Behavioral and Brain Gene and Protein Changes in Female Mice Consuming Ethanol During Pregnancy and Lactation
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Perinatal Alcohol Exposure Procedure
2.3. BEC
2.4. Maternal Care Evaluation
2.5. Anxiety and Depressive-Like Behavior Evaluation
2.5.1. NSFT
2.5.2. TST
2.6. Evaluation of Short- and Long-Term Memory
SDIA
2.7. Gene Expression Analyses by qRT-PCR
2.8. Confocal Immunohistochemistry
Image Analysis
2.9. Statistical Analyses
3. Results
3.1. Blood Ethanol Concentrations (BEC)
3.2. Behavioral Evaluations
3.2.1. Anxiety and Depressive-like Behavior Evaluation
Novelty-Suppressed Feeding Test (NSFT)
Tail Suspension Test (TST)
3.2.2. Evaluation of Short- and Long-Term Memory
Step-Down Inhibitory Avoidance (SDIA)
3.3. Gene Expression Analyses by qRT-PCR
3.3.1. Stress-Related Targets
3.3.2. Reward Circuitry Targets
3.3.3. Brain-Derived Neurotrophic Factor (Bdnf)
3.4. Immunohistochemistry Analysis
3.4.1. Quantification of Astrocytes
S100 Calcium-Binding Protein β-Positive Cells (S100β+) in the Insular Cortex and Amy
S100β+/Anti-Glial Fibrillary Acidic Protein-Positive (GFAP+) Cells in the Cingulate Cortex and HIPP
GFAP+ Cells’ Relative Area in the HIPP
3.4.2. Microglial Cell Reaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Amy | Amygdala |
AUD | Alcohol use disorders |
Bdnf | Brain-derived neurotrophic factor |
BEC | Blood ethanol concentrations |
Crf | Corticotropin-releasing factor |
FASD | Fetal alcohol spectrum disorder |
GD | Gestational day |
GFAP | Anti-glial fibrillary acidic protein |
HIPP | Hippocampus |
Iba-1 | Anti-ionized calcium-binding adapter molecule 1 |
NAcc | Nucleus accumbens |
Nr3c1 | Glucocorticoid receptor |
NSFT | Novelty-suppressed feeding test |
Oprm1 | Opioid receptor mu1 |
PAE | Perinatal alcohol exposure |
PND | Postnatal day |
PVN | Paraventricular nucleus |
S100β | S100 calcium-binding protein β |
SDIA | Step-down inhibitory avoidance |
Th | Tyrosine hydroxylase |
TST | Tail suspension test |
VTA | Ventral tegmental area |
References
- Broccia, M.; Munch, A.; Hansen, B.M.; Sorensen, K.K.; Larsen, T.; Strandberg-Larsen, K.; Gerds, T.A.; Torp-Pedersen, C.; Kesmodel, U.S. Heavy prenatal alcohol exposure and overall morbidities: A Danish nationwide cohort study from 1996 to 2018. Lancet Public Health 2023, 8, e36–e46. [Google Scholar] [CrossRef] [PubMed]
- May, P.A.; de Vries, M.M.; Marais, A.S.; Kalberg, W.O.; Buckley, D.; Hasken, J.M.; Abdul-Rahman, O.; Robinson, L.K.; Manning, M.A.; Seedat, S.; et al. The prevalence of fetal alcohol spectrum disorders in rural communities in South Africa: A third regional sample of child characteristics and maternal risk factors. Alcohol Clin. Exp. Res. 2022, 46, 1819–1836. [Google Scholar] [CrossRef]
- May, P.A.; Chambers, C.D.; Kalberg, W.O.; Zellner, J.; Feldman, H.; Buckley, D.; Kopald, D.; Hasken, J.M.; Xu, R.; Honerkamp-Smith, G.; et al. Prevalence of Fetal Alcohol Spectrum Disorders in 4 US Communities. JAMA 2018, 319, 474–482. [Google Scholar] [CrossRef]
- Roberts, S.C.M.; Schulte, A.; Zaugg, C.; Leslie, D.L.; Corr, T.E.; Liu, G. Association of Pregnancy-Specific Alcohol Policies with Infant Morbidities and Maltreatment. JAMA Netw. Open 2023, 6, e2327138. [Google Scholar] [CrossRef]
- Lange, S.; Probst, C.; Gmel, G.; Rehm, J.; Burd, L.; Popova, S. Global Prevalence of Fetal Alcohol Spectrum Disorder Among Children and Youth: A Systematic Review and Meta-analysis. JAMA Pediatr. 2017, 171, 948–956. [Google Scholar] [CrossRef]
- Popova, S.; Dozet, D.; Akhand Laboni, S.; Brower, K.; Temple, V. Why do women consume alcohol during pregnancy or while breastfeeding? Drug Alcohol Rev. 2022, 41, 759–777. [Google Scholar] [CrossRef]
- The Centre for Addiction and Mental Health (CAMH). Alcohol Use: Managing Alcohol Use in Pregnancy. Available online: https://www.camh.ca/en/professionals/treating-conditions-and-disorders/alcohol-use/alcohol-use---treatment/treatment---managing-alcohol-use-in-pregnancy (accessed on 15 July 2025).
- Nonacs, R.M. Alcohol Use in Pregnancy and Lactation. In Protocols for High-Risk Pegnancies: An Evidence-Based Approach, 7th ed.; Queenan, J.T., Spong, C.Y., Lockwood, C.J., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- White, A.M. What happened? Alcohol, memory blackouts, and the brain. Alcohol Res. Health 2003, 27, 186–196. [Google Scholar]
- Magrys, S.A.; Olmstead, M.C. Alcohol intoxication alters cognitive skills mediated by frontal and temporal brain regions. Brain Cogn. 2014, 85, 271–276. [Google Scholar] [CrossRef]
- Zorumski, C.F.; Mennerick, S.; Izumi, Y. Acute and chronic effects of ethanol on learning-related synaptic plasticity. Alcohol 2014, 48, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Epstein, E.E.; Fischer-Elber, K.; Al-Otaiba, Z. Women, aging, and alcohol use disorders. J. Women Aging 2007, 19, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Mumenthaler, M.S.; Taylor, J.L.; O’Hara, R.; Yesavage, J.A. Gender differences in moderate drinking effects. Alcohol Res. Health 1999, 23, 55–64. [Google Scholar] [PubMed]
- Frezza, M.; di Padova, C.; Pozzato, G.; Terpin, M.; Baraona, E.; Lieber, C.S. High blood alcohol levels in women. The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N. Engl. J. Med. 1990, 322, 95–99. [Google Scholar] [CrossRef]
- Dannenhoffer, C.A.; Robertson, M.M.; Macht, V.A.; Mooney, S.M.; Boettiger, C.A.; Robinson, D.L. Chronic alcohol exposure during critical developmental periods differentially impacts persistence of deficits in cognitive flexibility and related circuitry. Int. Rev. Neurobiol. 2021, 160, 117–173. [Google Scholar] [CrossRef]
- Sircar, R.; Basak, A.K.; Sircar, D. Repeated ethanol exposure affects the acquisition of spatial memory in adolescent female rats. Behav. Brain Res. 2009, 202, 225–231. [Google Scholar] [CrossRef]
- Teixeira, F.B.; Santana, L.N.; Bezerra, F.R.; De Carvalho, S.; Fontes-Junior, E.A.; Prediger, R.D.; Crespo-Lopez, M.E.; Maia, C.S.; Lima, R.R. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress. PLoS ONE 2014, 9, e101074. [Google Scholar] [CrossRef]
- Charlton, A.J.; May, C.; Luikinga, S.J.; Burrows, E.L.; Hyun Kim, J.; Lawrence, A.J.; Perry, C.J. Chronic voluntary alcohol consumption causes persistent cognitive deficits and cortical cell loss in a rodent model. Sci. Rep. 2019, 9, 18651. [Google Scholar] [CrossRef]
- Garcia-Moreno, L.M.; Cimadevilla, J.M. Acute and chronic ethanol intake: Effects on spatial and non-spatial memory in rats. Alcohol 2012, 46, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Gasparyan, A.; Navarro, D.; Navarrete, F.; Austrich-Olivares, A.; Scoma, E.R.; Hambardikar, V.D.; Acosta, G.B.; Solesio, M.E.; Manzanares, J. Cannabidiol repairs behavioral and brain disturbances in a model of fetal alcohol spectrum disorder. Pharmacol. Res. 2023, 188, 106655. [Google Scholar] [CrossRef]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 2010, 1, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- Hess, S.E.; Rohr, S.; Dufour, B.D.; Gaskill, B.N.; Pajor, E.A.; Garner, J.P. Home improvement: C57BL/6J mice given more naturalistic nesting materials build better nests. J. Am. Assoc. Lab. Anim. Sci. 2008, 47, 25–31. [Google Scholar]
- Fujisaki, M.; Nakamura, A.; Muroi, Y.; Ishii, T. Oxytocin in the dorsal raphe nucleus antagonizes the inhibition of maternal care induced by food deprivation. Horm. Behav. 2020, 124, 104773. [Google Scholar] [CrossRef]
- Bodnoff, S.R.; Suranyi-Cadotte, B.; Aitken, D.H.; Quirion, R.; Meaney, M.J. The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology 1988, 95, 298–302. [Google Scholar] [CrossRef]
- Vaugeois, J.M.; Passera, G.; Zuccaro, F.; Costentin, J. Individual differences in response to imipramine in the mouse tail suspension test. Psychopharmacology 1997, 134, 387–391. [Google Scholar] [CrossRef]
- Izquierdo, I.; Izquierdo, L.A.; Barros, D.M.; Mello e Souza, T.; de Souza, M.M.; Quevedo, J.; Rodrigues, C.; Sant’Anna, M.K.; Madruga, M.; Medina, J.H. Differential involvement of cortical receptor mechanisms in working, short-term and long-term memory. Behav. Pharmacol. 1998, 9, 421–427. [Google Scholar] [CrossRef]
- Paxinos, G.; Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates, 4th ed.; Academic Press: New York, NY, USA, 2004. [Google Scholar]
- Palkovits, M. Punch sampling biopsy technique. Methods Enzymol. 1983, 103, 368–376. [Google Scholar] [CrossRef]
- Navarrete, F.; Perez-Ortiz, J.M.; Manzanares, J. Pregabalin- and topiramate-mediated regulation of cognitive and motor impulsivity in DBA/2 mice. Br. J. Pharmacol. 2012, 167, 183–195. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Green, T.R.F.; Rowe, R.K. Quantifying microglial morphology: An insight into function. Clin. Exp. Immunol. 2024, 216, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Itriago, A.; Radford, R.A.W.; Aramideh, J.A.; Maurel, C.; Scherer, N.M.; Don, E.K.; Lee, A.; Chung, R.S.; Graeber, M.B.; Morsch, M. Microglia morphophysiological diversity and its implications for the CNS. Front. Immunol. 2022, 13, 997786. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Baos, A.; Puig-Reyne, X.; Garcia-Algar, O.; Valverde, O. Cannabidiol attenuates cognitive deficits and neuroinflammation induced by early alcohol exposure in a mice model. Biomed. Pharmacother. 2021, 141, 111813. [Google Scholar] [CrossRef]
- Brocardo, P.S.; Boehme, F.; Patten, A.; Cox, A.; Gil-Mohapel, J.; Christie, B.R. Anxiety- and depression-like behaviors are accompanied by an increase in oxidative stress in a rat model of fetal alcohol spectrum disorders: Protective effects of voluntary physical exercise. Neuropharmacology 2012, 62, 1607–1618. [Google Scholar] [CrossRef]
- Banuelos, C.; Gilbert, R.J.; Montgomery, K.S.; Fincher, A.S.; Wang, H.; Frye, G.D.; Setlow, B.; Bizon, J.L. Altered spatial learning and delay discounting in a rat model of human third trimester binge ethanol exposure. Behav. Pharmacol. 2012, 23, 54–65. [Google Scholar] [CrossRef]
- Hunt, P.S.; Barnet, R.C. An animal model of fetal alcohol spectrum disorder: Trace conditioning as a window to inform memory deficits and intervention tactics. Physiol. Behav. 2015, 148, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Huebner, S.M.; Tran, T.D.; Rufer, E.S.; Crump, P.M.; Smith, S.M. Maternal iron deficiency worsens the associative learning deficits and hippocampal and cerebellar losses in a rat model of fetal alcohol spectrum disorders. Alcohol. Clin. Exp. Res. 2015, 39, 2097–2107. [Google Scholar] [CrossRef]
- Holman, P.J.; Raineki, C.; Chao, A.; Grewal, R.; Haghighat, S.; Fung, C.; Morgan, E.; Ellis, L.; Yu, W.; Weinberg, J. Altered social recognition memory and hypothalamic neuropeptide expression in adolescent male and female rats following prenatal alcohol exposure and/or early-life adversity. Psychoneuroendocrinology 2021, 126, 105146. [Google Scholar] [CrossRef]
- Endres, M.; Toso, L.; Roberson, R.; Park, J.; Abebe, D.; Poggi, S.; Spong, C.Y. Prevention of alcohol-induced developmental delays and learning abnormalities in a model of fetal alcohol syndrome. Am. J. Obs. Obstet. Gynecol. 2005, 193, 1028–1034. [Google Scholar] [CrossRef]
- Cantacorps, L.; Gonzalez-Pardo, H.; Arias, J.L.; Valverde, O.; Conejo, N.M. Altered brain functional connectivity and behaviour in a mouse model of maternal alcohol binge-drinking. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 84, 237–249. [Google Scholar] [CrossRef]
- Ieraci, A.; Herrera, D.G. Early Postnatal Ethanol Exposure in Mice Induces Sex-Dependent Memory Impairment and Reduction of Hippocampal NMDA-R2B Expression in Adulthood. Neuroscience 2020, 427, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, R.C.; Otero, N.K.; Kelly, S.J. Selective effects of perinatal ethanol exposure in medial prefrontal cortex and nucleus accumbens. Neurotoxicol. Teratol. 2012, 34, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Workman, J.L.; Raineki, C.; Weinberg, J.; Galea, L.A.M. Alcohol and pregnancy: Effects on maternal care, HPA axis function, and hippocampal neurogenesis in adult females. Psychoneuroendocrinology 2015, 57, 37–50. [Google Scholar] [CrossRef]
- Allan, A.M.; Chynoweth, J.; Tyler, L.A.; Caldwell, K.K. A mouse model of prenatal ethanol exposure using a voluntary drinking paradigm. Alcohol Clin. Exp. Res. 2003, 27, 2009–2016. [Google Scholar] [CrossRef]
- Brady, M.L.; Allan, A.M.; Caldwell, K.K. A limited access mouse model of prenatal alcohol exposure that produces long-lasting deficits in hippocampal-dependent learning and memory. Alcohol Clin. Exp. Res. 2012, 36, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Kleiber, M.L.; Wright, E.; Singh, S.M. Maternal voluntary drinking in C57BL/6J mice: Advancing a model for fetal alcohol spectrum disorders. Behav. Brain Res. 2011, 223, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Gosdin, L.K.; Deputy, N.P.; Kim, S.Y.; Dang, E.P.; Denny, C.H. Alcohol Consumption and Binge Drinking During Pregnancy Among Adults Aged 18–49 Years—United States, 2018–2020. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 10–13. [Google Scholar] [CrossRef]
- Chen, J.S.; Driscoll, C.D.; Riley, E.P. Ontogeny of suckling behavior in rats prenatally exposed to alcohol. Teratology 1982, 26, 145–153. [Google Scholar] [CrossRef]
- Kehoe, P.; Shoemaker, W. Opioid-dependent behaviors in infant rats: Effects of prenatal exposure to ethanol. Pharmacol. Biochem. Behav. 1991, 39, 389–394. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, M.J.; Paley, B. The relationship of prenatal alcohol exposure and the postnatal environment to child depressive symptoms. J. Pediatr. Psychol. 2006, 31, 50–64. [Google Scholar] [CrossRef]
- Pearson, R.M.; Heron, J.; Melotti, R.; Joinson, C.; Evans, J. The impact of alcohol use during pregnancy on maternal responses after birth. Arch. Womens Ment. Health 2012, 15, 433–443. [Google Scholar] [CrossRef]
- Mahieu, H.F.; Schutte, H.K. New surgical techniques for voice improvement. Arch. Otorhinolaryngol. 1989, 246, 397–402. [Google Scholar] [CrossRef]
- Allolio, B.; Hoffmann, J.; Linton, E.A.; Winkelmann, W.; Kusche, M.; Schulte, H.M. Diurnal salivary cortisol patterns during pregnancy and after delivery: Relationship to plasma corticotrophin-releasing-hormone. Clin. Endocrinol. 1990, 33, 279–289. [Google Scholar] [CrossRef]
- Neumann, I.D.; Johnstone, H.A.; Hatzinger, M.; Liebsch, G.; Shipston, M.; Russell, J.A.; Landgraf, R.; Douglas, A.J. Attenuated neuroendocrine responses to emotional and physical stressors in pregnant rats involve adenohypophysial changes. J. Physiol. 2004, 508, 289–300. [Google Scholar] [CrossRef]
- Silva-Pena, D.; Garcia-Marchena, N.; Alen, F.; Araos, P.; Rivera, P.; Vargas, A.; Garcia-Fernandez, M.I.; Martin-Velasco, A.I.; Villanua, M.A.; Castilla-Ortega, E.; et al. Alcohol-induced cognitive deficits are associated with decreased circulating levels of the neurotrophin BDNF in humans and rats. Addict. Biol. 2019, 24, 1019–1033. [Google Scholar] [CrossRef]
- Yin, J.B.; Wu, H.H.; Dong, Y.L.; Zhang, T.; Wang, J.; Zhang, Y.; Wei, Y.Y.; Lu, Y.C.; Wu, S.X.; Wang, W.; et al. Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray. Front. Neural Circuits 2014, 8, 137. [Google Scholar] [CrossRef]
- Chen, Z.; Yuan, Z.; Yang, S.; Zhu, Y.; Xue, M.; Zhang, J.; Leng, L. Brain Energy Metabolism: Astrocytes in Neurodegenerative Diseases. CNS Neurosci. Ther. 2023, 29, 24–36. [Google Scholar] [CrossRef]
- Wright-Jin, E.C.; Gutmann, D.H. Microglia as Dynamic Cellular Mediators of Brain Function. Trends Mol. Med. 2019, 25, 967–979. [Google Scholar] [CrossRef]
- Portis, S.M.; Haass-Koffler, C.L. New Microglial Mechanisms Revealed in Alcohol Use Disorder: How Does That Translate? Biol. Psychiatry 2020, 88, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, D.; Pan, F.; Ho, C.S.H.; Ho, R.C.M. Ethanol Exposure Induces Microglia Activation and Neuroinflammation through TLR4 Activation and SENP6 Modulation in the Adolescent Rat Hippocampus. Neural Plast. 2019, 2019, 1648736. [Google Scholar] [CrossRef]
- Janigro, D.; Mondello, S.; Posti, J.P.; Unden, J. GFAP and S100B: What You Always Wanted to Know and Never Dared to Ask. Front. Neurol. 2022, 13, 835597. [Google Scholar] [CrossRef] [PubMed]
- Vizuete, A.F.K.; Mussulini, B.H.; Zenki, K.C.; Baggio, S.; Pasqualotto, A.; Rosemberg, D.B.; Bogo, M.R.; de Oliveira, D.L.; Rico, E.P. Prolonged ethanol exposure alters glutamate uptake leading to astrogliosis and neuroinflammation in adult zebrafish brain. Neurotoxicology 2022, 88, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Gerlai, R.; Wojtowicz, J.M.; Marks, A.; Roder, J. Overexpression of a calcium-binding protein, S100 beta, in astrocytes alters synaptic plasticity and impairs spatial learning in transgenic mice. Learn. Mem. 1995, 2, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Melbourne, J.K.; Thompson, K.R.; Peng, H.; Nixon, K. Its complicated: The relationship between alcohol and microglia in the search for novel pharmacotherapeutic targets for alcohol use disorders. Prog. Mol. Biol. Transl. Sci. 2019, 167, 179–221. [Google Scholar] [CrossRef] [PubMed]
- Crews, F.T.; Zou, J.; Coleman, L.G., Jr. Extracellular microvesicles promote microglia-mediated pro-inflammatory responses to ethanol. J. Neurosci. Res. 2021, 99, 1940–1956. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Loeches, S.; Urena-Peralta, J.; Morillo-Bargues, M.J.; Gomez-Pinedo, U.; Guerri, C. Ethanol-Induced TLR4/NLRP3 Neuroinflammatory Response in Microglial Cells Promotes Leukocyte Infiltration Across the BBB. Neurochem. Res. 2016, 41, 193–209. [Google Scholar] [CrossRef] [PubMed]
- King, J.A.; Nephew, B.C.; Choudhury, A.; Poirier, G.L.; Lim, A.; Mandrekar, P. Chronic alcohol-induced liver injury correlates with memory deficits: Role for neuroinflammation. Alcohol 2020, 83, 75–81. [Google Scholar] [CrossRef]
- Huf, F.; Bandiera, S.; Muller, C.B.; Gea, L.; Carvalho, F.B.; Rahmeier, F.L.; Reiter, K.C.; Tortorelli, L.S.; Gomez, R.; da Cruz Fernandes, M. Comparative study on the effects of cigarette smoke exposure, ethanol consumption and association: Behavioral parameters, apoptosis, glial fibrillary acid protein and S100beta immunoreactivity in different regions of the rat hippocampus. Alcohol 2019, 77, 101–112. [Google Scholar] [CrossRef]
- Gessa, G.L.; Muntoni, F.; Collu, M.; Vargiu, L.; Mereu, G. Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res. 1985, 348, 201–203. [Google Scholar] [CrossRef]
- Brodie, M.S.; Shefner, S.A.; Dunwiddie, T.V. Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res. 1990, 508, 65–69. [Google Scholar] [CrossRef]
- Yan, Q.S.; Reith, M.E.; Jobe, P.C.; Dailey, J.W. Focal ethanol elevates extracellular dopamine and serotonin concentrations in the rat ventral tegmental area. Eur. J. Pharmacol. 1996, 301, 49–57. [Google Scholar] [CrossRef]
- Ortiz, J.; Fitzgerald, L.W.; Charlton, M.; Lane, S.; Trevisan, L.; Guitart, X.; Shoemaker, W.; Duman, R.S.; Nestler, E.J. Biochemical actions of chronic ethanol exposure in the mesolimbic dopamine system. Synapse 1995, 21, 289–298. [Google Scholar] [CrossRef]
- Van Eldik, L.J.; Wainwright, M.S. The Janus face of glial-derived S100B: Beneficial and detrimental functions in the brain. Restor. Neurol. Neurosci. 2003, 21, 97–108. [Google Scholar] [CrossRef]
- Ben Haim, L.; Carrillo-de Sauvage, M.A.; Ceyzeriat, K.; Escartin, C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front. Cell Neurosci. 2015, 9, 278. [Google Scholar] [CrossRef]
- Zakiniaeiz, Y.; Scheinost, D.; Seo, D.; Sinha, R.; Constable, R.T. Cingulate cortex functional connectivity predicts future relapse in alcohol dependent individuals. Neuroimage Clin. 2017, 13, 181–187. [Google Scholar] [CrossRef]
- Bauer, J.; Pedersen, A.; Scherbaum, N.; Bening, J.; Patschke, J.; Kugel, H.; Heindel, W.; Arolt, V.; Ohrmann, P. Craving in alcohol-dependent patients after detoxification is related to glutamatergic dysfunction in the nucleus accumbens and the anterior cingulate cortex. Neuropsychopharmacology 2013, 38, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Rowniak, M.; Bogus-Nowakowska, K.; Robak, A. The densities of calbindin and parvalbumin, but not calretinin neurons, are sexually dimorphic in the amygdala of the guinea pig. Brain Res. 2015, 1604, 84–97. [Google Scholar] [CrossRef]
- Price, M.E.; McCool, B.A. Structural, functional, and behavioral significance of sex and gonadal hormones in the basolateral amygdala: A review of preclinical literature. Alcohol 2022, 98, 25–41. [Google Scholar] [CrossRef]
- Baker, A.E.; Brautigam, V.M.; Watters, J.J. Estrogen modulates microglial inflammatory mediator production via interactions with estrogen receptor beta. Endocrinology 2004, 145, 5021–5032. [Google Scholar] [CrossRef]
- Barreto, G.; Veiga, S.; Azcoitia, I.; Garcia-Segura, L.M.; Garcia-Ovejero, D. Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: Role of its metabolites, oestradiol and dihydrotestosterone. Eur. J. Neurosci. 2007, 25, 3039–3046. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Tong, Y.; Chen, P.F.; Miao, S.; Zhou, R.Y. Neuroprotection of dihydrotestosterone via suppression of the toll-like receptor 4/nuclear factor-kappa B signaling pathway in high glucose-induced BV-2 microglia inflammatory responses. Neuroreport 2020, 31, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Fan, X.L.; Zhao, Y.; Luo, G.R.; Li, X.P.; Li, R.; Le, W.D. Estrogen provides neuroprotection against activated microglia-induced dopaminergic neuronal injury through both estrogen receptor-alpha and estrogen receptor-beta in microglia. J. Neurosci. Res. 2005, 81, 653–665. [Google Scholar] [CrossRef]
- Mineur, Y.S.; Garcia-Rivas, V.; Thomas, M.A.; Soares, A.R.; McKee, S.A.; Picciotto, M.R. Sex differences in stress-induced alcohol intake: A review of preclinical studies focused on amygdala and inflammatory pathways. Psychopharmacology 2022, 239, 2041–2061. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, D.; Navarrete, F.; Villalba, N.; Torregrosa, A.B.; Caltana, L.; Gasparyan, A.; Brusco, A.; Manzanares, J. Behavioral and Brain Gene and Protein Changes in Female Mice Consuming Ethanol During Pregnancy and Lactation. Biomolecules 2025, 15, 1239. https://doi.org/10.3390/biom15091239
Navarro D, Navarrete F, Villalba N, Torregrosa AB, Caltana L, Gasparyan A, Brusco A, Manzanares J. Behavioral and Brain Gene and Protein Changes in Female Mice Consuming Ethanol During Pregnancy and Lactation. Biomolecules. 2025; 15(9):1239. https://doi.org/10.3390/biom15091239
Chicago/Turabian StyleNavarro, Daniela, Francisco Navarrete, Nerina Villalba, Abraham B. Torregrosa, Laura Caltana, Ani Gasparyan, Alicia Brusco, and Jorge Manzanares. 2025. "Behavioral and Brain Gene and Protein Changes in Female Mice Consuming Ethanol During Pregnancy and Lactation" Biomolecules 15, no. 9: 1239. https://doi.org/10.3390/biom15091239
APA StyleNavarro, D., Navarrete, F., Villalba, N., Torregrosa, A. B., Caltana, L., Gasparyan, A., Brusco, A., & Manzanares, J. (2025). Behavioral and Brain Gene and Protein Changes in Female Mice Consuming Ethanol During Pregnancy and Lactation. Biomolecules, 15(9), 1239. https://doi.org/10.3390/biom15091239