Ginger and Testosterone
Abstract
:1. Introduction
2. Effect of Ginger on Testosterone
3. Mechanistic Studies
4. Conclusions and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Eliopoulos, C. Ginger: More than a great spice. Director 2007, 15, 46–47. [Google Scholar] [PubMed]
- Al Hroob, A.M.; Abukhalil, M.H.; Alghonmeen, R.D.; Mahmoud, A.M. Ginger alleviates hyperglycemia-induced oxidative stress, inflammation and apoptosis and protects rats against diabetic nephropathy. Biomed. Pharmacother. 2018, 106, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, H.; Song, Z.; Wang, X.; Sun, Z. Effects of ginger (Zingiber officinale Roscoe) on type 2 diabetes mellitus and components of the metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Evid. Based Complement. Altern. Med. 2018, 2018, 5692962. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Blando, J.; Silver, E.; Beltran, L.; Sessler, J.; DiGiovanni, J. 6-Shogaol from dried ginger inhibits growth of prostate cancer cells both in vitro and in vivo through inhibition of STAT3 and NF-κΒ signaling. Cancer Prev. Res. (Phila) 2014, 7, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Salafzoon, S.; Mahmoodzadeh Hosseini, H.; Halabian, R. Evaluation of the antioxidant impact of ginger-based kombucha on the murine breast cancer model. J. Complement. Integr. Med. 2017, 15. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Lee, Y.R.; Hsieh, M.C.; Omar, H.A.; Teng, Y.N.; Lin, C.Y.; Hung, J.H. Enhancing the anticancer activity of antrodia cinnamomea in hepatocellular carcinoma cells via cocultivation with ginger: The impact on cancer cell survival pathways. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hasegawa, J.; Wang, X.; Matsuda, A.; Tokuda, T.; Miura, N.; Watanabe, T. Protective effects of ginger against aspirin-induced gastric ulcers in rats. Yonago Acta Med. 2011, 54, 11–19. [Google Scholar] [PubMed]
- Liu, D.; Guo, M.; Hu, Y.; Liu, T.; Yan, J.; Luo, Y.; Yun, M.; Yang, M.; Zhang, J.; Guo, L. Effect of sanhuangwuji powder, anti-rheumatic drugs, and ginger-partitioned acupoint stimulation on the treatment of rheumatoid arthritis with peptic ulcer: A randomized controlled study. J. Tradit. Chin. Med. 2015, 35, 273–280. [Google Scholar] [PubMed]
- Cuya, T.; Baptista, L.; Celmar Costa Franca, T. A molecular dynamics study of components of the ginger (Zingiber officinale) extract inside human acetylcholinesterase: Implications for alzheimer disease. J. Biomol. Struct. Dyn. 2017, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, J.; Guo, H.; Sun, S.; Wang, S.; Zhang, Y.; Li, S.; Qiao, Y. [6]-gingerol: A novel at(1) antagonist for the treatment of cardiovascular disease. Planta Med. 2013, 79, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, R.; Henein, M.Y. Ginger (Zingiber officinale Roscoe): A hot remedy for cardiovascular disease? Int. J. Cardiol. 2009, 131, 408–409. [Google Scholar] [CrossRef] [PubMed]
- Kukula-Koch, W.; Koch, W.; Czernicka, L.; Glowniak, K.; Asakawa, Y.; Umeyama, A.; Marzec, Z.; Kuzuhara, T. MAO-A inhibitory potential of terpene constituents from ginger rhizomes-a bioactivity guided fractionation. Molecules 2018, 23, 301. [Google Scholar] [CrossRef] [PubMed]
- Masuda, Y.; Kikuzaki, H.; Hisamoto, M.; Nakatani, N. Antioxidant properties of gingerol related compounds from ginger. Biofactors 2004, 21, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Danwilai, K.; Konmun, J.; Sripanidkulchai, B.; Subongkot, S. Antioxidant activity of ginger extract as a daily supplement in cancer patients receiving adjuvant chemotherapy: A pilot study. Cancer Manag. Res. 2017, 9, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Bae, J.; Lee, D.S. Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytother. Res. 2008, 22, 1446–1449. [Google Scholar] [CrossRef] [PubMed]
- Jeena, K.; Liju, V.B.; Kuttan, R. Antioxidant, anti-inflammatory and antinociceptive activities of essential oil from ginger. Indian J. Physiol. Pharmacol. 2013, 57, 51–62. [Google Scholar] [PubMed]
- An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of different drying methods on chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem. 2016, 197 Pt B, 1292–1300. [Google Scholar] [CrossRef]
- He, L.; Qin, Z.; Li, M.; Chen, Z.; Zeng, C.; Yao, Z.; Yu, Y.; Dai, Y.; Yao, X. Metabolic profiles of ginger, a functional food, and its representative pungent compounds in rats by ultraperformance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. J. Agric. Food Chem. 2018, 66. [Google Scholar] [CrossRef] [PubMed]
- De Lima, R.M.T.; Dos Reis, A.C.; de Menezes, A.P.M.; Santos, J.V.O.; Filho, J.; Ferreira, J.R.O.; de Alencar, M.; da Mata, A.; Khan, I.N.; Islam, A.; et al. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytother. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Koch, W.; Kukula-Koch, W.; Marzec, Z.; Kasperek, E.; Wyszogrodzka-Koma, L.; Szwerc, W.; Asakawa, Y. Application of chromatographic and spectroscopic methods towards the quality assessment of ginger (Zingiber officinale) rhizomes from ecological plantations. Int. J. Mol. Sci. 2017, 18, 452. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.M.; Jones, T.H. Testosterone: A metabolic hormone in health and disease. J. Endocrinol. 2013, 217, R25–R45. [Google Scholar] [CrossRef] [PubMed]
- Mooradian, A.D.; Morley, J.E.; Korenman, S.G. Biological actions of androgens. Endocr. Rev. 1987, 8, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Bassil, N.; Alkaade, S.; Morley, J.E. The benefits and risks of testosterone replacement therapy: A review. Ther. Clin. Risk Manag. 2009, 5, 427–448. [Google Scholar] [PubMed]
- El-Migdadi, F.; Banihani, I.; Banihani, S.A. Clinico-hormonal correlation of oligospermic patients in the below sea level environment (Jordan Valley). Neuro Endocrinol. Lett. 2005, 26, 13–18. [Google Scholar] [PubMed]
- Karakas, M.; Schafer, S.; Appelbaum, S.; Ojeda, F.; Kuulasmaa, K.; Bruckmann, B.; Berisha, F.; Schulte-Steinberg, B.; Jousilahti, P.; Blankenberg, S.; et al. Testosterone levels and type 2 diabetes-no correlation with age, differential predictive value in men and women. Biomolecules 2018, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Tuck, S.P.; Francis, R.M. Testosterone, bone and osteoporosis. Front. Horm. Res. 2009, 37, 123–132. [Google Scholar] [PubMed]
- Yarrow, J.F.; Phillips, E.G.; Conover, C.F.; Bassett, T.E.; Chen, C.; Teurlings, T.; Vasconez, A.; Alerte, J.; Prock, H.; Jiron, J.M.; et al. Testosterone plus finasteride prevents bone loss without prostate growth in a rodent spinal cord injury model. J. Neurotrauma 2017, 34, 2972–2981. [Google Scholar] [CrossRef] [PubMed]
- Kamtchouing, P.; Mbongue Fandio, G.Y.; Dimo, T.; Jatsa, H.B. Evaluation of androgenic activity of Zingiber officinale and Pentadiplandra brazzeana in male rats. Asian J. Androl. 2002, 4, 299–301. [Google Scholar] [PubMed]
- Shalaby, M.A.; Hamowieh, A.R. Safety and efficacy of Zingiber officinale roots on fertility of male diabetic rats. Food Chem. Toxicol. 2010, 48, 2920–2924. [Google Scholar] [CrossRef] [PubMed]
- Akinyemi, A.J.; Adedara, I.A.; Thome, G.R.; Morsch, V.M.; Rovani, M.T.; Mujica, L.K.S.; Duarte, T.; Duarte, M.; Oboh, G.; Schetinger, M.R.C. Dietary supplementation of ginger and turmeric improves reproductive function in hypertensive male rats. Toxicol. Rep. 2015, 2, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Eid, B.G.; Mosli, H.; Hasan, A.; El-Bassossy, H.M. Ginger ingredients alleviate diabetic prostatic complications: Effect on oxidative stress and fibrosis. Evid. Based Complement. Altern. Med. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Ghlissi, Z.; Atheymen, R.; Boujbiha, M.A.; Sahnoun, Z.; Makni Ayedi, F.; Zeghal, K.; El Feki, A.; Hakim, A. Antioxidant and androgenic effects of dietary ginger on reproductive function of male diabetic rats. Int. J. Food Sci. Nutr. 2013, 64, 974–978. [Google Scholar] [CrossRef] [PubMed]
- Moselhy, W.A.; Helmy, N.A.; Abdel-Halim, B.R.; Nabil, T.M.; Abdel-Hamid, M.I. Role of ginger against the reproductive toxicity of aluminium chloride in albino male rats. Reprod. Domest. Anim. 2012, 47, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Riaz, F.; Khan, U.A.; Ayub, M.; Shaukat, S. Protective role of ginger on lead induced derangement in plasma testosterone and luteinizing hormone levels of male sprague dawley rats. J. Ayub Med. Coll. Abbottabad 2011, 23, 24–27. [Google Scholar] [PubMed]
- Khaki, A.; Farnam, A.; Badie, A.D.; Nikniaz, H. Treatment effects of onion (Allium cepa) and ginger (Zingiber officinale) on sexual behavior of rat after inducing an antiepileptic drug (lamotrigine). Balkan Med. J. 2012, 29, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, F.; Nikzad, H.; Taghizadeh, M.; Taherian, A.; Azami-Tameh, A.; Hosseini, S.M.; Moravveji, A. Protective effect of Zingiber officinale extract on rat testis after cyclophosphamide treatment. Andrologia 2014, 46, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Bordbar, H.; Esmaeilpour, T.; Dehghani, F.; Panjehshahin, M.R. Stereological study of the effect of ginger’s alcoholic extract on the testis in busulfan-induced infertility in rats. Iran J. Reprod. Med. 2013, 11, 467–472. [Google Scholar] [PubMed]
- Salihu, M.; Ajayi, B.O.; Adedara, I.A.; de Souza, D.; Rocha, J.B.T.; Farombi, E.O. 6-gingerol-rich fraction from Zingiber officinale ameliorates carbendazim-induced endocrine disruption and toxicity in testes and epididymis of rats. Andrologia 2017, 49. [Google Scholar] [CrossRef] [PubMed]
- Afkhami Fathabad, A.; Shekarforoush, S.; Hoseini, M.; Ebrahimi, Z. Attenuation of sulfite-induced testicular injury in rats by Zingiber officinale Roscoe. J. Diet. Suppl. 2018, 15, 398–409. [Google Scholar] [CrossRef] [PubMed]
- McHenry, J.; Carrier, N.; Hull, E.; Kabbaj, M. Sex differences in anxiety and depression: Role of testosterone. Front. Neuroendocrinol. 2014, 35, 42–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos Guillen, J.; Jones, G.H.; Saldana Gutierrez, C.; Hernandez-Flores, J.L.; Cruz Medina, J.A.; Valenzuela Soto, J.H.; Pacheco Hernandez, S.; Romero Gomez, S.; Morales Tlalpan, V. Critical minireview: The fate of tRNA(cys) during oxidative stress in Bacillus subtilis. Biomolecules 2017, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Banihani, S.A. Radish (raphanus sativus) and diabetes. Nutrients 2017, 9, 1014. [Google Scholar] [CrossRef] [PubMed]
- Maiese, K. New insights for oxidative stress and diabetes mellitus. Oxid. Med. Cell. Longev. 2015, 2015, 875961. [Google Scholar] [CrossRef] [PubMed]
- Thakur, P.; Kumar, A.; Kumar, A. Targeting oxidative stress through antioxidants in diabetes mellitus. J. Drug Target. 2018, 26, 766–776. [Google Scholar] [CrossRef] [PubMed]
- Denu, R.A.; Hematti, P. Effects of oxidative stress on mesenchymal stem cell biology. Oxid. Med. Cell. Longev. 2016, 2016, 2989076. [Google Scholar] [CrossRef] [PubMed]
- Khaki, A.; Khaki, A.A.; Hajhosseini, L.; Golzar, F.S.; Ainehchi, N. The anti-oxidant effects of ginger and cinnamon on spermatogenesis dys-function of diabetes rats. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Foglia, V.G.; Rosner, J.M.; Lema, B.E.; Cattaneo de Paralta, R. Sexual disturbances in the male diabetic rat. Horm. Metab. Res. 1969, 1, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Arikawe, A.P.; Oyerinde, A.; Olatunji, B., II; Obika, L.F. Streptozotocin diabetes and insulin resistance impairment of spermatogenesis in adult rat testis: Central vs. Local mechanism. Niger J. Physiol. Sci. 2012, 27, 171–179. [Google Scholar] [PubMed]
- Shidfar, F.; Rajab, A.; Rahideh, T.; Khandouzi, N.; Hosseini, S.; Shidfar, S. The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. J. Complement. Integr. Med. 2015, 12, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Samad, M.B.; Mohsin, M.; Razu, B.A.; Hossain, M.T.; Mahzabeen, S.; Unnoor, N.; Muna, I.A.; Akhter, F.; Kabir, A.U.; Hannan, J.M.A. [6]-gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic beta-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Lepr(db/db) type 2 diabetic mice. BMC Complement. Altern. Med. 2017, 17, 395. [Google Scholar]
- Makhdoomi Arzati, M.; Mohammadzadeh Honarvar, N.; Saedisomeolia, A.; Anvari, S.; Effatpanah, M.; Makhdoomi Arzati, R.; Yekaninejad, M.S.; Hashemi, R.; Djalali, M. The effects of ginger on fasting blood sugar, hemoglobin A1c, and lipid profiles in patients with type 2 diabetes. Int. J. Endocrinol. Metab. 2017, 15, e57927. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Barrett-Connor, E.; Aroda, V.R.; Mather, K.J.; Christophi, C.A.; Horton, E.S.; Pi-Sunyer, X.; Bray, G.A.; Labrie, F.; Golden, S.H.; et al. Testosterone and depressive symptoms among men in the diabetes prevention program. Psychoneuroendocrinology 2016, 72, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Rovira-Llopis, S.; Banuls, C.; de Maranon, A.M.; Diaz-Morales, N.; Jover, A.; Garzon, S.; Rocha, M.; Victor, V.M.; Hernandez-Mijares, A. Low testosterone levels are related to oxidative stress, mitochondrial dysfunction and altered subclinical atherosclerotic markers in type 2 diabetic male patients. Free Radic. Biol. Med. 2017, 108, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Gu, C.H.; Tao, L.; Wu, X.L. Effect of surgery and efferent duct ligation on testicular blood flow and testicular steroidogenesis in the rat. J. Reprod. Fertil. 1985, 73, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Clavijo, R.I.; Carrasquillo, R.; Ramasamy, R. Varicoceles: Prevalence and pathogenesis in adult men. Fertil. Steril. 2017, 108, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Banihani, S.A.; Abu-Alhayjaa, R.F.; Amarin, Z.O.; Alzoubi, K.H. Pentoxifylline increases the level of nitric oxide produced by human spermatozoa. Andrologia 2018, 50. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Cuong, T.D.; Hung, T.M.; Ryoo, S.; Lee, J.H.; Min, B.S. Arginase ii inhibitory activity of flavonoid compounds from scutellaria indica. Arch. Pharm. Res. 2013, 36, 922–926. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, M.J.; Detterich, J.A.; Connes, P. Nitric oxide, vasodilation and the red blood cell. Biorheology 2014, 51, 121–134. [Google Scholar] [PubMed]
- Casey, D.P.; Walker, B.G.; Ranadive, S.M.; Taylor, J.L.; Joyner, M.J. Contribution of nitric oxide in the contraction-induced rapid vasodilation in young and older adults. J. Appl. Physiol. 2013, 115, 446–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghareib, S.A.; El-Bassossy, H.M.; Elberry, A.A.; Azhar, A.; Watson, M.L.; Banjar, Z.M. 6-gingerol alleviates exaggerated vasoconstriction in diabetic rat aorta through direct vasodilation and nitric oxide generation. Drug Des. Dev. Ther. 2015, 9, 6019–6026. [Google Scholar]
- Banihani, S.A. Vitamin B12 and semen quality. Biomolecules 2017, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Banihani, S.A. Role of uric acid in semen. Biomolecules 2018, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Pine, M.; Johnson, L.; Rettori, V.; Hiney, J.K.; Dees, W.L. Manganese acts centrally to activate reproductive hormone secretion and pubertal development in male rats. Reprod. Toxicol. 2006, 22, 580–585. [Google Scholar] [CrossRef] [PubMed]
Affecter | Dose | Duration | Population | Effect on Serum Testosterone | Ref. |
---|---|---|---|---|---|
Aqueous extract of ginger | 600 mg kg−1 | 8 days | Streptozotocin-induced diabetic rats | (+) | [28] |
Methanolic Zingiber officinale roots | 100 and 200 mg kg−1 | 65 days | Alloxan-induced diabetic rats | (+) | [29] |
Water extracts of Zingiber officinale roots | 150 and 300 mg kg−1 | 65 days | Alloxan-induced diabetic rats | (+) | [29] |
Ginger | 4% of the diet | 2 weeks | Hypertensive male rats | (+) | [30] |
Zingerone | 20 mg kg−1 | 8 weeks | Streptozotocin-induced diabetic rats | (±) | [31] |
geraniol | 200 mg kg−1 | 8 weeks | Streptozotocin-induced diabetic rats | (±) | [31] |
6-gingerol | 75 mg kg−1 | 8 weeks | Streptozotocin-induced diabetic rats | (±) | [31] |
Fresh ginger roots | 1.5 g/15 g of diet | 30 days | Alloxan induced male diabetic rats | (+) | [32] |
Toxican | Population | Effect of Toxican on Testosterone | Ginger Affecter (Mode of Treatment): Dose/Duration | Protective Effect of Ginger on Testosterone | Ref. |
---|---|---|---|---|---|
Aluminium chloride | Albino Wistar male rats | Fresh ginger (Orally): 40 mg kg−1 body weight, for 60 days. | [33] | ||
Lead | Male Sprague Dawley rats | Fresh ginger (Orally): 0.5 and 1 gm kg−1 body weight, for 2, 4, and 6 weeks. | [34] | ||
Lamotrigine | Adult Wistar albino rats | Ginger powder (Orally): 100 mg kg−1 daily, for 4 weeks. | [35] | ||
Cyclophosphamide | Wistar male rats | Water ginger extract (Intraperitoneally): 300 or 600 mg daily, for 6 weeks. | [36] | ||
Busulfan | Male Sprague Dawley rats | Alcoholic extract of ginger (Orally): 50, 100 and 150 mg kg−1 body weight, for 48 days. | [37] | ||
Carbendazim | Male Sprague Dawley rats | 6-Gingerol-rich fraction from ginger (Orally): 50, 100 and 200 mg kg−1, for 14 days. | [38] | ||
Sodium metabisulfte | Male Wistar rats | Water ginger extract (Orally): 500 mg kg−1 daily, for 28 days. | [39] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banihani, S.A. Ginger and Testosterone. Biomolecules 2018, 8, 119. https://doi.org/10.3390/biom8040119
Banihani SA. Ginger and Testosterone. Biomolecules. 2018; 8(4):119. https://doi.org/10.3390/biom8040119
Chicago/Turabian StyleBanihani, Saleem Ali. 2018. "Ginger and Testosterone" Biomolecules 8, no. 4: 119. https://doi.org/10.3390/biom8040119
APA StyleBanihani, S. A. (2018). Ginger and Testosterone. Biomolecules, 8(4), 119. https://doi.org/10.3390/biom8040119