Machine Learning Reveals a Significant Shift in Water Regime Types Due to Projected Climate Change
Abstract
:1. Introduction
- Could a modern machine learning-based model classify water regime types based on climatological runoff hydrographs?
- If yes, how water regime types will change due to projected changes in global climate by the end of the 21st century?
2. Materials and Methods
2.1. Ground-Truth Classification of Water Regime Types
2.2. Study Region
2.3. Runoff Data
- Runoff reanalysis for the historical period (R5, 1979–2016);
- Future runoff projections (R5CH, 2006–2099) based on four GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC5) and three respective RCPs (RCP26, RCP60, RCP85) [30].
2.4. Classification Approach
2.4.1. Random Forest Model
2.4.2. Training Data Preprocessing
2.4.3. Cross-Validation Procedure
2.5. Summary of the Proposed Workflow
- We digitize the map “Water regime of the rivers of Russia and neighboring territories” and simplify it in a grid cell-based manner (Section 2.1);
- For each grid cell, we extract the corresponding type of water regime;
- For each grid cell, we extract relative monthly runoff based on R5 historical runoff reanalysis for the period 1979–1991 (Section 2.3);
- Using the compiled dataset derived in steps 2 and 3, we train the Random Forest classification model using extensive grid search and cross-validation procedures (Section 2.4);
- For each grid cell, we extract the future projections of the relative monthly runoff based on the R5CH dataset that combines runoff estimates derived by using four GCMs and three RCPs for the period 2087–2099 (Section 2.3). The corresponding projected period (2087–2099) has been selected as the most distant from the historical reference period (1979–1991) with the same duration (13 years). We assume that due to that selection of periods, the obtained changes in the water regime types will be most pronounced; thus, better described and disseminated;
- Using the trained Random Forest model (Section 2.4) and a scenario of future projection of monthly runoff, we calculate the expected type of water regime at the end of the 21st century.
3. Results and Discussion
3.1. Determination of the Historical Baseline
3.2. Classification Model Accuracy
3.3. Projected Changes of Water Regime Types
3.4. Prediction Uncertainty
4. Conclusions
- Could a modern machine learning-based model classify water regime types based on climatological runoff hydrographs?
- If yes, how water regime types will change due to projected changes in global climate by the end of the 21st century?
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CRED. Natural Disasters 2019. 2020. Available online: https://emdat.be/sites/default/files/adsr_2019.pdf (accessed on 25 June 2020).
- United Nations Office for Disarmament Affairs. Human Cost of Disasters; United Nations: Herndon, VA, USA, 2020. [Google Scholar]
- UN World Water Development Report 2020. Available online: https://www.unwater.org/publications/world-water-development-report-2020/ (accessed on 25 June 2020).
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Blöschl, G.; Kiss, A.; Viglione, A.; Barriendos, M.; Böhm, O.; Brázdil, R.; Coeur, D.; Demarée, G.; Llasat, M.C.; Macdonald, N.; et al. Current European flood-rich period exceptional compared with past 500 years. Nature 2020, 583, 560–566. [Google Scholar] [CrossRef] [PubMed]
- WWAP (World Water Assessment Programme). The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk; UNESCO: Paris, France, 2012. [Google Scholar]
- WCRP Coupled Model Intercomparison Project (CMIP). Available online: https://www.wcrp-climate.org/wgcm-cmip (accessed on 25 June 2020).
- IPCC. Climate Change 1990: The Science of Climate Change; The Intergovernmental Panel on Climate Change: Geneva, Switzerland, 1996. [Google Scholar]
- IPCC. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Maraun, D. Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Clim. 2013, 26, 2137–2143. [Google Scholar] [CrossRef] [Green Version]
- Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 2019, 12, 3055–3070. [Google Scholar] [CrossRef] [Green Version]
- Dankers, R.; Arnell, N.W.; Clark, D.B.; Falloon, P.D.; Fekete, B.M.; Gosling, S.N.; Heinke, J.; Kim, H.; Masaki, Y.; Satoh, Y.; et al. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proc. Natl. Acad. Sci. USA 2014, 111, 3257–3261. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Kumar, R.; Flörke, M.; Yang, T.; Hundecha, Y.; Kraft, P.; Gao, C.; Gelfan, A.; Liersch, S.; Lobanova, A.; et al. Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide. Clim. Chang. 2017, 141, 381–397. [Google Scholar] [CrossRef]
- Krysanova, V.; Donnelly, C.; Gelfan, A.; Gerten, D.; Arheimer, B.; Hattermann, F.; Kundzewicz, Z.W. How the performance of hydrological models relates to credibility of projections under climate change. Hydrol. Sci. J. 2018, 63, 696–720. [Google Scholar] [CrossRef]
- Olsson, J.; Arheimer, B.; Borris, M.; Donnelly, C.; Foster, K.; Nikulin, G.; Persson, M.; Perttu, A.M.; Uvo, C.B.; Viklander, M.; et al. Hydrological climate change impact assessment at small and large scales: Key messages from recent progress in Sweden. Climate 2016, 4, 39. [Google Scholar] [CrossRef]
- Gusev, E.; Nasonova, O.; Kovalev, E.; Ayzel, G. Modelling water balance components of river basins located in different regions of the globe. Water Resour. 2018, 45, 53–64. [Google Scholar] [CrossRef]
- Ayzel, G.; Izhitskiy, A. Climate change impact assessment on freshwater inflow into the Small Aral Sea. Water 2019, 11, 2377. [Google Scholar] [CrossRef] [Green Version]
- Rottler, E.; Bronstert, A.; Bürger, G.; Rakovec, O. Projected changes in Rhine River flood seasonality under global warming. Hydrol. Earth Syst. Sci. 2021, 25, 2353–2371. [Google Scholar] [CrossRef]
- Liu, W.; Yang, T.; Sun, F.; Wang, H.; Feng, Y.; Du, M. Observation-Constrained Projection of Global Flood Magnitudes With Anthropogenic Warming. Water Resour. Res. 2021, 57, e2020WR028830. [Google Scholar] [CrossRef]
- Giuntoli, I.; Prosdocimi, I.; Hannah, D.M. Going Beyond the Ensemble Mean: Assessment of Future Floods From Global Multi-Models. Water Resour. Res. 2021, 57, e2020WR027897. [Google Scholar] [CrossRef]
- von Brömssen, C.; Betnér, S.; Fölster, J.; Eklöf, K. A toolbox for visualizing trends in large-scale environmental data. Environ. Model. Softw. 2021, 136, 104949. [Google Scholar] [CrossRef]
- Gusev, E.; Nasonova, O.; Kovalev, E.; Ayzel, G. Possible climate change impact on river runoff in the different regions of the globe. Russ. Meteorol. Hydrol. 2018, 43, 397–403. [Google Scholar] [CrossRef]
- Schneider, C.; Laizé, C.L.R.; Acreman, M.C.; Flörke, M. How will climate change modify river flow regimes in Europe? Hydrol. Earth Syst. Sci. 2013, 17, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Frolova, N.; Povalishnikova, E.; Kireeva, M. Classification and Zoning of Rivers by Their Water Regime: History, Methodology, and Perspectives. Water Resour. 2021, 48, 169–181. [Google Scholar] [CrossRef]
- Evstigneev, V.; Zaitsev, A.; Svatkova, T.; Chalov, R.; Shenberg, N. Water regime of the rivers of the USSR (high school map at a scale of 1: 8 000 000). Vestn. Mosk. Univ. Seriya 5 Geogr. 1990, 5, 10–16. [Google Scholar]
- Evstigneev, V.; Shenberg, N.; Anisimova, N.; Zaitsev, A. Water regime of the rivers of Russia and neighboring territories. In Map for Higher Education Institutions at Scale 1:8,000,000; Roskartografia: Moscow, Russia, 2001. [Google Scholar]
- Ayzel, G.; Kurochkina, L.; Zhuravlev, S. The influence of regional hydrometric data incorporation on the accuracy of gridded reconstruction of monthly runoff. Hydrol. Sci. J. 2020, 1–12. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation: 2021. Available online: https://www.qgis.org (accessed on 30 September 2021).
- Ayzel, G.; Kurochkina, L.; Abramov, D.; Zhuravlev, S. Development of a Regional Gridded Runoff Dataset Using Long Short-Term Memory (LSTM) Networks. Hydrology 2021, 8, 6. [Google Scholar] [CrossRef]
- Ayzel, G.; Kurochkina, L.; Kazakov, E.; Krinitskiy, M.; Zhuravlev, S. Regional Revised River Runoff Reanalysis (R5): Historical and Projected River Runoff Data Set for the Northwest of the European Part of Russia. 2021. Available online: https://doi.org/10.5281/zenodo.4485391 (accessed on 30 September 2021).
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Frieler, K.; Lange, S.; Piontek, F.; Reyer, C.P.O.; Schewe, J.; Warszawski, L.; Zhao, F.; Chini, L.; Denvil, S.; Emanuel, K.; et al. Assessing the impacts of 1.5° global warming–simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 2017, 10, 4321–4345. [Google Scholar] [CrossRef] [Green Version]
- Haines, A.T.; Finlayson, B.L.; McMahon, T.A. A global classification of river regimes. Appl. Geogr. 1988, 8, 255–272. [Google Scholar] [CrossRef]
- Oueslati, O.; De Girolamo, A.M.; Abouabdillah, A.; Kjeldsen, T.R.; Lo Porto, A. Classifying the flow regimes of Mediterranean streams using multivariate analysis. Hydrol. Process. 2015, 29, 4666–4682. [Google Scholar] [CrossRef]
- Snelder, T.H.; Booker, D.J. Natural flow regime classifications are sensitive to definition procedures. River Res. Appl. 2013, 29, 822–838. [Google Scholar] [CrossRef]
- Berhanu, B.; Seleshi, Y.; Demisse, S.S.; Melesse, A.M. Flow regime classification and hydrological characterization: A case study of Ethiopian rivers. Water 2015, 7, 3149–3165. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Tyralis, H.; Papacharalampous, G.; Langousis, A. A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources. Water 2019, 11, 910. [Google Scholar] [CrossRef] [Green Version]
- Dramsch, J.S. Chapter One-70 years of machine learning in geoscience in review. In Advances in Geophysics; Moseley, B., Krischer, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 61, pp. 1–55. [Google Scholar] [CrossRef]
- Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 56–61. [Google Scholar] [CrossRef] [Green Version]
- Pandas Development Team, T. Pandas-Dev/Pandas: Pandas. 2020. Available online: https://doi.org/10.5281/zenodo.3509134 (accessed on 30 September 2021).
- Jordahl, K.; den Bossche, J.V.; Fleischmann, M.; Wasserman, J.; McBride, J.; Gerard, J.; Tratner, J.; Perry, M.; Badaracco, A.G.; Farmer, C.; et al. Geopandas/Geopandas: V0.8.1. 2020. Available online: https://doi.org/10.5281/zenodo.3946761 (accessed on 30 September 2021).
- Hoyer, S.; Hamman, J. xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- The Russian National Atlas. Available online: xn–80aaaa1bhnclcci1cl5c4ep.xn–p1ai/cd2/190/190.htm (accessed on 25 June 2020).
- Ivanov, A.; Samsonov, T.; Frolova, N.; Kireeva, M.; Povalishnikova, E. Objective classification of changes in water regime types of the Russian Plain rivers utilizing machine learning approaches. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 4–8 May 2020; p. 11553. [Google Scholar]
- Ayzel, G. Random Forest-Based Model for Water Regime Type Prediction in the Northwest of the European Part of Russia. 2021. Available online: https://doi.org/10.5281/zenodo.4966175 (accessed on 30 September 2021).
- Sheng, V.S.; Zhang, J.; Gu, B.; Wu, X. Majority Voting and Pairing with Multiple Noisy Labeling. IEEE Trans. Knowl. Data Eng. 2019, 31, 1355–1368. [Google Scholar] [CrossRef]
- Rets, E.P.; Durmanov, I.N.; Kireeva, M.B.; Smirnov, A.M.; Popovnin, V.V. Past ‘peak water’ in the North Caucasus: Deglaciation drives a reduction in glacial runoff impacting summer river runoff and peak discharges. Clim. Chang. 2020, 163, 2135–2151. [Google Scholar] [CrossRef]
- Zemp, M.; Frey, H.; Gärtner-Roer, I.; Nussbaumer, S.U.; Hoelzle, M.; Paul, F.; Haeberli, W.; Denzinger, F.; Ahlstrøm, A.P.; Anderson, B.; et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 2015, 61, 745–762. [Google Scholar] [CrossRef] [Green Version]
- Kireeva, M.; Frolova, N.; Rets, E.; Samsonov, T.; Entin, A.; Kharlamov, M.; Telegina, E.; Povalishnikova, E. Evaluating climate and water regime transformation in the European part of Russia using observation and reanalysis data for the 1945–2015 period. Int. J. River Basin Manag. 2020, 18, 491–502. [Google Scholar] [CrossRef]
- Zaikov, B. Average runoff and its distribution per year on the territory of the USSR. Proc. Natl. Res. Univ. Main Dep. Hydrometeorol. Serv. USSR IV 1946, 24, 67–95. [Google Scholar]
- Kireeva, M.B.; Rets, E.P.; Frolova, N.L.; Samsonov, T.E.; Povalishnikova, E.S.; Entin, A.L.; Durmanov, I.N.; Ivanov, A.M. Occasional Floods on the Rivers of Russian plain in the 20th–21st centuries. Geogr. Environ. Sustain. 2020, 13, 84–95. [Google Scholar] [CrossRef]
- Nasonova, O.N.; Gusev, Y.M.; Kovalev, E.E.; Ayzel, G.V. Climate change impact on streamflow in large-scale river basins: Projections and their uncertainties sourced from GCMs and RCP scenarios. Proc. Int. Assoc. Hydrol. Sci. 2018, 379, 139–144. [Google Scholar] [CrossRef]
Water Regime Type Number | High-Water Phase | Summer-Autumn | Winter |
---|---|---|---|
2 | Spring flood | Stable low water with occasional floods | Stable low water |
3 | Spring flood | Intermittent low water | Stable low water |
8 | Spring-summer flood | Intermittent low water with floods, reaching the height of the maximum spring flood | Stable low water |
14 | Spring flood | Stable low water with occasional floods | Stable low water, in rare winters interrupted by thawing floods |
15 | Spring flood | Intermittent low water | Stable low water, in rare winters interrupted by thawing floods |
16 | Spring flood | Stable low water with occasional floods | Stable low water, in some years intermittent |
17 | Spring flood | Intermittent low water | Stable low water, in some years intermittent |
37 | Temporary waterways of the Arctic islands |
Water Regime Type Number | Number of Grid Cells | Relative Coverage, % |
---|---|---|
2 | 130 | 9.1 |
3 | 901 | 63.3 |
8 | 4 | 0.3 |
14 | 35 | 2.5 |
15 | 338 | 23.7 |
17 | 16 | 1.1 |
Water Regime Type Number | HST | PRJ, RCP 2.6 | PRJ, RCP 6.0 | PRJ, RCP 8.5 |
---|---|---|---|---|
2 | 9.1 | 0 | 0 | 0 |
3 | 63.3 | 15.4 | 1.5 | 0.1 |
8 | 0.3 | 0 | 0 | 0 |
14 | 2.5 | 2.5 | 0.1 | 0.1 |
15 | 23.7 | 69 | 67.4 | 46.3 |
17 | 1.1 | 13.1 | 31 | 53.5 |
Scenario | Relative Affected Area, % | Low Confidence, % | High Confidence, % |
---|---|---|---|
RCP 2.6 | 73.6 | 10 | 90 |
RCP 6.0 | 96.2 | 15 | 85 |
RCP 8.5 | 98 | 28 | 72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayzel, G. Machine Learning Reveals a Significant Shift in Water Regime Types Due to Projected Climate Change. ISPRS Int. J. Geo-Inf. 2021, 10, 660. https://doi.org/10.3390/ijgi10100660
Ayzel G. Machine Learning Reveals a Significant Shift in Water Regime Types Due to Projected Climate Change. ISPRS International Journal of Geo-Information. 2021; 10(10):660. https://doi.org/10.3390/ijgi10100660
Chicago/Turabian StyleAyzel, Georgy. 2021. "Machine Learning Reveals a Significant Shift in Water Regime Types Due to Projected Climate Change" ISPRS International Journal of Geo-Information 10, no. 10: 660. https://doi.org/10.3390/ijgi10100660
APA StyleAyzel, G. (2021). Machine Learning Reveals a Significant Shift in Water Regime Types Due to Projected Climate Change. ISPRS International Journal of Geo-Information, 10(10), 660. https://doi.org/10.3390/ijgi10100660