Highly Sensitive and Rapid Characterization of the Development of Synchronized Blood Stage Malaria Parasites Via Magneto-Optical Hemozoin Quantification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Mice and Parasites
2.3. Parasitemia Determination by Light Microscopy
2.4. Parasitemia Determination by Flow Cytometry
2.5. Parasitemia Determination by Rotating Magneto-Optical Measurements
3. Results
3.1. Rotating Crystal Magneto-Optical Diagnostic Signal Based on the Hemozoin Production Is Proportional to the Parasitemia Percentage
3.2. Monitoring Self-Resolving and Chloroquine-Treated Blood Stage Infections
3.3. Tracing Transient Hemozoin Clearance during the Intra-Erythrocytic Stages with High Temporal Resolution
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hawkes, M.; Kain, K.C. Advances in malaria diagnosis. J. Expert Rev. Anti-Infect. Ther. 2007, 5, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Butykai, A.; Orbán, A.; Kocsis, V.; Szaller, D.; Bordács, S.; Tátrai-Szekeres, E.; Kiss, L.F.; Bóta, A.; Vértessy, B.G.; Zelles, T.; et al. Malaria pigment crystals as magnetic micro-rotors: Key for high-sensitivity diagnosis. Sci. Rep. 2013, 3, 1431. [Google Scholar] [CrossRef] [PubMed]
- Orbán, Á.; Butykai, Á.; Molnár, A.; Pröhle, Z.; Fülöp, G.; Zelles, T.; Forsyth, W.; Hill, D.; Müller, I.; Schofield, L.; et al. Evaluation of a novel magneto-optical method for the detection of malaria parasites. PLoS ONE 2014, 9, e96981. [Google Scholar] [CrossRef] [PubMed]
- Orbán, Á.; Rebelo, M.; Molnár, P.; Albuquerque, I.S.; Butykai, A.; Kézsmárki, I. Efficient monitoring of the blood-stage infection in a malaria rodent model by the rotating-crystal magneto-optical method. Sci. Rep. 2016, 6, 23218. [Google Scholar] [CrossRef] [PubMed]
- Gluzman, I.Y.; Francis, S.E.; Oksman, A.; Smith, C.E.; Duffin, K.L.; Goldberg, D.E. Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J. Clin. Investig. 1994, 93, 1602–1608. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.E.; Slater, A.F.; Cerami, A.; Henderson, G.B. Hemoglobin degradation in the malaria parasite Plasmodium falciparum: An ordered process in a unique organelle. Proc. Natl. Acad. Sci. USA 1990, 87, 2931–2935. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.S.; Vaughan, A.M.; Kappe, S.H. Malaria parasite development in the mosquito and infection of the mammalian host. Annu. Rev. Microbiol. 2009, 63, 195–221. [Google Scholar] [CrossRef] [PubMed]
- Shio, M.T.; Kassa, F.A.; Bellemare, M.J.; Olivier, M. Innate inflammatory response to the malarial pigment hemozoin. Microbes 2010, 12, 889–899. [Google Scholar] [CrossRef]
- Simões, M.L.; Gonçalves, L.; Silveira, H. Hemozoin activates the innate immune system and reduces Plasmodium berghei infection in Anopheles gambiae. Parasites 2015, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Day, N.P.; Pham, T.D.; Phan, T.L.; Dinh, X.S.; Pham, P.L.; Ly, V.C.; Tran, T.H.; Nguyen, T.H.; Bethell, D.B.; Nguyan, H.P.; et al. Clearance kinetics of parasites and pigment-containing leukocytes in severe malaria. Blood 1996, 88, 4694–4700. [Google Scholar] [Green Version]
- Frita, R.; Carapau, D.; Mota, M.M.; Hänscheid, T. In vivo hemozoin kinetics after clearance of Plasmodium berghei infection in mice. Malar. Res. 2012, 2012, 373086. [Google Scholar]
- Lyke, K.E.; Diallo, D.A.; Dicko, A.; Kone, A.; Coulibaly, D.; Guindo, A.; Cissoko, Y.; Sangare, L.; Coulibaly, S.; Dakouo, B.; et al. Association of intraleukocytic Plasmodium falciparum malaria pigment with disease severity, clinical manifestations, and prognosis in severe malaria. Am. J. Trop. Med. Hyg. 2003, 69, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Gorka, A.P.; Alumasa, J.N.; Sherlach, K.S.; Jacobs, L.M.; Nickley, K.B.; Brower, J.P.; De Dios, A.C.; Roepe, P.D. Cytostatic versus cytocidal activities of chloroquine analogues and inhibition of hemozoin crystal growth. Antimicrob. Agents 2013, 57, 356–364. [Google Scholar] [CrossRef]
- Hart, R.J.; Abraham, A.; Aly, A.S. Genetic characterization of coenzyme a biosynthesis reveals essential distinctive functions during malaria parasite development in blood and mosquito. Front. Cell. 2017, 7, 260. [Google Scholar] [CrossRef] [PubMed]
- Hart, R.J.; Lawres, L.; Fritzen, E.; Mamoun, C.B.; Aly, A.S. Plasmodium yoelii Vitamin B 5 Pantothenate Transporter Candidate is Essential for Parasite Transmission to the Mosquito. Sci. Rep. 2014, 4, 5665. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.S.; Deveci, G.; Yilmaz, I.; Abraham, A.; Golshan, A.; Hart, R.J. Phenotypic Analysis of Rodent Malaria Parasite Asexual and Sexual Blood Stages and Mosquito Stages. J. Vis. Exp. JoVE 2019, 147, e55688. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.S.; Downie, M.J.; Mamoun, C.B.; Kappe, S.H. Subpatent infection with nucleos ide transporter 1-deficient Plasmodium blood stage parasites confers sterile protection against lethal malaria in mice. Cell. Microbiol. 2010, 12, 930–938. [Google Scholar] [CrossRef]
- Aly, A.S.; Mikolajczak, S.A.; Rivera, H.S.; Camargo, N.; Jacobs-Lorena, V.; Labaied, M.; Coppens, I.; Kappe, S.H. Targeted deletion of SAP1 abolishes the expression of infectivity factors necessary for successful malaria parasite liver infection. Cell. Microbiol. 2008, 69, 152–163. [Google Scholar]
- Hart, R.J.; Ghaffar, A.; Abdalal, S.; Perrin, B.; Aly, A.S. Plasmodium AdoMetDC/ODC bifunctional enzyme is essential for male sexual stage development and mosquito transmission. Biol. Open 2016, 5, 1022–1029. [Google Scholar] [CrossRef] [Green Version]
- Janse, C.J. Plasmodium Berghei In Vivo; Leids University Medical Center: Leiden, The Netherlands. Available online: https://www.lumc.nl/org/parasitologie/research/malaria/berghei-model/invivo-berghei/ (accessed on 10 May 2019).
- Sullivan, A.; Ittarat, I.; Meshnick, S. Patterns of haemozoin accumulation in tissue. Parasitology 1996, 112, 285–294. [Google Scholar] [CrossRef]
- Gautret, P.; Deharo, E.; Chabaud, A.G.; Ginsburg, H.; Landau, I. Plasmodium vinckei vinckei, P. v. lentum and P. yoelii yoelii: Chronobiology of the asexual cycle in the blood. Parasite 1994, 1, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Janse, C.J. Malaria Parasites that Infect Murine Rodents from Central Africa, in Introduction to Plasmodium Berghei; Leids University Medical Center: Leiden, The Netherlands, 2017. [Google Scholar]
- Menard, R.; Tavares, J.; Cockburn, I.; Markus, M.; Zavala, F.; Amino, R. Looking under the skin: The first steps in malarial infection and immunity. Nat. Rev. Microbiol. 2013, 11, 701–712. [Google Scholar] [CrossRef] [PubMed]
- White, N.J.; Pukrittayakamee, S.; Hien, T.T.; Faiz, M.A.; Mokuolu, O.A.; Dondorp, A.M. Malaria. Lancet 2014, 383, 723–735. [Google Scholar] [CrossRef]
- Janse, C.J.; Waters, A.P. Plasmodium berghei: The application of cultivation and purification techniques to molecular studies of malaria parasites. Parasitol. Today 1995, 11, 138–143. [Google Scholar] [CrossRef]
- Ono, T.; Tadakuma, T.; Rodriguez, A. Plasmodium yoelii yoelii 17XNL constitutively expressing GFP throughout the life cycle. Exp. Parasitol. 2007, 115, 310–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhury, H.R.; Sheikh, N.A.; Bancroft, G.J.; Katz, D.R.; de Souza, J.B. Early nonspecific immune responses and immunity to blood-stage nonlethal Plasmodium yoelii malaria. Infection 2000, 68, 6127–6132. [Google Scholar] [CrossRef]
- Langhorne, J.; Quin, S.J.; Sanni, L.A. Mouse models of blood-stage malaria infections: Immune responses and cytokines involved in protection and pathology. Chem. Immunol. 2002, 80, 204–228. [Google Scholar]
- Li, C.; Seixas, E.; Langhorne, J. Rodent malarias: The mouse as a model for understanding immune responses and pathology induced by the erythrocytic stages of the parasite. Med. Microbiol. 2001, 189, 115–126. [Google Scholar] [CrossRef]
- Vigário, A.M.; Belnoue, E.; Cumano, A.; Marussig, M.; Miltgen, F.; Landau, I.; Mazier, D.; Gresser, I.; Rénia, L. Inhibition of Plasmodium yoelii blood-stage malaria by interferon α through the inhibition of the production of its target cell, the reticulocyte. Blood 2001, 97, 3966–3971. [Google Scholar] [CrossRef]
- Trager, W.; Jensen, J.B. Continuous culture of Plasmodium falciparum: Its impact on malaria research. Int. J. Parasitol. 1997, 27, 989–1006. [Google Scholar] [CrossRef]
- Hobro, A.J.; Konishi, A.; Coban, C.; Smith, N.I. Raman spectroscopic analysis of malaria disease progression via blood and plasma samples. Analyst 2013, 138, 3927–3933. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.K.; Kong, T.F.; Ng, C.S.; Chen, L.; Huang, Y.; Bhagat, A.A.; Nguyen, N.T.; Preiser, P.R.; Han, J. Micromagnetic resonance relaxometry for rapid label-free malaria diagnosis. Nat. Med. 2014, 20, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, M.; Sousa, C.; Shapiro, H.M.; Mota, M.M.; Grobusch, M.P.; Hänscheid, T. A novel flow cytometric hemozoin detection assay for real-time sensitivity testing of Plasmodium falciparum. PLoS ONE 2013, 8, e61606. [Google Scholar] [CrossRef] [PubMed]
- Scholl, P.F.; Kongkasuriyachai, D.; Demirev, P.A.; Feldman, A.B.; Lin, J.S.; Sullivan, D.J., Jr.; Kumar, N. Rapid detection of malaria infection in vivo by laser desorption mass spectrometry. Am. J. Trop. Med. Hyg. 2004, 71, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Collins, F.H.; Paskewitz, S.M. Malaria: Current and future prospects for control. Annu. Rev. Entomol. 1995, 40, 195–219. [Google Scholar] [CrossRef] [PubMed]
- Hänscheid, T.; Egan, T.J.; Grobusch, M.P. Haemozoin: From melatonin pigment to drug target, diagnostic tool, and immune modulator. Lancet Infect. Dis. 2007, 7, 675–685. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pukáncsik, M.; Molnár, P.; Orbán, Á.; Butykai, Á.; Marton, L.; Kézsmárki, I.; Vértessy, B.G.; Kamil, M.; Abraham, A.; Aly, A.S.I. Highly Sensitive and Rapid Characterization of the Development of Synchronized Blood Stage Malaria Parasites Via Magneto-Optical Hemozoin Quantification. Biomolecules 2019, 9, 579. https://doi.org/10.3390/biom9100579
Pukáncsik M, Molnár P, Orbán Á, Butykai Á, Marton L, Kézsmárki I, Vértessy BG, Kamil M, Abraham A, Aly ASI. Highly Sensitive and Rapid Characterization of the Development of Synchronized Blood Stage Malaria Parasites Via Magneto-Optical Hemozoin Quantification. Biomolecules. 2019; 9(10):579. https://doi.org/10.3390/biom9100579
Chicago/Turabian StylePukáncsik, Mária, Petra Molnár, Ágnes Orbán, Ádám Butykai, Lívia Marton, István Kézsmárki, Beáta G. Vértessy, Mohd Kamil, Amanah Abraham, and Ahmed S. I. Aly. 2019. "Highly Sensitive and Rapid Characterization of the Development of Synchronized Blood Stage Malaria Parasites Via Magneto-Optical Hemozoin Quantification" Biomolecules 9, no. 10: 579. https://doi.org/10.3390/biom9100579
APA StylePukáncsik, M., Molnár, P., Orbán, Á., Butykai, Á., Marton, L., Kézsmárki, I., Vértessy, B. G., Kamil, M., Abraham, A., & Aly, A. S. I. (2019). Highly Sensitive and Rapid Characterization of the Development of Synchronized Blood Stage Malaria Parasites Via Magneto-Optical Hemozoin Quantification. Biomolecules, 9(10), 579. https://doi.org/10.3390/biom9100579