An Application-Based Review of Haptics Technology
Abstract
:1. Introduction
2. Working Principles of Haptic Devices
3. Applications of Haptic Devices
3.1. Haptic Devices for Micromanipulation
- Mitsubishi RV-1a (Mitsubishi Electric Corp., Tokyo, Japan)—6 DoFs
- MIRO (DLR, Köln, Germany)—7 DoFs
- KUKA KR 6/2 (KUKA AG, Augsburg, Germany)—6 DoFs
- PUMA (Unimation Inc.)—6 DoFs [29]
- Mitsubishi MELFA 6SL—6 DoFs [30]
- Mitsubishi PA-10 [31]—7 DoFs
- Mitsubishi MELFA RV-E2—6 DoFs [29]
- Hexapod Physik Instrumente (Physik Instrumente, GmbH and Co. KG, Karlsruhe, Deutschland)—6 DoFs [32]
- Mitsubishi PA-10—6 DoFs [29]
- Mitsubishi PA-10—7 DoFs [31]
- Rockwell Samsung AS2 (Rockwell Samsung Automation Inc., Seoul, Korea)—6 DoFs [30]
3.1.1. Dental Procedures: An Example of Micromanipulation Tasks
3.1.2. Medical and Surgical Procedures—Examples of Micromanipulation Tasks
3.2. Wearable Haptic Devices
3.3. Haptic Rendering
3.4. Haptic in Teleoperated Robotic Systems
4. Challenges of Haptic Technology
4.1. Challenges in Industrial Applications
4.2. Challenges in Health Sciences Applications
4.3. Limitations of the Haptic Technology
4.4. Reasons for Delayed Acceptance of Haptic Technology Adoption
4.5. Future Directions
- Improper sensory feedback is recognized as one of the reasons for prosthesis rejection that affects the performance of the system is noises and disturbances are not removed properly.
- A common disadvantage of the implementation of haptic devices is the limitation in workspace and space constraint [31], which is particularly investigated during the performance of surgical operations [70]. The significance of the workspace and the idea of multiple contact points in a haptic interface, that requires more research and developments in the future, may lead to the increase of manipulability and dexterity of the operator and may increase the performance of the operation [75]. Due to the kinematic structure of robotic arms, unlike exoskeletal devices, workspace is restricted. Exoskeletons are wearable and hence provide a larger workspace. There exist some solutions such as cutaneous haptic devices that are compact and wearable but are not precise as kinesthetic devices. Kinesthetic devices are preferred over cutaneous devices although they have overall stability issues; however, more research is required to prove [75].
- In addition, the application of collaborative mechanisms in teleoperation fashion could be of importance when dextrous motion is required. The solution of using collaborative robots was studied in [72] and the lack of force feedback at the master side was recognized as one of the main issues in using collaborative robots that need to be addressed by more research.
- The discrepancies occurring due to improper feedback, high contact speeds, stiff environment setups in cable-driven teleoperation systems require more enhancements [74].
- Some haptic devices are heavy and operators find them difficult to operate [75,76,77,78]. The disadvantage of different kinds of haptic devices highlights the need for more research and development to provide high fidelity haptic feedback for users [15]. Table 1 shows some haptic devices developed by different companies, but there are many more emerging every year.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sreelakshmi, M.; Subash, T. Haptic Technology: A comprehensive review on its applications and future prospects. Mater. Today Proc. 2017, 4, 4182–4187. [Google Scholar] [CrossRef]
- Laycock, S.; Day, A. Recent Developments and Applications of Haptic Devices. Comput. Graph. Forum 2003, 22, 117–132. [Google Scholar] [CrossRef]
- Srinivasan, M.A. What Is Haptics? Laboratory for Human and Machine Haptics: Cambridge, MA, USA, 2001. [Google Scholar]
- Baghdadi, A.; Hoshyarmanesh, H.; de Lotbiniere-Bassett, M.P.; Choi, S.K.; Lama, S.; Sutherland, G.R. Data analytics interrogates robotic surgical performance using a microsurgery-specific haptic device. Expert Rev. Med. Devices 2020, 17, 721–730. [Google Scholar] [CrossRef]
- Orozco, E.; Luciano, C. Introduction to Haptics; Springer: Cham, Switzerland, 2018; pp. 141–151. [Google Scholar] [CrossRef]
- Berkley, J.J. Haptic Devices; Mimic Technologies Inc.: Seattle, WA, USA, 2003. [Google Scholar]
- The Delta Haptic Device. Available online: https://cs.stanford.edu/people/conti/papers/EH01-CONTI.pdf (accessed on 4 February 2021).
- Buck, U.; Naether, S.; Braun, M.; Thali, M. Haptics in forensics: The possibilities and advantages in using the haptic device for reconstruction approaches in forensic science. Forensic Sci. Int. 2008, 180, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, Z.; Lian, L. Haptic Modeling in Rapid Product Development. Comput. Aided Des. Appl. 2004, 1, 577–584. [Google Scholar] [CrossRef]
- Sun, X.; Andersson, K.; Sellgren, U. Towards a Methodology for Multidisciplinary Design Optimization of Haptic Devices. In Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015; p. V02BT03A035. [Google Scholar] [CrossRef]
- Escobar-Castillejos, D.; Noguez, J.; Bello, F.; Neri, L.; Magana, A.J.; Benes, B. A Review of Training and Guidance Systems in Medical Surgery. Appl. Sci. 2020, 10, 5752. [Google Scholar] [CrossRef]
- Iijima, T.; Matsunaga, T.; Shimono, T.; Ohnishi, K.; Usuda, S.; Kawana, H. Development of a Multi DOF Haptic Robot for Dentistry and Oral Surgery. In Proceedings of the 2020 IEEE/SICE International Symposium on System Integration (SII), Honolulu, HI, USA, 12–15 January 2020; pp. 52–57. [Google Scholar] [CrossRef]
- Saddik, A.E. The Potential of Haptics Technologies. IEEE Instrum. Meas. Mag. 2007, 10, 10–17. [Google Scholar] [CrossRef]
- Lederman, S.; Klatzky, R. Haptic Perception: A Tutorial. Atten. Percept. Psychophys. 2009, 71, 1439–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacchierotti, C.; Sinclair, S.; Solazzi, M.; Frisoli, A.; Hayward, V.; Prattichizzo, D. Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives. IEEE Trans. Haptics 2017, 10, 580–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Lim, J.H.; Yun, M.H. Finding the Latent Semantics of Haptic Interaction Research: A Systematic Literature Review of Haptic Interaction Using Content Analysis and Network Analysis. Hum. Factors Ergon. Manuf. Serv. Ind. 2016, 26, 577–594. [Google Scholar] [CrossRef]
- Westebring, E.; Goossens, R.; Jakimowicz, J.; Dankelman, J. Haptics in minimally invasive surgery—A review. Minim. Invasive Ther. Allied Technol. 2008, 17, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Seifi, H.; Fazlollahi, F.; Oppermann, M.; Sastrillo, J.; Ip, J.; Agrawal, A.; Park, G.; Kuchenbecker, K.; Maclean, K. Haptipedia: Accelerating Haptic Device Discovery to Support Interaction and Engineering Design. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19), Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Schneider, O. Defining Haptic Experience: Foundations for Understanding, Communicating, and Evaluating HX. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20), Honolulu, HI, USA, 25–30 April 2020; pp. 1–13. [Google Scholar] [CrossRef]
- Tan, H.Z.; Choi, S.; Lau, F.W.Y.; Abnousi, F. Methodology for Maximizing Information Transmission of Haptic Devices: A Survey. Proc. IEEE 2020, 108, 945–965. [Google Scholar] [CrossRef]
- Tai, Y.; Shi, J.; Wei, L.; Huang, X.; Chen, Z.; Li, Q. Real-Time Visuo-Haptic Surgical Simulator for Medical Education—A Review. In Recent Developments in Mechatronics and Intelligent Robotics, Proceedings of the International Conference on Mechatronics and Intelligent Robotics (ICMIR2017); Springer: Cham, Switzerland, 2018; Volume 2, pp. 531–537. [Google Scholar] [CrossRef]
- Gabardi, M.; Solazzi, M.; Leonardis, D.; Frisoli, A. A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features. In Proceedings of the 2016 IEEE Haptics Symposium (HAPTICS), Philadelphia, PA, USA, 8–11 April 2016; pp. 140–146. [Google Scholar] [CrossRef]
- Pinskier, J.; Shirinzadeh, B.; Clark, L.; Qin, Y. Development of a 4-DOF haptic micromanipulator utilizing a hybrid parallel-serial flexure mechanism. Mechatronics 2018, 50, 55–68. [Google Scholar] [CrossRef]
- Mohand-Ousaid, A.; Haliyo, S.; Régnier, S.; Hayward, V. High Fidelity Force Feedback Facilitates Manual Injection in Biological Samples. IEEE Robot. Autom. Lett. 2020, 5, 1758–1763. [Google Scholar] [CrossRef]
- Pinskier, J.; Shirinzadeh, B.; Bhagat, U.; Clark, L.; Qin, Y. Design, development and analysis of a haptic-enabled modular flexure-based manipulator. In Proceedings of the 2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Changchun, China, 5–9 October 2015; pp. 49–54. [Google Scholar] [CrossRef]
- Bolopion, A.; Millet, G.; Pacoret, C.; Régnier, S. Haptic Feedback in Teleoperation in Micro- and Nanoworlds. Rev. Hum. Factors Ergon. 2013, 9, 57–93. [Google Scholar] [CrossRef] [Green Version]
- Seif, M.A.; Hassan, A.; El-Shaer, A.H.; Alfar, A.; Misra, S.; Khalil, I.S.M. A magnetic bilateral tele-manipulation system using paramagnetic microparticles for micromanipulation of nonmagnetic objects. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 1095–1102. [Google Scholar] [CrossRef]
- Degirmenci, A.; Hammond, F.L.; Gafford, J.B.; Walsh, C.J.; Wood, R.J.; Howe, R.D. Design and control of a parallel linkage wrist for robotic microsurgery. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 222–228. [Google Scholar] [CrossRef] [Green Version]
- Wurm, J.; Bumm, K.; Steinhart, H.; Vogele, M.; Schaaf, H.; Nimsky, C.; Bale, R.; Zenk, J.; Iro, H. Entwicklung eines aktiven Robotersystems für die multimodale Chirurgie der Nasennebenhöhlen. HNO 2005, 53, 446–454. [Google Scholar] [CrossRef]
- Mayer, H.; Nagy, I.; Knoll, A.; Schirmbeck, E.U.; Bauernschmitt, R. The Endo[PA]R system for minimally invasive robotic surgery. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 4, pp. 3637–3642. [Google Scholar] [CrossRef] [Green Version]
- Burgner-Kahrs, J.; Raczkowsky, J.; Wörn, H. AccuRobAs: Accurate Robotic Assistant. In Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; p. 1. [Google Scholar]
- Schäfer, M.; Stewart, K.; Pott, P. Industrial robots for teleoperated surgery—A systematic review of existing approaches. Curr. Direct. Biomed. Eng. 2019, 5, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, H.; Eriksson Haavisto, E.; Havola, S.; Koivisto, J.M. User experiences of virtual reality technologies for healthcare in learning: An integrative review. Behav. Inf. Technol. 2020, 1–17. [Google Scholar] [CrossRef]
- Al-Saud, L.M.; Mushtaq, F.; Allsop, M.J.; Culmer, P.C.; Mirghani, I.; Yates, E.; Keeling, A.; Mon-Williams, M.; Manogue, M. Feedback and motor skill acquisition using a haptic dental simulator. Eur. J. Dent. Educ. 2017, 21, 240–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, G.R.; Maddahi, Y.; Gan, L.S.; Lama, S.; Zareinia, K. Robotics in the neurosurgical treatment of glioma. Surg. Neurol. Int. 2015, 6, S1. [Google Scholar] [CrossRef]
- Cheng, L.; Kalvandi, M.; McKinstry, S.; Maddahi, A.; Chaudhary, A.; Maddahi, Y.; Tavakoli, M. Application of DenTeach in Remote Dentistry Teaching and Learning during the COVID-19 Pandemic: A Case Study. Front. Robot. AI 2020, 7, 222. [Google Scholar]
- Escobar-Castillejos, D.; Noguez, J.; Neri, L.; Magana, A.; Benes, B. A Review of Simulators with Haptic Devices for Medical Training. J. Med. Syst. 2016, 40, 104. [Google Scholar] [CrossRef]
- Tse, B.; Harwin, W.; Barrow, A.; Quinn, B.; Diego, J.S.; Cox, M. Design and Development of a Haptic Dental Training System: HapTEL. In Haptics: Generating and Perceiving Tangible Sensations, Part II: 7th International Conference, EuroHaptics 2010, Amsterdam, The Netherlands, 8–10 July 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 101–108. [Google Scholar]
- Talhan, A.; Jeon, S. Pneumatic Actuation in Haptic-Enabled Medical Simulators: A Review. IEEE Access 2018, 6, 3184–3200. [Google Scholar] [CrossRef]
- Mathias, A.P.; Vogel, P.; Knauff, M. Different cognitive styles can affect performance in laparoscopic surgery skill training. Surg. Endosc. 2019, 34, 4866–4873. [Google Scholar] [CrossRef]
- Payne, C.J.; Vyas, K.; Bautista-Salinas, D.; Zhang, D.; Marcus, H.J.; Yang, G.Z. Shared-Control Robots. In Neurosurgical Robotics; Springer: New York, NY, USA, 2021; pp. 63–79. [Google Scholar] [CrossRef]
- Lim, S.C.; Lee, H.K.; Park, J. Role of combined tactile and kinesthetic feedback in minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2015, 11, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Najdovski, Z.; Abdelrahman, W.; Nahavandi, S.; Weisinger, H. Augmented optometry training simulator with multi-point haptics. In Proceedings of the 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, Korea, 14–17 October 2012; pp. 2991–2997. [Google Scholar] [CrossRef]
- Chen, X.; Lin, Y.; Wang, C.; Shen, G.; Wang, X. A Virtual Training System Using a Force Feedback Haptic Device for Oral Implantology. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7220, pp. 232–240. [Google Scholar] [CrossRef]
- Ramasamy, R.; Juhari, M.; Sugisaka, M.; Osman, N. Pneumatic Artificial Muscle in Biomedical Applications. In Proceedings of the 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006; Springer: Berlin/Heidelberg, Germany, 2007; pp. 219–221. [Google Scholar] [CrossRef]
- Ning, Y.; Guo, X.J.; Li, X.R.; Xu, X.F.; Ma, W.J. The Implementation of Haptic Interaction in Virtual Surgery. In Proceedings of the 2010 International Conference on Electrical and Control Engineering, Wuhan, China, 25–27 June 2010; pp. 2351–2354. [Google Scholar] [CrossRef]
- Saracino, A.; Oude-Vrielink, T.J.; Menciassi, A.; Sinibaldi, E.; Mylonas, G.P. Haptic intracorporeal palpation using a cable-driven parallel robot: A user study. IEEE Trans. Biomed. Eng. 2020, 67, 3452–3463. [Google Scholar] [CrossRef] [PubMed]
- Saracino, A.; Deguet, A.; Staderini, F.; Boushaki, M.N.; Cianchi, F.; Menciassi, A.; Sinibaldi, E. Haptic feedback in the da Vinci Research Kit (dVRK): A user study based on grasping, palpation, and incision tasks. Int. J. Med. Robot. Comput. Assist. Surg. 2019, 15, e1999. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Culbertson, H.; Miller, M.R.; Olwal, A.; Follmer, S. Grabity: A Wearable Haptic Interface for Simulating Weight and Grasping in Virtual Reality. In UIST ’17: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology; Association for Computing Machinery: New York, NY, USA, 2017; pp. 119–130. [Google Scholar] [CrossRef] [Green Version]
- Tsetserukou, D.; Hosokawa, S.; Terashima, K. LinkTouch: A wearable haptic device with five-bar linkage mechanism for presentation of two-DOF force feedback at the fingerpad. In Proceedings of the 2014 IEEE Haptics Symposium (HAPTICS), Houston, TX, USA, 23–26 February 2014; pp. 307–312. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.; Lee, W. HapThimble: A Wearable Haptic Device towards Usable Virtual Touch Screen. In CHI ’16: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, 2016; pp. 3694–3705. [Google Scholar] [CrossRef]
- Pece, F.; Zarate, J.J.; Vechev, V.; Besse, N.; Gudozhnik, O.; Shea, H.; Hilliges, O. MagTics: Flexible and Thin Form Factor Magnetic Actuators for Dynamic and Wearable Haptic Feedback. In UIST ’17: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology; Association for Computing Machinery: New York, NY, USA, 2017; pp. 143–154. [Google Scholar] [CrossRef]
- Miyakami, M.; Murata, K.A.; Kajimoto, H. Hapballoon: Wearable Haptic Balloon-Based Feedback Device. In SA ’19: SIGGRAPH Asia 2019 Emerging Technologies; Association for Computing Machinery: New York, NY, USA, 2019; pp. 17–18. [Google Scholar] [CrossRef]
- Yem, V.; Kajimoto, H. Wearable tactile device using mechanical and electrical stimulation for fingertip interaction with virtual world. In Proceedings of the 2017 IEEE Virtual Reality (VR), Los Angeles, CA, USA, 18–22 March 2017; pp. 99–104. [Google Scholar] [CrossRef]
- Price, M.; Sup, F.C. A robotic touchscreen totem for two-dimensional haptic force display. In Proceedings of the 2016 IEEE Haptics Symposium (HAPTICS), Philadelphia, PA, USA, 8–11 April 2016; pp. 72–77. [Google Scholar] [CrossRef]
- Atapattu, S.H.; Senevirathna, N.M.; Shan, H.L.U.; Madusanka, T.B.T.; Lalitharatne, T.D.; Chathuranga, D.S. Design and development of a wearable haptic feedback device to recognize textured surfaces: Preliminary study. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 16–21. [Google Scholar] [CrossRef]
- Goetz, D.T.; Owusu-Antwi, D.K.; Culbertson, H. PATCH: Pump-Actuated Thermal Compression Haptics. In Proceedings of the 2020 IEEE Haptics Symposium (HAPTICS), Crystal City, VA, USA, 28–31 March 2020; pp. 643–649. [Google Scholar] [CrossRef]
- Yang, G.; Ho, H.L.; Chen, W.; Lin, W.; Yeo, S.H.; Kurbanhusen, M.S. A haptic device wearable on a human arm. In Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics, Singapore, 1–3 December 2004; Volume 1, pp. 243–247. [Google Scholar] [CrossRef]
- Yu, X.; Xie, Z.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D.; et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Kapur, P.; Jensen, M.; Buxbaum, L.J.; Jax, S.A.; Kuchenbecker, K.J. Spatially distributed tactile feedback for kinesthetic motion guidance. In Proceedings of the 2010 IEEE Haptics Symposium, Waltham, MA, USA, 25–26 March 2010; pp. 519–526. [Google Scholar] [CrossRef] [Green Version]
- Makhataeva, Z.; Varol, H.A. Augmented Reality for Robotics: A Review. Robotics 2020, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Sardini, E.; Serpelloni, M.; Pasqui, V. Wireless Wearable T-Shirt for Posture Monitoring During Rehabilitation Exercises. IEEE Trans. Instrum. Meas. 2015, 64, 439–448. [Google Scholar] [CrossRef]
- Spagnoletti, G.; Meli, L.; Baldi, T.L.; Gioioso, G.; Pacchierotti, C.; Prattichizzo, D. Rendering of Pressure and Textures Using Wearable Haptics in Immersive VR Environments. In Proceedings of the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Reutlingen, Germany, 18–22 March 2018; pp. 691–692. [Google Scholar] [CrossRef]
- Tsykunov, E.; Ibrahimov, R.; Vasquez, D.; Tsetserukou, D. SlingDrone: Mixed Reality System for Pointing and Interaction Using a Single Drone. In VRST ’19: 25th ACM Symposium on Virtual Reality Software and Technology; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.C.; Yang, S.Y.; Liang, R.H.; Chan, L.; Chen, B.Y. ThirdHand: Wearing a Robotic Arm to Experience Rich Force Feedback. In SA ’15: SIGGRAPH Asia 2015 Emerging Technologies; Association for Computing Machinery: New York, NY, USA, 2015; pp. 1–24. [Google Scholar] [CrossRef]
- Maisto, M.; Pacchierotti, C.; Chinello, F.; Salvietti, G.; De Luca, A.; Prattichizzo, D. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications. IEEE Trans. Haptics 2017, 10, 511–522. [Google Scholar] [CrossRef] [Green Version]
- Pacchierotti, C.; Salvietti, G.; Hussain, I.; Meli, L.; Prattichizzo, D. The hRing: A wearable haptic device to avoid occlusions in hand tracking. In Proceedings of the 2016 IEEE Haptics Symposium (HAPTICS), Philadelphia, PA, USA, 8–11 April 2016; pp. 134–139. [Google Scholar] [CrossRef]
- Chinello, F.; Malvezzi, M.; Pacchierotti, C.; Prattichizzo, D. Design and development of a 3RRS wearable fingertip cutaneous device. In Proceedings of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Korea, 7–11 July 2015; pp. 293–298. [Google Scholar] [CrossRef]
- Heo, T.; Huang, K.; Chizeck, H.J. Performance evaluation of haptically enabled sEMG. In Proceedings of the 2018 International Symposium on Medical Robotics (ISMR), Atlanta, GA, USA, 1–3 March 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Martin, S.; Hillier, N. Characterisation of the Novint Falcon Haptic Device for Application as a Robot Manipulator. In Proceedings of the Australasian Conference on Robotics and Automation (ACRA), Sydney, Australia, 2–4 December 2009; pp. 1–9. [Google Scholar]
- Israr, A.; Zhao, S.; McIntosh, K.; Kang, J.; Schwemler, Z.; Brockmeyer, E.; Baskinger, M.; Mahler, M. Po2: Augmented Haptics for Interactive Gameplay. In SIGGRAPH ’15: ACM SIGGRAPH 2015 Emerging Technologies; Association for Computing Machinery: New York, NY, USA, 2015; p. 1. [Google Scholar] [CrossRef]
- Singh, J.; Srinivasan, A.R.; Neumann, G.; Kucukyilmaz, A. Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm with an Identical Twin Master. IEEE Trans. Haptics 2020, 13, 246–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Zhang, S.; Wu, Z.; Yang, B.; Xu, K. CombX: Design and experimental characterizations of a haptic device for surgical teleoperation. Int. J. Med. Robot. Comput. Assist. Surg. 2020, 16, e2042. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Piao, J.; Kim, E.S.; Jung, J.; Choi, E.; Park, J.O.; Kim, C.S. Intuitive Bilateral Teleoperation of a Cable-driven Parallel Robot Controlled by a Cable-driven Parallel Robot. Int. J. Control, Autom. Syst. 2020, 18, 1792–1805. [Google Scholar] [CrossRef]
- Musić, S.; Prattichizzo, D.; Hirche, S. Human-Robot Interaction Through Fingertip Haptic Devices for Cooperative Manipulation Tasks. In Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Vigaru, B.; Sulzer, J.; Gassert, R. Design and Evaluation of a Cable-Driven fMRI-Compatible Haptic Interface to Investigate Precision Grip Control. IEEE Trans. Haptics 2016, 9, 20–32. [Google Scholar] [CrossRef]
- Konishi, S.; Otake, S.; Kosawa, H.; Hirata, A.; Mori, F. The Combination of Soft Microfingers and Wearable Interface Device for Haptic Teleoperation Robot System. In Proceedings of the 2019 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), Helsinki, Finland, 1–5 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Frazelle, C.G.; Kapadia, A.D.; Walker, I.D. A Haptic Continuum Interface for the Teleoperation of Extensible Continuum Manipulators. IEEE Robot. Autom. Lett. 2020, 5, 1875–1882. [Google Scholar] [CrossRef]
- Hoshyarmanesh, H.; Zareinia, K.; Lama, S.; Durante, B.; Sutherland, G.R. Evaluation of haptic devices and end-users: Novel performance metrics in tele-robotic microsurgery. Int. J. Med. Robot. Comput. Assist. Surg. 2020, 16, e2101. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Lin, Z.; Li, Y.; Yang, C. A Teleoperation Framework for Mobile Robots Based on Shared Control. IEEE Robot. Autom. Lett. 2020, 5, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Zareinia, K.; Maddahi, Y.; Ng, C.; Sepehri, N.; Sutherland, G.R. Performance evaluation of haptic hand-controllers in a robot-assisted surgical system. Int. J. Med. Robot. Comput. Assist. Surg. 2015, 11, 486–501. [Google Scholar] [CrossRef]
- Maddahi, Y.; Zareinia, K.; Tomanek, B.; Sutherland, G.R. Challenges in developing a magnetic resonance-compatible haptic hand-controller for neurosurgical training. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2018, 232, 1148–1167. [Google Scholar] [CrossRef]
- Wang, D.X.; Guo, Y.; Liu, S.Y.; Zhang, Y.R.; Xu, W.L.; Xiao, J. Haptic display for virtual reality: Progress and challenges. Virtual Real. Intell. Hardw. 2019, 1, 136–162. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Zhan, T.; Wu, S.T. Prospects and challenges in augmented reality displays. Virtual Real. Intell. Hardw. 2019, 1, 10–20. [Google Scholar] [CrossRef]
- Rassi, I.E.; Rassi, J.M.E. A review of haptic feedback in tele-operated robotic surgery. J. Med. Eng. Technol. 2020, 44, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Torabi, A.; Zareinia, K.; Sutherland, G.R.; Tavakoli, M. Dynamic Reconfiguration of Redundant Haptic Interfaces for Rendering Soft and Hard Contacts. IEEE Trans. Haptics 2020, 13, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Enayati, N.; De Momi, E.; Ferrigno, G. Haptics in Robot-Assisted Surgery: Challenges and Benefits. IEEE Rev. Biomed. Eng. 2016, 9, 49–65. [Google Scholar] [CrossRef] [Green Version]
Name | Type of Feedback | DoF | Developer |
---|---|---|---|
CyberTouch | Tactile feedback device | - | Immersion Corp |
HapticMaster | haptic force feedback device | 3 | Moog FCS Robotic |
Virtuose™ 6D Desktop | haptic force feedback device | 6 | Haption |
Virtuose™ 3D Desktop | haptic force feedback device | 3/6 | Haption |
Virtuose™ 6D | haptic force feedback device | 6 | Haption |
MAT™ 6D | haptic force feedback device | 6 | Haption |
Inca™ 6D | haptic force feedback device | 6 | Haption |
Scale 1™ | haptic force feedback device | 3/4 | Haption |
Novint Falcon™ | haptic force feedback device | 3 | Novint |
Tractile Device | Tactile feedback device | - | IBM |
TouchMaster | Tactile feedback device | - | Exos, Inc. |
Haptic Planar Pantograph | haptic force feedback device | 3 | Quanser |
Haptic Wand | haptic force feedback device | 5 | Quanser |
HD | haptic force feedback device | 6 + 1 | Quanser |
Omega 3 | haptic force feedback device | 3 | Force dimension |
Omega 6 | haptic force feedback device | 6 | Force dimension |
Omega 7 | haptic force feedback device | 6 + 1 | Force dimension |
MouseCat | Haptic Force Feedback Device | 2 | Haptic Technologies |
Phantom Desktop | Haptic Force Feedback Device | 3/6 | SensAble Technologies |
Freedom 6S | Haptic Force Feedback Device | 6 | MPB Technologies |
Impulse Engine 2000 [2] | Haptic Force Feedback Device | 2 | Immersion Corp |
Sensor Glove | Haptic Feedback Gloves and Arm Exoskeletons | 11 | University of Tokyo |
Sensor Glove 2 [2] | Haptic Feedback Gloves and Arm Exoskeletons | 20 | University of Tokyo |
Sensor Arm | Haptic Feedback Gloves and Arm Exoskeletons | 7 | University of Tokyo |
CyberGras p [2] | Haptic Feedback Gloves and Arm Exoskeletons | 5 | Immersion Corp |
CyberForce [2] | Haptic Feedback Gloves and Arm Exoskeletons | 6 | Immersion Corp |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giri, G.S.; Maddahi, Y.; Zareinia, K. An Application-Based Review of Haptics Technology. Robotics 2021, 10, 29. https://doi.org/10.3390/robotics10010029
Giri GS, Maddahi Y, Zareinia K. An Application-Based Review of Haptics Technology. Robotics. 2021; 10(1):29. https://doi.org/10.3390/robotics10010029
Chicago/Turabian StyleGiri, Gowri Shankar, Yaser Maddahi, and Kourosh Zareinia. 2021. "An Application-Based Review of Haptics Technology" Robotics 10, no. 1: 29. https://doi.org/10.3390/robotics10010029
APA StyleGiri, G. S., Maddahi, Y., & Zareinia, K. (2021). An Application-Based Review of Haptics Technology. Robotics, 10(1), 29. https://doi.org/10.3390/robotics10010029