Next Issue
Volume 10, June
Previous Issue
Volume 9, December
 
 

Robotics, Volume 10, Issue 1 (March 2021) – 51 articles

Cover Story (view full-size image): Endoscopic endonasal surgery is a common procedure for treating pituitary lesions. However, the reduced workspace and lack of tool dexterity hinder the execution of complex surgical tasks such as suturing. In this paper, we propose a robot-assisted stitching method based on an online optimization-based trajectory generation for curved needle stitching and a constrained motion planning framework to ensure safe surgical instrument motion. Experimental evaluations were conducted to compare the proposed method with the use of conventional instruments. Our results demonstrate a noticeable improvement in the stitching success ratio and a high reduction of the interaction forces with the phantom tissue. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
23 pages, 1183 KiB  
Article
Explanations from a Robotic Partner Build Trust on the Robot’s Decisions for Collaborative Human-Humanoid Interaction
by Misbah Javaid and Vladimir Estivill-Castro
Robotics 2021, 10(1), 51; https://doi.org/10.3390/robotics10010051 - 23 Mar 2021
Cited by 6 | Viewed by 4793
Abstract
Typically, humans interact with a humanoid robot with apprehension. This lack of trust can seriously affect the effectiveness of a team of robots and humans. We can create effective interactions that generate trust by augmenting robots with an explanation capability. The explanations provide [...] Read more.
Typically, humans interact with a humanoid robot with apprehension. This lack of trust can seriously affect the effectiveness of a team of robots and humans. We can create effective interactions that generate trust by augmenting robots with an explanation capability. The explanations provide justification and transparency to the robot’s decisions. To demonstrate such effective interaction, we tested this with an interactive, game-playing environment with partial information that requires team collaboration, using a game called Spanish Domino. We partner a robot with a human to form a pair, and this team opposes a team of two humans. We performed a user study with sixty-three human participants in different settings, investigating the effect of the robot’s explanations on the humans’ trust and perception of the robot’s behaviour. Our explanation-generation mechanism produces natural-language sentences that translate the decision taken by the robot into human-understandable terms. We video-recorded all interactions to analyse factors such as the participants’ relational behaviours with the robot, and we also used questionnaires to measure the participants’ explicit trust in the robot. Overall, our main results demonstrate that explanations enhanced the participants’ understandability of the robot’s decisions, because we observed a significant increase in the participants’ level of trust in their robotic partner. These results suggest that explanations, stating the reason(s) for a decision, combined with the transparency of the decision-making process, facilitate collaborative human–humanoid interactions. Full article
(This article belongs to the Special Issue Human–Robot Collaboration)
Show Figures

Figure 1

20 pages, 2474 KiB  
Article
Industrial Robot Trajectory Tracking Control Using Multi-Layer Neural Networks Trained by Iterative Learning Control
by Shuyang Chen and John T. Wen
Robotics 2021, 10(1), 50; https://doi.org/10.3390/robotics10010050 - 21 Mar 2021
Cited by 22 | Viewed by 6333
Abstract
Fast and precise robot motion is needed in many industrial applications. Most industrial robot motion controllers allow externally commanded motion profiles, but the trajectory tracking performance is affected by the robot dynamics and joint servo controllers, to which users have no direct access [...] Read more.
Fast and precise robot motion is needed in many industrial applications. Most industrial robot motion controllers allow externally commanded motion profiles, but the trajectory tracking performance is affected by the robot dynamics and joint servo controllers, to which users have no direct access and about which they have little information. The performance is further compromised by time delays in transmitting the external command as a setpoint to the inner control loop. This paper presents an approach for combining neural networks and iterative learning controls to improve the trajectory tracking performance for a multi-axis articulated industrial robot. For a given desired trajectory, the external command is iteratively refined using a high-fidelity dynamical simulator to compensate for the robot inner-loop dynamics. These desired trajectories and the corresponding refined input trajectories are then used to train multi-layer neural networks to emulate the dynamical inverse of the nonlinear inner-loop dynamics. We show that with a sufficiently rich training set, the trained neural networks generalize well to trajectories beyond the training set as tested in the simulator. In applying the trained neural networks to a physical robot, the tracking performance still improves but not as much as in the simulator. We show that transfer learning effectively bridges the gap between simulation and the physical robot. Finally, we test the trained neural networks on other robot models in simulation and demonstrate the possibility of a general purpose network. Development and evaluation of this methodology are based on the ABB IRB6640-180 industrial robot and ABB RobotStudio software packages. Full article
(This article belongs to the Special Issue Robotics and AI)
Show Figures

Figure 1

17 pages, 5080 KiB  
Article
Dynamic and Friction Parameters of an Industrial Robot: Identification, Comparison and Repetitiveness Analysis
by Lei Hao, Roberto Pagani, Manuel Beschi and Giovanni Legnani
Robotics 2021, 10(1), 49; https://doi.org/10.3390/robotics10010049 - 19 Mar 2021
Cited by 18 | Viewed by 5298
Abstract
This paper describes the results of dynamic tests performed to study the robustness of a dynamics model of an industrial manipulator. The tests show that the joint friction changes during the robot operation. The variation can be identified in a double exponential law [...] Read more.
This paper describes the results of dynamic tests performed to study the robustness of a dynamics model of an industrial manipulator. The tests show that the joint friction changes during the robot operation. The variation can be identified in a double exponential law and thus the variation can be predicted. The variation is due to the heat generated by the friction. A model is used to estimate the temperature and related friction variation. Experimental data collected on two robots EFORT ER3A-C60 are presented and discussed. Repetitive tests performed on different days showed that the inertial and friction parameters can be robustly estimated and that the value of the measured joint friction can be used to estimate the unexpected conditions of the joints. Future applications may include sensorless identification of collisions, predictive maintenance programs, or human–robot interaction. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

27 pages, 7718 KiB  
Article
Motion Planning and Control of an Omnidirectional Mobile Robot in Dynamic Environments
by Mahmood Reza Azizi, Alireza Rastegarpanah and Rustam Stolkin
Robotics 2021, 10(1), 48; https://doi.org/10.3390/robotics10010048 - 17 Mar 2021
Cited by 29 | Viewed by 8280
Abstract
Motion control in dynamic environments is one of the most important problems in using mobile robots in collaboration with humans and other robots. In this paper, the motion control of a four-Mecanum-wheeled omnidirectional mobile robot (OMR) in dynamic environments is studied. The robot’s [...] Read more.
Motion control in dynamic environments is one of the most important problems in using mobile robots in collaboration with humans and other robots. In this paper, the motion control of a four-Mecanum-wheeled omnidirectional mobile robot (OMR) in dynamic environments is studied. The robot’s differential equations of motion are extracted using Kane’s method and converted to discrete state space form. A nonlinear model predictive control (NMPC) strategy is designed based on the derived mathematical model to stabilize the robot in desired positions and orientations. As a main contribution of this work, the velocity obstacles (VO) approach is reformulated to be introduced in the NMPC system to avoid the robot from collision with moving and fixed obstacles online. Considering the robot’s physical restrictions, the parameters and functions used in the designed control system and collision avoidance strategy are determined through stability and performance analysis and some criteria are established for calculating the best values of these parameters. The effectiveness of the proposed controller and collision avoidance strategy is evaluated through a series of computer simulations. The simulation results show that the proposed strategy is efficient in stabilizing the robot in the desired configuration and in avoiding collision with obstacles, even in narrow spaces and with complicated arrangements of obstacles. Full article
Show Figures

Figure 1

47 pages, 19996 KiB  
Review
Service Robots in the Healthcare Sector
by Jane Holland, Liz Kingston, Conor McCarthy, Eddie Armstrong, Peter O’Dwyer, Fionn Merz and Mark McConnell
Robotics 2021, 10(1), 47; https://doi.org/10.3390/robotics10010047 - 11 Mar 2021
Cited by 101 | Viewed by 36591
Abstract
Traditionally, advances in robotic technology have been in the manufacturing industry due to the need for collaborative robots. However, this is not the case in the service sectors, especially in the healthcare sector. The lack of emphasis put on the healthcare sector has [...] Read more.
Traditionally, advances in robotic technology have been in the manufacturing industry due to the need for collaborative robots. However, this is not the case in the service sectors, especially in the healthcare sector. The lack of emphasis put on the healthcare sector has led to new opportunities in developing service robots that aid patients with illnesses, cognition challenges and disabilities. Furthermore, the COVID-19 pandemic has acted as a catalyst for the development of service robots in the healthcare sector in an attempt to overcome the difficulties and hardships caused by this virus. The use of service robots are advantageous as they not only prevent the spread of infection, and reduce human error but they also allow front-line staff to reduce direct contact, focusing their attention on higher priority tasks and creating separation from direct exposure to infection. This paper presents a review of various types of robotic technologies and their uses in the healthcare sector. The reviewed technologies are a collaboration between academia and the healthcare industry, demonstrating the research and testing needed in the creation of service robots before they can be deployed in real-world applications and use cases. We focus on how robots can provide benefits to patients, healthcare workers, customers, and organisations during the COVID-19 pandemic. Furthermore, we investigate the emerging focal issues of effective cleaning, logistics of patients and supplies, reduction of human errors, and remote monitoring of patients to increase system capacity, efficiency, resource equality in hospitals, and related healthcare environments. Full article
(This article belongs to the Section Medical Robotics and Service Robotics)
Show Figures

Figure 1

17 pages, 2041 KiB  
Article
On the Impact of Gravity Compensation on Reinforcement Learning in Goal-Reaching Tasks for Robotic Manipulators
by Jonathan Fugal, Jihye Bae and Hasan A. Poonawala
Robotics 2021, 10(1), 46; https://doi.org/10.3390/robotics10010046 - 9 Mar 2021
Cited by 3 | Viewed by 4493
Abstract
Advances in machine learning technologies in recent years have facilitated developments in autonomous robotic systems. Designing these autonomous systems typically requires manually specified models of the robotic system and world when using classical control-based strategies, or time consuming and computationally expensive data-driven training [...] Read more.
Advances in machine learning technologies in recent years have facilitated developments in autonomous robotic systems. Designing these autonomous systems typically requires manually specified models of the robotic system and world when using classical control-based strategies, or time consuming and computationally expensive data-driven training when using learning-based strategies. Combination of classical control and learning-based strategies may mitigate both requirements. However, the performance of the combined control system is not obvious given that there are two separate controllers. This paper focuses on one such combination, which uses gravity-compensation together with reinforcement learning (RL). We present a study of the effects of gravity compensation on the performance of two reinforcement learning algorithms when solving reaching tasks using a simulated seven-degree-of-freedom robotic arm. The results of our study demonstrate that gravity compensation coupled with RL can reduce the training required in reaching tasks involving elevated target locations, but not all target locations. Full article
Show Figures

Figure 1

18 pages, 2917 KiB  
Article
Cobot User Frame Calibration: Evaluation and Comparison between Positioning Repeatability Performances Achieved by Traditional and Vision-Based Methods
by Roberto Pagani, Cristina Nuzzi, Marco Ghidelli, Alberto Borboni, Matteo Lancini and Giovanni Legnani
Robotics 2021, 10(1), 45; https://doi.org/10.3390/robotics10010045 - 8 Mar 2021
Cited by 14 | Viewed by 5241
Abstract
Since cobots are designed to be flexible, they are frequently repositioned to change the production line according to the needs; hence, their working area (user frame) needs to be often calibrated. Therefore, it is important to adopt a fast and intuitive user frame [...] Read more.
Since cobots are designed to be flexible, they are frequently repositioned to change the production line according to the needs; hence, their working area (user frame) needs to be often calibrated. Therefore, it is important to adopt a fast and intuitive user frame calibration method that allows even non-expert users to perform the procedure effectively, reducing the possible mistakes that may arise in such contexts. The aim of this work was to quantitatively assess the performance of different user frame calibration procedures in terms of accuracy, complexity, and calibration time, to allow a reliable choice of which calibration method to adopt and the number of calibration points to use, given the requirements of the specific application. This has been done by first analyzing the performances of a Rethink Robotics Sawyer robot built-in user frame calibration method (Robot Positioning System, RPS) based on the analysis of a fiducial marker distortion obtained from the image acquired by the wrist camera. This resulted in a quantitative analysis of the limitations of this approach that only computes local calibration planes, highlighting the reduction of performances observed. Hence, the analysis focused on the comparison between two traditional calibration methods involving rigid markers to determine the best number of calibration points to adopt to achieve good repeatability performances. The analysis shows that, among the three methods, the RPS one resulted in very poor repeatability performances (1.42 mm), while the three and five points calibration methods achieve lower values (0.33 mm and 0.12 mm, respectively) which are closer to the reference repeatability (0.08 mm). Moreover, comparing the overall calibration times achieved by the three methods, it is shown that, incrementing the number of calibration points to more than five, it is not suggested since it could lead to a plateau in the performances, while increasing the overall calibration time. Full article
(This article belongs to the Special Issue Human–Robot Collaboration)
Show Figures

Figure 1

10 pages, 13790 KiB  
Communication
Determining Robotic Assistance for Inclusive Workplaces for People with Disabilities
by Elodie Hüsing, Carlo Weidemann, Michael Lorenz, Burkhard Corves and Mathias Hüsing
Robotics 2021, 10(1), 44; https://doi.org/10.3390/robotics10010044 - 5 Mar 2021
Cited by 9 | Viewed by 4331
Abstract
Human–robot collaboration (HRC) provides the opportunity to enhance the physical abilities of severely and multiply disabled people thus allowing them to work in industrial workplaces on the primary labour market. In order to assist this target group optimally, the collaborative robot has to [...] Read more.
Human–robot collaboration (HRC) provides the opportunity to enhance the physical abilities of severely and multiply disabled people thus allowing them to work in industrial workplaces on the primary labour market. In order to assist this target group optimally, the collaborative robot has to support them based on their individual capabilities. Therefore, the knowledge about the amount of required assistance is a central aspect for the design and programming of HRC workplaces. The paper introduces a new method that bases the task allocation on the individual capabilities of a person. The method obtains human capabilities on the one hand and the process requirements on the other. In the following step, these two profiles are compared and the workload of the human is acquired. This determines the amount of support or assistance, which should be provided by a robot capable of HRC. In the end, the profile comparison of an anonymized participant and the concept of the human–robot workplace is presented. Full article
(This article belongs to the Special Issue Human–Robot Collaboration)
Show Figures

Figure 1

20 pages, 9405 KiB  
Article
Mechatronic Re-Design of a Manual Assembly Workstation into a Collaborative One for Wire Harness Assemblies
by Ilaria Palomba, Luca Gualtieri, Rafael Rojas, Erwin Rauch, Renato Vidoni and Andrea Ghedin
Robotics 2021, 10(1), 43; https://doi.org/10.3390/robotics10010043 - 5 Mar 2021
Cited by 16 | Viewed by 5704
Abstract
Nowadays, the wire harness assembly process is still manually performed due to the process complexity and product variability (e.g., wires of different kind, size and length). The Wire cobots project, in which this work was conceived, aims at improving the current state-of-art assembly [...] Read more.
Nowadays, the wire harness assembly process is still manually performed due to the process complexity and product variability (e.g., wires of different kind, size and length). The Wire cobots project, in which this work was conceived, aims at improving the current state-of-art assembly process by introducing in it collaborative robotics. A shared workstation exploiting human abilities and machine strengths was developed to assembly automotive wire harness by means of insulated tape for a real industrial case. In the new workstation, the human deals with the complex task of wire handling, while the robot performs the repetitive and strenuous taping operations. Such a task allocation together with the workstation redesign allow for an improvement of the operator’s well-being in terms of postural conditions and for an increase of the production efficiency. In this paper, the mechanical and mechatronic design, as well as the realization and validation of this new collaborative workstation are presented and discussed. Full article
(This article belongs to the Special Issue Advances in Italian Robotics II)
Show Figures

Figure 1

23 pages, 2058 KiB  
Article
Globally Optimal Redundancy Resolution with Dynamic Programming for Robot Planning: A ROS Implementation
by Enrico Ferrentino, Federico Salvioli and Pasquale Chiacchio
Robotics 2021, 10(1), 42; https://doi.org/10.3390/robotics10010042 - 4 Mar 2021
Cited by 8 | Viewed by 6058
Abstract
Dynamic programming techniques have proven much more flexible than calculus of variations and other techniques in performing redundancy resolution through global optimization of performance indices. When the state and input spaces are discrete, and the time horizon is finite, they can easily accommodate [...] Read more.
Dynamic programming techniques have proven much more flexible than calculus of variations and other techniques in performing redundancy resolution through global optimization of performance indices. When the state and input spaces are discrete, and the time horizon is finite, they can easily accommodate generic constraints and objective functions and find Pareto-optimal sets. Several implementations have been proposed in previous works, but either they do not ensure the achievement of the globally optimal solution, or they have not been demonstrated on robots of practical relevance. In this communication, recent advances in dynamic programming redundancy resolution, so far only demonstrated on simple planar robots, are extended to be used with generic kinematic structures. This is done by expanding the Robot Operating System (ROS) and proposing a novel architecture meeting the requirements of maintainability, re-usability, modularity and flexibility that are usually required to robotic software libraries. The proposed ROS extension integrates seamlessly with the other software components of the ROS ecosystem, so as to encourage the reuse of the available visualization and analysis tools. The new architecture is demonstrated on a 7-DOF robot with a six-dimensional task, and topological analyses are carried out on both its state space and resulting joint-space solution. Full article
(This article belongs to the Special Issue Advances in Industrial Robotics and Intelligent Systems)
Show Figures

Figure 1

21 pages, 4259 KiB  
Article
Development of a High-Speed, Low-Latency Telemanipulated Robot Hand System
by Yuji Yamakawa, Yugo Katsuki, Yoshihiro Watanabe and Masatoshi Ishikawa
Robotics 2021, 10(1), 41; https://doi.org/10.3390/robotics10010041 - 3 Mar 2021
Cited by 5 | Viewed by 4802
Abstract
This paper focuses on development of a high-speed, low-latency telemanipulated robot hand system, evaluation of the system, and demonstration of the system. The characteristics of the developed system are the followings: non-contact, high-speed 3D visual sensing of the human hand, intuitive motion mapping [...] Read more.
This paper focuses on development of a high-speed, low-latency telemanipulated robot hand system, evaluation of the system, and demonstration of the system. The characteristics of the developed system are the followings: non-contact, high-speed 3D visual sensing of the human hand, intuitive motion mapping between human hands and robot hands, and low-latency, fast responsiveness to human hand motion. Such a high-speed, low-latency telemanipulated robot hand system can be considered to be more effective from the viewpoint of usability. The developed system consists of a high-speed vision system, a high-speed robot hand, and a real-time controller. For the developed system, we propose new methods of 3D sensing, mapping between the human hand and the robot hand, and the robot hand control. We evaluated the performance (latency and responsiveness) of the developed system. As a result, the latency of the developed system is so small that humans cannot recognize the latency. In addition, we conducted experiments of opening/closing motion, object grasping, and moving object grasping as demonstrations. Finally, we confirmed the validity and effectiveness of the developed system and proposed method. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

42 pages, 4180 KiB  
Review
A Review of Active Hand Exoskeletons for Rehabilitation and Assistance
by Tiaan du Plessis, Karim Djouani and Christiaan Oosthuizen
Robotics 2021, 10(1), 40; https://doi.org/10.3390/robotics10010040 - 3 Mar 2021
Cited by 78 | Viewed by 18682
Abstract
Disabilities are a global issue due to the decrease in life quality and mobility of patients, especially people suffering from hand disabilities. This paper presents a review of active hand exoskeleton technologies, over the past decade, for rehabilitation, assistance, augmentation, and haptic devices. [...] Read more.
Disabilities are a global issue due to the decrease in life quality and mobility of patients, especially people suffering from hand disabilities. This paper presents a review of active hand exoskeleton technologies, over the past decade, for rehabilitation, assistance, augmentation, and haptic devices. Hand exoskeletons are still an active research field due to challenges that engineers face and are trying to solve. Each hand exoskeleton has certain requirements to fulfil to achieve their aims. These requirements have been extracted and categorized into two sections: general and specific, to give a common platform for developing future devices. Since this is still a developing area, the requirements are also shaped according to the advances in the field. Technical challenges, such as size requirements, weight, ergonomics, rehabilitation, actuators, and sensors are all due to the complex anatomy and biomechanics of the hand. The hand is one of the most complex structures in the human body; therefore, to understand certain design approaches, the anatomy and biomechanics of the hand are addressed in this paper. The control of these devices is also an arising challenge due to the implementation of intelligent systems and new rehabilitation techniques. This includes intention detection techniques (electroencephalography (EEG), electromyography (EMG), admittance) and estimating applied assistance. Therefore, this paper summarizes the technology in a systematic approach and reviews the state of the art of active hand exoskeletons with a focus on rehabilitation and assistive devices. Full article
(This article belongs to the Special Issue Medical and Rehabilitation Robots)
Show Figures

Figure 1

17 pages, 2612 KiB  
Article
Model-Based Flow Rate Control with Online Model Parameters Identification in Automatic Pouring Machine
by Nobutoshi Kabasawa and Yoshiyuki Noda
Robotics 2021, 10(1), 39; https://doi.org/10.3390/robotics10010039 - 2 Mar 2021
Cited by 3 | Viewed by 3843
Abstract
In this study, we proposed an advanced control system for tilting-ladle-type automatic pouring machines in the casting industry. Automatic pouring machines have been introduced recently to improve the working environment of the pouring process. In the conventional study on pouring control, it has [...] Read more.
In this study, we proposed an advanced control system for tilting-ladle-type automatic pouring machines in the casting industry. Automatic pouring machines have been introduced recently to improve the working environment of the pouring process. In the conventional study on pouring control, it has been confirmed that the pouring flow rate control contributes to improving the accuracy of the entire automatic pouring machine, such as the outflow liquid’s falling position from the ladle, the liquid’s weight filled in the mold, and the sprue cup’s liquid level. However, the conventional control system has problems: it is not easy to precisely pour the liquid in the ladle with a large tilting angle, and it takes time to adjust the control parameters. Therefore, we proposed the feedforward pouring flow rate control system, constructed by the pouring process’ inverse model with the online model parameters identification. In this approach, we derived the pouring process’ mathematical model, representing precisely the pouring process with the ladle’s large tilting angle. The model parameters in the pouring process’ inverse model in the controller are updated online via the model parameters identification. To verify the proposed pouring control system’s efficacy, we experimented using the tilting-ladle-type automatic pouring machine. In the experimental results, the mean absolute error between the outflow liquid’s weight and the reference weight was improved from 0.1346 at the first pouring to 0.0498 at the fifth pouring. Moreover, the model parameters were identified within 4 s. Therefore, it enables updating the controller’s parameters within each pouring motion interval by the proposed approach. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

21 pages, 1381 KiB  
Article
Accessible Educational Resources for Teaching and Learning Robotics
by Maria Pozzi, Domenico Prattichizzo and Monica Malvezzi
Robotics 2021, 10(1), 38; https://doi.org/10.3390/robotics10010038 - 23 Feb 2021
Cited by 16 | Viewed by 6473
Abstract
Robotics is now facing the challenge of deploying newly developed devices into human environments, and for this process to be successful, societal acceptance and uptake of robots are crucial. Education is already playing a key role in raising awareness and spreading knowledge about [...] Read more.
Robotics is now facing the challenge of deploying newly developed devices into human environments, and for this process to be successful, societal acceptance and uptake of robots are crucial. Education is already playing a key role in raising awareness and spreading knowledge about robotic systems, and there is a growing need to create highly accessible resources to teach and learn robotics. In this paper, we revise online available educational material, including videos, podcasts, and coding tools, aimed at facilitating the learning of robotics related topics at different levels. The offer of such resources was recently boosted by the higher demand of distance learning tools due to the COVID-19 pandemic. The potential of e-learning for robotics is still under-exploited, and here we provide an updated list of resources that could help instructors and students to better navigate the large amount of information available online. Full article
(This article belongs to the Special Issue Advances and Challenges in Educational Robotics)
Show Figures

Figure 1

14 pages, 1432 KiB  
Article
Visual Intelligence: Prediction of Unintentional Surgical-Tool-Induced Bleeding during Robotic and Laparoscopic Surgery
by Mostafa Daneshgar Rahbar, Hao Ying and Abhilash Pandya
Robotics 2021, 10(1), 37; https://doi.org/10.3390/robotics10010037 - 21 Feb 2021
Cited by 4 | Viewed by 3947
Abstract
Unintentional vascular damage can result from a surgical instrument’s abrupt movements during minimally invasive surgery (laparoscopic or robotic). A novel real-time image processing algorithm based on local entropy is proposed that can detect abrupt movements of surgical instruments and predict bleeding occurrence. The [...] Read more.
Unintentional vascular damage can result from a surgical instrument’s abrupt movements during minimally invasive surgery (laparoscopic or robotic). A novel real-time image processing algorithm based on local entropy is proposed that can detect abrupt movements of surgical instruments and predict bleeding occurrence. The uniform nature of the texture of surgical tools is utilized to segment the tools from the background. By comparing changes in entropy over time, the algorithm determines when the surgical instruments are moved abruptly. We tested the algorithm using 17 videos of minimally invasive surgery, 11 of which had tool-induced bleeding. Our preliminary testing shows that the algorithm is 88% accurate and 90% precise in predicting bleeding. The average advance warning time for the 11 videos is 0.662 s, with the standard deviation being 0.427 s. The proposed approach has the potential to eventually lead to a surgical early warning system or even proactively attenuate tool movement (for robotic surgery) to avoid dangerous surgical outcomes. Full article
(This article belongs to the Section Medical Robotics and Service Robotics)
Show Figures

Figure 1

18 pages, 2375 KiB  
Article
Dynamic Parameter Identification of a Pointing Mechanism Considering the Joint Clearance
by Jing Sun, Xueyan Han, Tong Li and Shihua Li
Robotics 2021, 10(1), 36; https://doi.org/10.3390/robotics10010036 - 20 Feb 2021
Cited by 2 | Viewed by 3361
Abstract
The clearance of the revolute joint influences the accuracy of dynamic parameter identification. In order to address this problem, a method for dynamic parameter identification of an X–Y pointing mechanism while considering the clearance of the revolute joint is proposed in this paper. [...] Read more.
The clearance of the revolute joint influences the accuracy of dynamic parameter identification. In order to address this problem, a method for dynamic parameter identification of an X–Y pointing mechanism while considering the clearance of the revolute joint is proposed in this paper. Firstly, the nonlinear dynamic model of the pointing mechanism was established based on a modified contact model, which took the effect of the asperity of contact surface on joint clearance into consideration. Secondly, with the aim of achieving the anti-interference incentive trajectory, the trajectory was optimized according to the condition number of the observation matrix and the driving functions of activate joints that could be obtained. Thirdly, dynamic simulation was conducted through Adams software, and clearance was involved in the simulation model. Finally, the dynamic parameter identification of the pointing mechanism was conducted based on an artificial bee colony (ABC) algorithm. The identification result that considered joint clearance was compared with that which did not consider joint clearance. The results showed that the accuracy of the dynamic parameter identification was improved when the clearance was taken into consideration. This study provides a theoretical basis for the improvement of dynamic parameter identification accuracy. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

18 pages, 3041 KiB  
Article
Experimental Investigation of a Cable Robot Recovery Strategy
by Giovanni Boschetti, Riccardo Minto and Alberto Trevisani
Robotics 2021, 10(1), 35; https://doi.org/10.3390/robotics10010035 - 16 Feb 2021
Cited by 7 | Viewed by 4634
Abstract
Developing an emergency procedure for cable-driven parallel robots is not a trivial process, since it is not possible to halt the end-effector by quickly braking the actuators as in rigid-link manipulators. For this reason, the cable robot recovery strategy is an important topic [...] Read more.
Developing an emergency procedure for cable-driven parallel robots is not a trivial process, since it is not possible to halt the end-effector by quickly braking the actuators as in rigid-link manipulators. For this reason, the cable robot recovery strategy is an important topic of research, and the literature provides several approaches. However, the computational efficiency of the recovery algorithm is fundamental for real-time applications. Thus, this paper presents a recovery strategy adopted in an experimental setup consisting of a three degrees-of-freedom (3-DOF) suspended cable robot controlled by an industrial PC. The presentation of the used control system lists the industrial-grade components installed, further highlighting the industrial implication of the work. Lastly, the experimental validation of the recovery strategy proves the effectiveness of the work. Full article
(This article belongs to the Special Issue Feature Papers 2020)
Show Figures

Figure 1

23 pages, 3503 KiB  
Article
Time Coordination and Collision Avoidance Using Leader-Follower Strategies in Multi-Vehicle Missions
by Camilla Tabasso, Venanzio Cichella, Syed Bilal Mehdi, Thiago Marinho and Naira Hovakimyan
Robotics 2021, 10(1), 34; https://doi.org/10.3390/robotics10010034 - 13 Feb 2021
Cited by 12 | Viewed by 5001
Abstract
In recent years, the increasing popularity of multi-vehicle missions has been accompanied by a growing interest in the development of control strategies to ensure safety in these scenarios. In this work, we propose a control framework for coordination and collision avoidance in cooperative [...] Read more.
In recent years, the increasing popularity of multi-vehicle missions has been accompanied by a growing interest in the development of control strategies to ensure safety in these scenarios. In this work, we propose a control framework for coordination and collision avoidance in cooperative multi-vehicle missions based on a speed adjustment approach. The overall problem is decoupled in a coordination problem, in order to ensure coordination and inter-vehicle safety among the agents, and a collision-avoidance problem to guarantee the avoidance of non-cooperative moving obstacles. We model the network over which the cooperative vehicles communicate using tools from graph theory, and take communication losses and time delays into account. Finally, through a rigorous Lyapunov analysis, we provide performance bounds and demonstrate the efficacy of the algorithms with numerical and experimental results. Full article
(This article belongs to the Special Issue Women in Robotics)
Show Figures

Figure 1

18 pages, 1319 KiB  
Article
Impact of Cycle Time and Payload of an Industrial Robot on Resource Efficiency
by Florian Stuhlenmiller, Steffi Weyand, Jens Jungblut, Liselotte Schebek, Debora Clever and Stephan Rinderknecht
Robotics 2021, 10(1), 33; https://doi.org/10.3390/robotics10010033 - 12 Feb 2021
Cited by 11 | Viewed by 5064
Abstract
Modern industry benefits from the automation capabilities and flexibility of robots. Consequently, the performance depends on the individual task, robot and trajectory, while application periods of several years lead to a significant impact of the use phase on the resource efficiency. In this [...] Read more.
Modern industry benefits from the automation capabilities and flexibility of robots. Consequently, the performance depends on the individual task, robot and trajectory, while application periods of several years lead to a significant impact of the use phase on the resource efficiency. In this work, simulation models predicting a robot’s energy consumption are extended by an estimation of the reliability, enabling the consideration of maintenance to enhance the assessment of the application’s life cycle costs. Furthermore, a life cycle assessment yields the greenhouse gas emissions for the individual application. Potential benefits of the combination of motion simulation and cost analysis are highlighted by the application to an exemplary system. For the selected application, the consumed energy has a distinct impact on greenhouse gas emissions, while acquisition costs govern life cycle costs. Low cycle times result in reduced costs per workpiece, however, for short cycle times and higher payloads, the probability of required spare parts distinctly increases for two critical robotic joints. Hence, the analysis of energy consumption and reliability, in combination with maintenance, life cycle costing and life cycle assessment, can provide additional information to improve the resource efficiency. Full article
(This article belongs to the Special Issue Industrial Robotics in Industry 4.0)
Show Figures

Figure 1

29 pages, 4147 KiB  
Article
Adaptive Position/Force Control of a Robotic Manipulator in Contact with a Flexible and Uncertain Environment
by Piotr Gierlak
Robotics 2021, 10(1), 32; https://doi.org/10.3390/robotics10010032 - 12 Feb 2021
Cited by 8 | Viewed by 5315
Abstract
The present paper concerns the synthesis of robot movement control systems in the cases of disturbances of natural position constraints, which are the result of surface susceptibility and inaccuracies in its description. The study contains the synthesis of control laws, in which the [...] Read more.
The present paper concerns the synthesis of robot movement control systems in the cases of disturbances of natural position constraints, which are the result of surface susceptibility and inaccuracies in its description. The study contains the synthesis of control laws, in which the knowledge of parameters of the susceptible environment is not required, and which guarantee stability of the system in the case of an inaccurately described contact surface. The novelty of the presented solution is based on introducing an additional module to the control law in directions normal to the interaction surface, which allows for a fluent change of control strategy in the case of occurrence of distortions in the surface. An additional module in the control law is perceived as a virtual viscotic resistance force and resilient environment acting upon the robot. This interpretation facilitates intuitive selection of amplifications and allows for foreseeing the behavior of the system when disturbances occur. Introducing reactions of virtual constraints provides automatic adjustment of the robot interaction force with the susceptible environment, minimizing the impact of geometric inaccuracy of the environment. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

13 pages, 20917 KiB  
Article
Inverse and Forward Kinematic Analysis of a 6-DOF Parallel Manipulator Utilizing a Circular Guide
by Alexey Fomin, Anton Antonov, Victor Glazunov and Yuri Rodionov
Robotics 2021, 10(1), 31; https://doi.org/10.3390/robotics10010031 - 7 Feb 2021
Cited by 17 | Viewed by 5460
Abstract
The proposed study focuses on the inverse and forward kinematic analysis of a novel 6-DOF parallel manipulator with a circular guide. In comparison with the known schemes of such manipulators, the structure of the proposed one excludes the collision of carriages when they [...] Read more.
The proposed study focuses on the inverse and forward kinematic analysis of a novel 6-DOF parallel manipulator with a circular guide. In comparison with the known schemes of such manipulators, the structure of the proposed one excludes the collision of carriages when they move along the circular guide. This is achieved by using cranks (links that provide an unlimited rotational angle) in the manipulator kinematic chains. In this case, all drives stay fixed on the base. The kinematic analysis provides analytical relationships between the end-effector coordinates and six controlled movements in drives (driven coordinates). Examples demonstrate the implementation of the suggested algorithms. For the inverse kinematics, the solution is found given the position and orientation of the end-effector. For the forward kinematics, various assembly modes of the manipulator are obtained for the same given values of the driven coordinates. The study also discusses how to choose the links lengths to maximize the rotational capabilities of the end-effector and provides a calculation of such capabilities for the chosen manipulator design. Full article
Show Figures

Figure 1

13 pages, 2293 KiB  
Article
Balancing of the Orthoglide Taking into Account Its Varying Payload
by Jing Geng, Vigen Arakelian, Damien Chablat and Philippe Lemoine
Robotics 2021, 10(1), 30; https://doi.org/10.3390/robotics10010030 - 6 Feb 2021
Cited by 2 | Viewed by 3942
Abstract
For fast-moving robot systems, the fluctuating dynamic loads transmitted to the supporting frame can excite the base and cause noise, wear, and fatigue of mechanical components. By reducing the shaking force completely, the dynamic characteristics of the robot system can be improved. However, [...] Read more.
For fast-moving robot systems, the fluctuating dynamic loads transmitted to the supporting frame can excite the base and cause noise, wear, and fatigue of mechanical components. By reducing the shaking force completely, the dynamic characteristics of the robot system can be improved. However, the complete inertial force and inertial moment balancing can only be achieved by adding extra counterweight and counter-rotation systems, which largely increase the total mass, overall size, and complexity of robots. In order to avoid these inconveniences, an approach based on the optimal motion control of the center of mass is applied for the shaking force balancing of the robot Orthoglide. The application of the “bang–bang” motion profile on the common center of mass allows a considerable reduction of the acceleration of the total mass center, which results in the reduction of the shaking force. With the proposed method, the shaking force balancing of the Orthoglide is carried out, taking into account the varying payload. Note that such a solution by purely mechanical methods is complex and practically inapplicable for industrial robots. The simulations in ADAMS software validate the efficiency of the suggested approach. Full article
(This article belongs to the Special Issue Advances in European Robotics)
Show Figures

Figure 1

18 pages, 9207 KiB  
Article
An Application-Based Review of Haptics Technology
by Gowri Shankar Giri, Yaser Maddahi and Kourosh Zareinia
Robotics 2021, 10(1), 29; https://doi.org/10.3390/robotics10010029 - 5 Feb 2021
Cited by 36 | Viewed by 15118
Abstract
Recent technological development has led to the invention of different designs of haptic devices, electromechanical devices that mediate communication between the user and the computer and allow users to manipulate objects in a virtual environment while receiving tactile feedback. The main criteria behind [...] Read more.
Recent technological development has led to the invention of different designs of haptic devices, electromechanical devices that mediate communication between the user and the computer and allow users to manipulate objects in a virtual environment while receiving tactile feedback. The main criteria behind providing an interactive interface are to generate kinesthetic feedback and relay information actively from the haptic device. Sensors and feedback control apparatus are of paramount importance in designing and manufacturing a haptic device. In general, haptic technology can be implemented in different applications such as gaming, teleoperation, medical surgeries, augmented reality (AR), and virtual reality (VR) devices. This paper classifies the application of haptic devices based on the construction and functionality in various fields, followed by addressing major limitations related to haptics technology and discussing prospects of this technology. Full article
Show Figures

Figure 1

21 pages, 5759 KiB  
Article
Autonomous Elbow Controller for Differential Drive In-Pipe Robots
by Liam Brown, Joaquin Carrasco and Simon Watson
Robotics 2021, 10(1), 28; https://doi.org/10.3390/robotics10010028 - 2 Feb 2021
Cited by 10 | Viewed by 4098
Abstract
The inspection of legacy nuclear facilities to aid in decommissioning is a world wide issue. One of the challenges is the characterisation of pipe networks within them. This paper presents an autonomous control system for the navigation of these unknown pipe networks, specifically [...] Read more.
The inspection of legacy nuclear facilities to aid in decommissioning is a world wide issue. One of the challenges is the characterisation of pipe networks within them. This paper presents an autonomous control system for the navigation of these unknown pipe networks, specifically focusing on elbows. The controller utilises three low-cost feeler sensors to navigate the FURO II robot around 150 mm short elbows. The controller is shown to allow the robot to safely navigate around an elbow on all 39 attempts comparing that with the brute force method which only completed five of the nine attempts and damaging the robot. This shows the advantages of the proposed controller. A new metric (Impulse) is also proposed to compare the extra force applied to the robot over the time it is slipping in the elbow due to the errors in the drive unit speeds. Using this metric, the controller is shown to decrease the Impulse applied to the robot by 213.97 Ns when compared to the brute force method. Full article
(This article belongs to the Special Issue Advances in Robots for Hazardous Environments in the UK)
Show Figures

Figure 1

24 pages, 27317 KiB  
Article
Optimization-Based Constrained Trajectory Generation for Robot-Assisted Stitching in Endonasal Surgery
by Jacinto Colan, Jun Nakanishi, Tadayoshi Aoyama and Yasuhisa Hasegawa
Robotics 2021, 10(1), 27; https://doi.org/10.3390/robotics10010027 - 1 Feb 2021
Cited by 18 | Viewed by 4791
Abstract
The reduced workspace in endonasal endoscopic surgery (EES) hinders the execution of complex surgical tasks such as suturing. Typically, surgeons need to manipulate non-dexterous long surgical instruments with an endoscopic view that makes it difficult to estimate the distances and angles required for [...] Read more.
The reduced workspace in endonasal endoscopic surgery (EES) hinders the execution of complex surgical tasks such as suturing. Typically, surgeons need to manipulate non-dexterous long surgical instruments with an endoscopic view that makes it difficult to estimate the distances and angles required for precise suturing motion. Recently, robot-assisted surgical systems have been used in laparoscopic surgery with promising results. Although robotic systems can provide enhanced dexterity, robot-assisted suturing is still highly challenging. In this paper, we propose a robot-assisted stitching method based on an online optimization-based trajectory generation for curved needle stitching and a constrained motion planning framework to ensure safe surgical instrument motion. The needle trajectory is generated online by using a sequential convex optimization algorithm subject to stitching kinematic constraints. The constrained motion planner is designed to reduce surrounding damages to the nasal cavity by setting a remote center of motion over the nostril. A dual concurrent inverse kinematics (IK) solver is proposed to achieve convergence of the solution and optimal time execution, in which two constrained IK methods are performed simultaneously; a task-priority based IK and a nonlinear optimization-based IK. We evaluate the performance of the proposed method in a stitching experiment with our surgical robotic system in a robot-assisted mode and an autonomous mode in comparison to the use of a conventional surgical tool. Our results demonstrate a noticeable improvement in the stitching success ratio in the robot-assisted mode and the shortest completion time for the autonomous mode. In addition, the force interaction with the tissue was highly reduced when using the robotic system. Full article
(This article belongs to the Section Medical Robotics and Service Robotics)
Show Figures

Figure 1

27 pages, 4712 KiB  
Article
Unmanned Aerial Drones for Inspection of Offshore Wind Turbines: A Mission-Critical Failure Analysis
by Mahmood Shafiee, Zeyu Zhou, Luyao Mei, Fateme Dinmohammadi, Jackson Karama and David Flynn
Robotics 2021, 10(1), 26; https://doi.org/10.3390/robotics10010026 - 1 Feb 2021
Cited by 47 | Viewed by 15398
Abstract
With increasing global investment in offshore wind energy and rapid deployment of wind power technologies in deep water hazardous environments, the in-service inspection of wind turbines and their related infrastructure plays an important role in the safe and efficient operation of wind farm [...] Read more.
With increasing global investment in offshore wind energy and rapid deployment of wind power technologies in deep water hazardous environments, the in-service inspection of wind turbines and their related infrastructure plays an important role in the safe and efficient operation of wind farm fleets. The use of unmanned aerial vehicle (UAV) and remotely piloted aircraft (RPA)—commonly known as “drones”—for remote inspection of wind energy infrastructure has received a great deal of attention in recent years. Drones have significant potential to reduce not only the number of times that personnel will need to travel to and climb up the wind turbines, but also the amount of heavy lifting equipment required to carry out the dangerous inspection works. Drones can also shorten the duration of downtime needed to detect defects and collect diagnostic information from the entire wind farm. Despite all these potential benefits, the drone-based inspection technology in the offshore wind industry is still at an early stage of development and its reliability has yet to be proven. Any unforeseen failure of the drone system during its mission may cause an interruption in inspection operations, and thereby, significant reduction in the electricity generated by wind turbines. In this paper, we propose a semiquantitative reliability analysis framework to identify and evaluate the criticality of mission failures—at both system and component levels—in inspection drones, with the goal of lowering the operation and maintenance (O&M) costs as well as improving personnel safety in offshore wind farms. Our framework is built based upon two well-established failure analysis methodologies, namely, fault tree analysis (FTA) and failure mode and effects analysis (FMEA). It is then tested and verified on a drone prototype, which was developed in the laboratory for taking aerial photography and video of both onshore and offshore wind turbines. The most significant failure modes and underlying root causes within the drone system are identified, and the effects of the failures on the system’s operation are analysed. Finally, some innovative solutions are proposed on how to minimize the risks associated with mission failures in inspection drones. Full article
(This article belongs to the Special Issue Advances in Robots for Hazardous Environments in the UK)
Show Figures

Figure 1

26 pages, 5763 KiB  
Article
On Fast Jerk–, Acceleration– and Velocity–Restricted Motion Functions for Online Trajectory Generation
by Burkhard Alpers
Robotics 2021, 10(1), 25; https://doi.org/10.3390/robotics10010025 - 1 Feb 2021
Cited by 7 | Viewed by 5513
Abstract
Finding fast motion functions to get from an initial state (distance, velocity, acceleration) to a final one has been of interest for decades. For a solution to be practically relevant, restrictions on jerk, acceleration and velocity have to be taken into account. Such [...] Read more.
Finding fast motion functions to get from an initial state (distance, velocity, acceleration) to a final one has been of interest for decades. For a solution to be practically relevant, restrictions on jerk, acceleration and velocity have to be taken into account. Such solutions use optimization algorithms or try to directly construct a motion function allowing online trajectory generation. In this contribution, we follow the latter strategy and present an approach which first deals with the situation where initial and final accelerations are 0, and then relates the general case as much as possible to this situation. This leads to a classification with just four major cases. A continuity argument guarantees full coverage of all situations which is not the case or is not clear for other available algorithms. We present several examples that show the variety of different situations and, thus, the complexity of the task. We also describe an implementation in MATLAB® and results from a huge number of test runs regarding accuracy and efficiency, thus demonstrating that the algorithm is suitable for online trajectory generation. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

21 pages, 1150 KiB  
Article
Attitudes towards Social Robots in Education: Enthusiast, Practical, Troubled, Sceptic, and Mindfully Positive
by Matthijs H. J. Smakman, Elly A. Konijn, Paul Vogt and Paulina Pankowska
Robotics 2021, 10(1), 24; https://doi.org/10.3390/robotics10010024 - 26 Jan 2021
Cited by 14 | Viewed by 6880
Abstract
While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) [...] Read more.
While social robots bring new opportunities for education, they also come with moral challenges. Therefore, there is a need for moral guidelines for the responsible implementation of these robots. When developing such guidelines, it is important to include different stakeholder perspectives. Existing (qualitative) studies regarding these perspectives however mainly focus on single stakeholders. In this exploratory study, we examine and compare the attitudes of multiple stakeholders on the use of social robots in primary education, using a novel questionnaire that covers various aspects of moral issues mentioned in earlier studies. Furthermore, we also group the stakeholders based on similarities in attitudes and examine which socio-demographic characteristics influence these attitude types. Based on the results, we identify five distinct attitude profiles and show that the probability of belonging to a specific profile is affected by such characteristics as stakeholder type, age, education and income. Our results also indicate that social robots have the potential to be implemented in education in a morally responsible way that takes into account the attitudes of various stakeholders, although there are multiple moral issues that need to be addressed first. Finally, we present seven (practical) implications for a responsible application of social robots in education following from our results. These implications provide valuable insights into how social robots should be implemented. Full article
(This article belongs to the Special Issue Advances and Challenges in Educational Robotics)
Show Figures

Figure 1

20 pages, 6384 KiB  
Article
Monocular Visual Inertial Direct SLAM with Robust Scale Estimation for Ground Robots/Vehicles
by Bismaya Sahoo, Mohammad Biglarbegian and William Melek
Robotics 2021, 10(1), 23; https://doi.org/10.3390/robotics10010023 - 26 Jan 2021
Cited by 5 | Viewed by 4818
Abstract
In this paper, we present a novel method for visual-inertial odometry for land vehicles. Our technique is robust to unintended, but unavoidable bumps, encountered when an off-road land vehicle traverses over potholes, speed-bumps or general change in terrain. In contrast to tightly-coupled methods [...] Read more.
In this paper, we present a novel method for visual-inertial odometry for land vehicles. Our technique is robust to unintended, but unavoidable bumps, encountered when an off-road land vehicle traverses over potholes, speed-bumps or general change in terrain. In contrast to tightly-coupled methods for visual-inertial odometry, we split the joint visual and inertial residuals into two separate steps and perform the inertial optimization after the direct-visual alignment step. We utilize all visual and geometric information encoded in a keyframe by including the inverse-depth variances in our optimization objective, making our method a direct approach. The primary contribution of our work is the use of epipolar constraints, computed from a direct-image alignment, to correct pose prediction obtained by integrating IMU measurements, while simultaneously building a semi-dense map of the environment in real-time. Through experiments, both indoor and outdoor, we show that our method is robust to sudden spikes in inertial measurements while achieving better accuracy than the state-of-the art direct, tightly-coupled visual-inertial fusion method. Full article
(This article belongs to the Section Agricultural and Field Robotics)
Show Figures

Figure 1

13 pages, 1513 KiB  
Article
Deep Reinforcement Learning for the Control of Robotic Manipulation: A Focussed Mini-Review
by Rongrong Liu, Florent Nageotte, Philippe Zanne, Michel de Mathelin and Birgitta Dresp-Langley
Robotics 2021, 10(1), 22; https://doi.org/10.3390/robotics10010022 - 24 Jan 2021
Cited by 78 | Viewed by 13464
Abstract
Deep learning has provided new ways of manipulating, processing and analyzing data. It sometimes may achieve results comparable to, or surpassing human expert performance, and has become a source of inspiration in the era of artificial intelligence. Another subfield of machine learning named [...] Read more.
Deep learning has provided new ways of manipulating, processing and analyzing data. It sometimes may achieve results comparable to, or surpassing human expert performance, and has become a source of inspiration in the era of artificial intelligence. Another subfield of machine learning named reinforcement learning, tries to find an optimal behavior strategy through interactions with the environment. Combining deep learning and reinforcement learning permits resolving critical issues relative to the dimensionality and scalability of data in tasks with sparse reward signals, such as robotic manipulation and control tasks, that neither method permits resolving when applied on its own. In this paper, we present recent significant progress of deep reinforcement learning algorithms, which try to tackle the problems for the application in the domain of robotic manipulation control, such as sample efficiency and generalization. Despite these continuous improvements, currently, the challenges of learning robust and versatile manipulation skills for robots with deep reinforcement learning are still far from being resolved for real-world applications. Full article
(This article belongs to the Special Issue Robotics: Intelligent Control Theory)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop