Supercomplex Restructuring in Heart Mitochondria of COX7A1-Deficient Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Generation of Cytochrome c Oxidase Subunit 7a Isoform 1 (Heart-Type) Knockout Mice
2.2. Heart Tissue Homogenization and Mitochondria Isolation
2.3. Outer Mitochondrial Protein Digestion with Proteinase K
2.4. Mitochondrial Membrane Solubilization for Blue Native-PAGE
2.5. Mitochondrial Native Protein In-Gel Activity Assay (IGA)
2.6. Western Blot Analysis
2.7. Mass Spectrometry and Proteomic Analysis
2.8. Statistical Analyses
3. Results
3.1. COX7A1 KO Decreases COX Activity and Amount in Select Supercomplexes
3.2. Proteomic Profiling Shows Distinct Distribution of the COX7A1 and COX7A2 in WT and KO Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COX | cytochrome c oxidase |
COX7A1/COX7AH | cytochrome c oxidase subunit 7a, heart/skeletal muscle-type |
COX7A2/COX7AL | cytochrome c oxidase subunit 7a, liver-type (ubiquitous) |
SCAF1/COX7AR/COX7A2L | supercomplex associated factor 1 |
ETC | electron transport chain |
SCs | supercomplexes |
BN-PAGE | blue native polyacrylamide gel electrophoresis |
IGA | in-gel activity assay |
CI/CIII/CIV | complexes I, III, and IV of the ETC |
KO | knockout |
OCR | oxygen consumption rate |
ROS | reactive oxygen species |
SDS-PAGE | sodium dodecyl sulfate–polyacrylamide gel electrophoresis |
TCA | tricarboxylic acid cycle |
WT | wild-type |
References
- Pham, L.; Arroum, T.; Wan, J.; Pavelich, L.; Bell, J.; Morse, P.T.; Lee, I.; Grossman, L.I.; Sanderson, T.H.; Malek, M.H.; et al. Regulation of mitochondrial oxidative phosphorylation through tight control of cytochrome c oxidase in health and disease—Implications for ischemia/reperfusion injury, inflammatory diseases, diabetes, and cancer. Redox Biol. 2024, 78, 103426. [Google Scholar] [CrossRef]
- Seelan, R.S.; Grossman, L.I. Structure and organization of the heart isoform gene for bovine cytochrome c oxidase subunit VIIa. Biochemistry 1992, 31, 4696–4704. [Google Scholar] [CrossRef]
- Seelan, R.S.; Grossman, L.I. Cytochrome c oxidase subunit VIIa isoforms. Characterization and expression of bovine cDNAs. J. Biol. Chem. 1991, 266, 19752–19757. [Google Scholar] [CrossRef]
- Seelan, R.S.; Grossman, L.I. Structural organization and evolution of the liver isoform gene for bovine cytochrome c oxidase subunit VIIa. Genomics 1993, 18, 527–536. [Google Scholar] [CrossRef]
- Yu, M.; Jaradat, S.A.; Grossman, L.I. Genomic organization and promoter regulation of human cytochrome c oxidase subunit VII heart/muscle isoform (COX7AH). Biochim. Biophys. Acta Gene Struct. Expr. 2002, 1574, 345–353. [Google Scholar] [CrossRef]
- Schmidt, T.R.; Goodman, M.; Grossman, L.I. Molecular evolution of the COX7A gene family in primates. Mol. Biol. Evol. 1999, 16, 619–626. [Google Scholar] [CrossRef]
- Hüttemann, M.; Klewer, S.; Lee, I.; Pecinova, A.; Pecina, P.; Liu, J.; Lee, M.; Doan, J.W.; Larson, D.; Slack, E.; et al. Mice deleted for heart-type cytochrome c oxidase subunit 7a1 develop dilated cardiomyopathy. Mitochondrion 2012, 12, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Hüttemann, M.; Liu, J.; Grossman, L.I.; Malek, M.H. Deletion of heart-type cytochrome c oxidase subunit 7a1 impairs skeletal muscle angiogenesis and oxidative phosphorylation. J. Physiol. 2012, 590, 5231–5243. [Google Scholar] [CrossRef] [PubMed]
- Boczonadi, V.; Giunta, M.; Lane, M.; Tulinius, M.; Schara, U.; Horvath, R. Investigating the role of the physiological isoform switch of cytochrome c oxidase subunits in reversible mitochondrial disease. Int. J. Biochem. Cell Biol. 2015, 63, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Taanman, J.W.; Herzberg, N.H.; De Vries, H.; Bolhuis, P.A.; Van den Bogert, C. Steady-state transcript levels of cytochrome c oxidase genes during human myogenesis indicate subunit switching of subunit VIa and co-expression of subunit VIIa isoforms. Biochim. Biophys. Acta Mol. Basis Dis. 1992, 1139, 155–162. [Google Scholar] [CrossRef]
- Ye, X.; Xie, Y.; Shi, Y.; Wang, B.; Han, X.; Zhou, X.; Pan, K.; Wang, M.; Fang, H. Switching ubiquitous and muscle-specific isoforms of mitochondrial respiratory complex IV in skeletal muscle fine-tunes complex IV activity. FASEB J. 2023, 37, e22891. [Google Scholar] [CrossRef]
- Jha, P.; Wang, X.; Auwerx, J. Analysis of Mitochondrial Respiratory Chain Supercomplexes Using Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE). Curr. Protoc. Mouse Biol. 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Arroum, T.; Pham, L.; Raisanen, T.E.; Morse, P.T.; Wan, J.; Bell, J.; Lax, R.; Saada, A.; Hüttemann, M.; Weksler-Zangen, S. High Sucrose Diet-Induced Subunit I Tyrosine 304 Phosphorylation of Cytochrome c Oxidase Leads to Liver Mitochondrial Respiratory Dysfunction in the Cohen Diabetic Rat Model. Antioxidants 2024, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Poyatos, C.; Arora, P.; Calvo, E.; Marques, I.J.; Kirschke, N.; Galardi-Castilla, M.; Lembke, C.; Meer, M.; Fernandez-Montes, P.; Ernst, A.; et al. Cox7a1 controls skeletal muscle physiology and heart regeneration through complex IV dimerization. Dev. Cell 2024, 59, 1824–1841e10. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.; Kadenbach, B. The intramitochondrial ATP/ADP-ratio controls cytochrome c oxidase activity allosterically. FEBS Lett. 1999, 443, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Kadenbach, B.; Hüttemann, M. The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion 2015, 24, 64–76. [Google Scholar] [CrossRef]
- Helling, S.; Vogt, S.; Rhiel, A.; Ramzan, R.; Wen, L.; Marcus, K.; Kadenbach, B. Phosphorylation and kinetics of mammalian cytochrome c oxidase. Mol. Cell. Proteom. 2008, 7, 1714–1724. [Google Scholar] [CrossRef]
- Tropeano, C.V.; Aleo, S.J.; Zanna, C.; Roberti, M.; Scandiffio, L.; Loguercio Polosa, P.; Fiori, J.; Porru, E.; Roda, A.; Carelli, V.; et al. Fine-tuning of the respiratory complexes stability and supercomplexes assembly in cells defective of complex III. Biochim. Biophys. Acta Bioenerg. 2020, 1861, 148133. [Google Scholar] [CrossRef]
- Liang, C.; Padavannil, A.; Zhang, S.; Beh, S.; Robinson, D.R.L.; Meisterknecht, J.; Cabrera-Orefice, A.; Koves, T.R.; Watanabe, C.; Watanabe, M.; et al. Formation of I(2)+III(2) supercomplex rescues respiratory chain defects. Cell Metab 2025, 37, 441–459.e11. [Google Scholar] [CrossRef]
- Ramzan, R.; Rhiel, A.; Weber, P.; Kadenbach, B.; Vogt, S. Reversible dimerization of cytochrome c oxidase regulates mitochondrial respiration. Mitochondrion 2019, 49, 149–155. [Google Scholar] [CrossRef]
- Lee, I.; Salomon, A.R.; Ficarro, S.; Mathes, I.; Lottspeich, F.; Grossman, L.I.; Hüttemann, M. cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J. Biol. Chem. 2005, 280, 6094–6100. [Google Scholar] [CrossRef]
- Shinzawa-Itoh, K.; Muramoto, K. Biochemical and crystallographic studies of monomeric and dimeric bovine cytochrome c oxidase. Biophys. Physicobiol. 2021, 18, 186–195. [Google Scholar] [CrossRef]
- Mende, P.; Huther, F.J.; Kadenbach, B. Specific and reversible activation and inactivation of the mitochondrial phosphate carrier by cardiolipin and nonionic detergents, respectively. FEBS Lett. 1983, 158, 331–334. [Google Scholar] [CrossRef]
- Cogliati, S.; Calvo, E.; Loureiro, M.; Guaras, A.M.; Nieto-Arellano, R.; Garcia-Poyatos, C.; Ezkurdia, I.; Mercader, N.; Vazquez, J.; Enriquez, J.A. Mechanism of super-assembly of respiratory complexes III and IV. Nature 2016, 539, 579–582. [Google Scholar] [CrossRef]
- Vercellino, I.; Sazanov, L.A. Structure and assembly of the mammalian mitochondrial supercomplex CIII(2)CIV. Nature 2021, 598, 364–367. [Google Scholar] [CrossRef]
- Signes, A.; Fernandez-Vizarra, E. Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem. 2018, 62, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Calvo, E.; Cogliati, S.; Hernansanz-Agustin, P.; Loureiro-Lopez, M.; Guaras, A.; Casuso, R.A.; Garcia-Marques, F.; Acin-Perez, R.; Marti-Mateos, Y.; Silla-Castro, J.C.; et al. Functional role of respiratory supercomplexes in mice: SCAF1 relevance and segmentation of the Q(pool). Sci. Adv. 2020, 6, eaba7509. [Google Scholar] [CrossRef] [PubMed]
- Vercellino, I.; Sazanov, L.A. SCAF1 drives the compositional diversity of mammalian respirasomes. Nat. Struct. Mol. Biol. 2024, 31, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Lobo-Jarne, T.; Nyvltova, E.; Perez-Perez, R.; Timon-Gomez, A.; Molinie, T.; Choi, A.; Mourier, A.; Fontanesi, F.; Ugalde, C.; Barrientos, A. Human COX7A2L Regulates Complex III Biogenesis and Promotes Supercomplex Organization Remodeling without Affecting Mitochondrial Bioenergetics. Cell Rep. 2018, 25, 1786–1799.e4. [Google Scholar] [CrossRef]
- Fernandez-Vizarra, E.; Lopez-Calcerrada, S.; Sierra-Magro, A.; Perez-Perez, R.; Formosa, L.E.; Hock, D.H.; Illescas, M.; Penas, A.; Brischigliaro, M.; Ding, S.; et al. Two independent respiratory chains adapt OXPHOS performance to glycolytic switch. Cell Metab. 2022, 34, 1792–1808.e6. [Google Scholar] [CrossRef]
- Cao, Y.; Vergnes, L.; Wang, Y.C.; Pan, C.; Chella Krishnan, K.; Moore, T.M.; Rosa-Garrido, M.; Kimball, T.H.; Zhou, Z.; Charugundla, S.; et al. Sex differences in heart mitochondria regulate diastolic dysfunction. Nat. Commun. 2022, 13, 3850. [Google Scholar] [CrossRef] [PubMed]
- Fliegner, D.; Ellieva, A.; Angelov, A.; Petrov, G.; Regitz-Zagrosek, V. Sex differences and estrogen effects in cardiac mitochondria in human aortic stenosis and in the mouse heart. Front. Endocrinol. 2023, 14, 1181044. [Google Scholar] [CrossRef] [PubMed]
Antibody | Dilution | µg/mL Amount | Company | Product ID |
---|---|---|---|---|
MT-CO1 (COX1) | 1:1000 | 1 | Thermofisher | PA5-68016 |
UQCRC1 | 1:2000 | 0.8 | Proteintech | 14742-1-AP |
NDUFS3 | 1:1000 | 1 | Abcam | 17D95 |
COX7A2L (SCAF1) | 1:1000 | 0.350 | Proteintech | 11416-1-AP |
Anti-Rabbit IgG HRP-linked | 1:5000 | 0.077 | Cell Signaling Technology | 7074S |
Anti-Mouse IgG HRP-linked | 1:8000 | 0.184 | Cell Signaling Technology | 7076S |
Anti-Rabbit IgG StarBright Blue 700 | 1:2500 | - | BioRad | 12004162 |
Anti-Mouse IgG StarBright Blue 520 | 1:5000 | - | BioRad | 12005867 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavelich, L.; Pham, L.; Stemmer, P.; Lee, I.; Grossman, L.I.; Hüttemann, M.; Arroum, T. Supercomplex Restructuring in Heart Mitochondria of COX7A1-Deficient Mice. Biomolecules 2025, 15, 1209. https://doi.org/10.3390/biom15091209
Pavelich L, Pham L, Stemmer P, Lee I, Grossman LI, Hüttemann M, Arroum T. Supercomplex Restructuring in Heart Mitochondria of COX7A1-Deficient Mice. Biomolecules. 2025; 15(9):1209. https://doi.org/10.3390/biom15091209
Chicago/Turabian StylePavelich, Lauren, Lucynda Pham, Paul Stemmer, Icksoo Lee, Lawrence I. Grossman, Maik Hüttemann, and Tasnim Arroum. 2025. "Supercomplex Restructuring in Heart Mitochondria of COX7A1-Deficient Mice" Biomolecules 15, no. 9: 1209. https://doi.org/10.3390/biom15091209
APA StylePavelich, L., Pham, L., Stemmer, P., Lee, I., Grossman, L. I., Hüttemann, M., & Arroum, T. (2025). Supercomplex Restructuring in Heart Mitochondria of COX7A1-Deficient Mice. Biomolecules, 15(9), 1209. https://doi.org/10.3390/biom15091209