han Chen, and Weixu Li. 2025. "The Role of Senolytics in Osteoporosis" Biomolecules 15, no. 8: 1176. https://doi.org/10.3390/biom15081176
APA StyleChen, E., Zhang, J., Chen, H., & Li, W. (2025). The Role of Senolytics in Osteoporosis. Biomolecules, 15(8), 1176. https://doi.org/10.3390/biom15081176