Robot Anticipation Learning System for Ball Catching †
Abstract
:1. Introduction
- RALS is developed, the first robot control system for catching flying objects with anticipation skills, using visual information from the thrower’s hand motion.
- A learning mechanism is implemented to map the noisy vision information into a prediction of the ball’s position and velocity at the moment of release.
- RALS was implemented and successfully evaluated for different levels of sensor noise and limits of the robot joint velocities.
2. Related Work
3. Experimental Setup
3.1. Simulation Scenario
3.2. Human Demonstrations of Underarm Throwing
3.3. Data Generation in Preparatory and Ballistic Phases
3.4. Release Parameters versus Catching Point
4. The Anticipation Learning System
4.1. Anticipation Model
- Phase A (throwing phase)—refers to the sequence of movements from the hand of the thrower, before the ball is released:
- Phase B (ballistic phase)—refers to the ball’s motion after release.
- Joint Position-Velocity prediction—Prediction of the ball’s position and velocity at the start of the ballistic phase () with one NN model. This corresponds to a regression between a ()-dimensional input (L samples of spatial position and velocity) and a six-dimensional output (spatial position and velocity at the transition time T),
- Separated Position and Velocity prediction—Separate prediction of the ball initial position () and initial velocity () at the moment of release,
4.2. Anticipation Model Training
4.2.1. Model 1 (Joint Position-Velocity Prediction)
4.2.2. Model 2 (Separated Position and Velocity Prediction)
Algorithm 1: RALS-based Ball Catching Process. |
PROCEDURE: Anticipation Model Training (offline) |
, ⇐ train separate NN models to predict the ball position and velocity at release state after observing the first L-samples of the thrower’s motion. |
END PROCEDURE |
PROCEDURE: Simulation (online) |
for do |
PHASE A (throwing phase) |
if (ball in hand & L-samples) then |
, ⇐ NN models generate the initial conditions of the flying ball; Compute the ball’s trajectory with a parabolic motion; Compute potential catching point; move the robot arm in the target direction. |
end if |
PHASE B (ballistic phase) |
if (ball flying & S-samples) then |
Switching time for recursive estimation of the ball’s trajectory through least square optimization; Move the robot arm in direction to the estimated catching point. |
end if |
if (ball is catchable) then |
⇐ determine the catching point as the closest one to the current end-effector position; ⇐ move the arm using a Jacobian-based IK algorithm and read current joint angles; |
if Distance(Ball,EndEffector) < 2 cm then |
Ball caught—exit the simulation loop; |
end if |
else |
Move the end-effector towards the last catchable point or stay in the current state; |
end if |
END FOR |
END PROCEDURE |
5. Results
5.1. Switching Time between Perception and Action
5.2. Signal-to-Noise Variation
5.3. Maximum Joint Velocity Variation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Nemec, B.; Ude, A. Reinforcement learning of ball-in-a-cup playing robot. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011, Karon Beach, Thailand, 7–11 December 2011. [Google Scholar] [CrossRef]
- Kober, J.; Peters, J. Policy search for motor primitives in robotics. Mach. Learn. 2011, 84, 171–203. [Google Scholar] [CrossRef] [Green Version]
- Bujarbaruah, M.; Zheng, T.; Shetty, A.; Sehr, M.; Borrelli, F. Learning to Play Cup-and-Ball with Noisy Camera Observations. In Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Hong Kong, China, 20–21 August 2020. [Google Scholar] [CrossRef]
- Senoo, T.; Namiki, A.; Ishikawa, M. Hybrid Trajectory Generation of an Articulated Manipulator for High-speed Batting. J. Robot. Soc. Jpn. 2006, 24, 515–522. [Google Scholar] [CrossRef]
- Muelling, K.; Kroemer, O.; Lampert, C.H.; Schölkopf, B. Movement Templates for Learning of Hitting and Batting. In Learning Motor Skills; Springer Tracts in Advanced Robotics; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Jia, Y.B.; Gardner, M.; Mu, X. Batting an in-flight object to the target. Int. J. Robot. Res. 2019, 38, 451–485. [Google Scholar] [CrossRef]
- Bäuml, B.; Birbach, O.; Wimböck, T.; Frese, U.; Dietrich, A.; Hirzinger, G. Catching flying balls with a mobile humanoid: System overview and design considerations. In Proceedings of the 11th IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia, 26–28 October 2011; pp. 513–520. [Google Scholar]
- Kim, S.; Shukla, A.; Billard, A. Catching objects in flight. IEEE Trans. Robot. 2014, 30, 1049–1065. [Google Scholar] [CrossRef]
- Salehian, S.S.M.; Khoramshahi, M.; Billard, A. A dynamical system approach for softly catching a flying object: Theory and experiment. IEEE Trans. Robot. 2016, 32, 462–471. [Google Scholar] [CrossRef]
- Schill, M.M.; Buss, M. Robust Ballistic Catching: A Hybrid System Stabilization Problem. IEEE Trans. Robot. 2018, 34, 1502–1517. [Google Scholar] [CrossRef]
- Kao, S.T.; Ho, M.T. Ball-catching system using image processing and an omni-directional wheeled mobile robot. Sensors 2021, 21, 3208. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, A.A.; Koditschek, D.E. Progress in spatial robot juggling. In Proceedings of the IEEE International Conference on Robotics and Automation, Nice, France, 12–14 May 1992. [Google Scholar] [CrossRef] [Green Version]
- Reist, P.; Drandrea, R. Design and analysis of a blind juggling Robot. IEEE Trans. Robot. 2012, 28, 1228–1243. [Google Scholar] [CrossRef]
- Poggensee, K.L.; Li, A.H.; Sotsaikich, D.; Zhang, B.; Kotaru, P.; Mueller, M.; Sreenath, K. Ball Juggling on the Bipedal Robot Cassie. In Proceedings of the European Control Conference 2020 (ECC 2020), St. Petersburg, Russia, 12–15 May 2020. [Google Scholar] [CrossRef]
- Andersson, R.L. Aggressive Trajectory Generator for a Robot Ping-Pong Player. IEEE Control Syst. Mag. 1989, 9, 15–21. [Google Scholar] [CrossRef]
- Mülling, K.; Kober, J.; Peters, J. A biomimetic approach to robot table tennis. Adapt. Behav. 2011, 19, 359–376. [Google Scholar] [CrossRef]
- Li, H.; Wu, H.; Lou, L.; Kühnlenz, K.; Ravn, O. Ping-pong robotics with high-speed vision system. In Proceedings of the 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), Guangzhou, China, 5–7 December 2012. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Boularias, A.; Mülling, K.; Schölkopf, B.; Peters, J. Anticipatory action selection for human–robot table tennis. Artif. Intell. 2014, 247, 399–414. [Google Scholar] [CrossRef]
- Peper, L.; Bootsma, R.J.; Mestre, D.R.; Bakker, F.C. Catching balls: How to get the hand to the right place at the right time. J. Exp. Psychol. Hum. Percept. Perform. 1994, 20, 591. [Google Scholar] [CrossRef] [PubMed]
- Cesqui, B.; Russo, M.; Lacquaniti, F.; d’Avella, A. Grasping in one-handed catching in relation to performance. PLoS ONE 2016, 11, e0158606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carneiro, D.; Silva, F.; Georgieva, P. The role of early anticipations for human-robot ball catching. In Proceedings of the 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Torres Vedras, Portugal, 25–27 April 2018; pp. 10–16. [Google Scholar]
- Hove, B.; Slotine, J.J.E. Experiments in robotic catching. In Proceedings of the 1991 American Control Conference, Boston, MA, USA, 26–28 June 1991; pp. 380–386. [Google Scholar]
- Hong, W.; Slotine, J.J.E. Experiments in hand-eye coordination using active vision. In Experimental Robotics IV; Springer: Berlin/Heidelberg, Germany, 1997; pp. 130–139. [Google Scholar]
- Nishiwaki, K.; Ionno, A.; Nagashima, K.; Inaba, M.; Inoue, H. The humanoid saika that catches a thrown ball. In Proceedings of the 6th IEEE International Workshop on Robot and Human Communication, RO-MAN’97 SENDAI, Sendai, Japan, 29 September–1 October 1997; pp. 94–99. [Google Scholar]
- Frese, U.; Bauml, B.; Haidacher, S.; Schreiber, G.; Schäfer, I.; Hahnle, M.; Hirzinger, G. Off-the-shelf vision for a robotic ball catcher. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180), Maui, HI, USA, 29 October–3 November 2001; Volume 3, pp. 1623–1629. [Google Scholar]
- Riley, M.; Atkeson, C.G. Robot catching: Towards engaging human-humanoid interaction. Auton. Robot. 2002, 12, 119–128. [Google Scholar] [CrossRef]
- Park, G.R.; Kim, K.; Kim, C.; Jeong, M.H.; You, B.J.; Ra, S. Human-like catching motion of humanoid using evolutionary algorithm (ea)-based imitation learning. In Proceedings of the RO-MAN 2009—The 18th IEEE International Symposium on Robot and Human Interactive Communication, Toyama, Japan, 27 September–2 October 2009; pp. 809–815. [Google Scholar]
- Kim, S.; Gribovskaya, E.; Billard, A. Learning motion dynamics to catch a moving object. In Proceedings of the 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 6–8 December 2010; pp. 106–111. [Google Scholar]
- Bäuml, B.; Wimböck, T.; Hirzinger, G. Kinematically optimal catching a flying ball with a hand-arm-system. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 2592–2599. [Google Scholar]
- Dong, K.; Pereida, K.; Shkurti, F.; Schoellig, A.P. Catch the Ball: Accurate high-speed motions for mobile manipulators via inverse dynamics learning. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021. [Google Scholar] [CrossRef]
- Yu, H.; Guo, D.; Yin, H.; Chen, A.; Xu, K.; Wang, Y.; Xiong, R. Neural Motion Prediction for In-flight Uneven Object Catching. arXiv 2021, arXiv:2103.08368v1. [Google Scholar]
- Allen, P.K.; Timcenko, A.; Yoshimi, B.; Michelman, P. Automated Tracking and Grasping of a Moving Object with a Robotic Hand-Eye System. IEEE Trans. Robot. Autom. 1993, 9, 152–165. [Google Scholar] [CrossRef]
- Deguchi, K.; Sakurai, H.; Ushida, S. A goal oriented just-in-time visual servoing for ball catching robot arm. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, Nice, France, 22–26 September 2008. [Google Scholar] [CrossRef]
- Cigliano, P.; Lippiello, V.; Ruggiero, F.; Siciliano, B. Robotic Ball Catching with an Eye-in-Hand Single-Camera System. IEEE Trans. Control Syst. Technol. 2015, 23, 1657–1671. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Takahashi, A.; Namiki, A. High-speed catching by multi-vision robot hand. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021. [Google Scholar] [CrossRef]
- Ardakani, M.M.G.; Olofsson, B.; Robertsson, A.; Johansson, R. Real-time trajectory generation using model predictive control. In Proceedings of the 2015 IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015. [Google Scholar] [CrossRef] [Green Version]
- Stone, J.A.; Maynard, I.; North, J.S.; Panchuk, D.; Davids, K. Emergent perception–action couplings regulate postural adjustments during performance of externally-timed dynamic interceptive actions. Psychol. Res. 2015, 79, 829–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigurdsson, G.A.; Russakovsky, O.; Gupta, A. What Actions are Needed for Understanding Human Actions in Videos? arXiv 2017, arXiv:1708.02696. [Google Scholar]
- Yoshikawa, T. Foundations of Robotics: Analysis and Control; MIT Press: Cambridge, MA, USA, 1990. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carneiro, D.; Silva, F.; Georgieva, P. Robot Anticipation Learning System for Ball Catching. Robotics 2021, 10, 113. https://doi.org/10.3390/robotics10040113
Carneiro D, Silva F, Georgieva P. Robot Anticipation Learning System for Ball Catching. Robotics. 2021; 10(4):113. https://doi.org/10.3390/robotics10040113
Chicago/Turabian StyleCarneiro, Diogo, Filipe Silva, and Petia Georgieva. 2021. "Robot Anticipation Learning System for Ball Catching" Robotics 10, no. 4: 113. https://doi.org/10.3390/robotics10040113
APA StyleCarneiro, D., Silva, F., & Georgieva, P. (2021). Robot Anticipation Learning System for Ball Catching. Robotics, 10(4), 113. https://doi.org/10.3390/robotics10040113