Morpho-tectonic Assessment of the Abu-Dabbab Area, Eastern Desert, Egypt: Insights from Remote Sensing and Geospatial Analysis
Abstract
:1. Introduction
2. Geological Setting
3. Seismicity
4. Methodology
4.1. Remote Sensing
4.2. Morphological Indexes
4.2.1. Valley Floor Width-to-Valley Floor Height Ratio (Vf)
4.2.2. Mountain Front Sinuosity (Smf)
4.2.3. Asymmetry Factor Index (AF)
4.2.4. Drainage Basin Shape Index (Bs)
4.2.5. Stream Length–Gradient Index (SL)
4.2.6. Hypsometric Integral (Hi)
4.3. Relative Tectonic Activity Index (RTAI)
5. Results
5.1. Valley Floor Width-to-Valley Floor Height Ratio (Vf)
5.2. Mountain Front Sinuosity (Smf)
5.3. Asymmetry Factor Index (Af)
5.4. Drainage Basin Shape Index (BS)
5.5. Hypsometric Integral (Hi)
5.6. Relative Tectonic Activity Index (RTAI)
6. Discussions on Relative Tectonic Activity
6.1. Insights from the Morphological Indexes
6.2. Origin of Seismicity
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yıldırım, C. Relative tectonic activity assessment of the Tuz Gölü Fault zone; Central Anatolia, Turkey. Tectonophysics 2014, 630, 183–192. [Google Scholar] [CrossRef]
- Buczek, K.; Górnik, M. Evaluation of tectonic activity using morphometric indices: Case study of the Tatra Mts. (Western Carpathians, Poland). Environ. Earth Sci. 2020, 79, 176. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, D.; Schildgen, T.F.; Cipollari, P.; Faranda, C.; Gliozzi, E.; Hudáčková, N.; Lucifora, S.; Strecker, M.R. Late Miocene surface uplift of the southern margin of the Central Anatolian Plateau, Central Taurides, Turkey. GSA Bull. 2012, 124, 133–145. [Google Scholar] [CrossRef]
- Moucha, R.; Forte, A.M.; Rowley, D.B.; Mitrovica, J.X.; Simmons, N.A.; Grand, S.P. Deep mantle forces and uplift of the Colorado Plateau. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, N.; Jackson, J.A.; Dramis, F.; Funiciello, R. Interaction between mantle upwelling, drainage evolution and active normal faulting: An example from the central Apennines (Italy). Geophys. J. Int. 2001, 147, 475–497. [Google Scholar] [CrossRef]
- Khalifa, A.; Çakir, Z.; Kaya, Ş.; Gabr, S. ASTER spectral band ratios for lithological mapping: A case study for measuring geological offset along the Ermenek segment of the East Anatolian Fault Zone, Turkey. Arab. J. Geosci. 2020, 13, 1–8. [Google Scholar] [CrossRef]
- Gao, M.; Chen, G.; Xu, X. Geomorphic indices indicated recent differential tectonic uplift of the Lintan-Dangchang fault and the Minxian-Zhangxian earthquake. Seism. Geol. 2015, 37, 709–718. [Google Scholar]
- Bali, B.S.; Wani, A.A.; Khan, R.A.; Ahmed, S. Morphotectonic analysis of the Madhumati watershed, northeast Kashmir valley. Arab. J. Geosci. 2016, 9, 1–17. [Google Scholar] [CrossRef]
- Chandniha, S.K.; Kansal, M.L. Prioritization of sub-watersheds based on morphometric analysis using geospatial technique in Piperiya watershed, India. Appl. Water Sci. 2017, 1, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Khalifa, A.; Çakir, Z.; Owen, L.; Kaya, Ş. Morphometric Analysis of the East Anatolian Fault, Turkey. Turk. J. Earth Sci. 2018, 27, 110–126. [Google Scholar]
- Khalifa, A.; Çakir, Z.; Owen, L.; Kaya, Ş. Evaluation of the Relative Tectonic Activity of the Adıyaman fault within the Arabian-Anatolian plate boundary (eastern Turkey). Geol. Acta 2019, 6, 1–17. [Google Scholar]
- Baruah, M.P.; Bezbaruah, D.; Goswami, T.K. Active tectonics deduced from geomorphic indices and its implication on economic development of water resources in South-Eastern part of Mikir massif, Assam, India. Geol. Ecol. Landsc. 2020, 1–14. [Google Scholar] [CrossRef]
- Paichoon, M.S. Tectonic Geomorphology and Quaternary evolution of playas: A case study of Ernan Playa, central Iran. Arab. J. Geosci. 2021, 14, 1–18. [Google Scholar]
- Armitage, J.J.; Duller, R.A.; Whittaker, A.C.; Allen, P.A. Transformation of tectonic and climatic signals from source to sedimentary archive. Nat. Geosci. 2011, 4, 231–235. [Google Scholar] [CrossRef]
- Guarnieri, P.; Pirrotta, C. The response of drainage basins to the late quaternary tectonics in the Sicilian side of the Messina strait (NE Sicily). Geomorphology 2008, 95, 260–273. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, S.; Chen, S.; Li, S.; Lu, Y. Geomorphic evolution and neotectonics of the Qianhe River Basin on the southwest margin of the Ordos Block, north China. J. Asian Earth Sci. 2018, 176, 184–195. [Google Scholar] [CrossRef]
- Bishop, P. Long-term landscape evolution: Linking tectonics and surface processes. Earth Surf. Process. Landf. 2007, 32, 329–365. [Google Scholar] [CrossRef]
- Demoulin, A.; Beckers, A.; Hubert-Ferrari, A. Patterns of Quaternary uplift of the Corinth rift southern border (N Peloponnese, Greece) revealed by fluvial landscape morphometry. Geomorphology 2015, 246, 188–204. [Google Scholar] [CrossRef]
- Dehbozorgi, M.; Pourkermani, M.; Arian, M.; Matkan, A.A.; Hosseiniasl, A. Quantitative analysis of relative tectonic activity in the Sarvestan area, Central Zagros, Iran. Geomorphology 2010, 121, 329–341. [Google Scholar] [CrossRef]
- Matoš, B.; Pérez-Peña, J.V.; Tomljenović, B. Landscape response to recent tectonic deformation in the SW Pannonian Basin: Evidence from DEM-based morphometric analysis of the Bilogora Mt. area, NE Croatia. Geomorphology 2016, 263, 132–155. [Google Scholar] [CrossRef]
- Daradich, A.; Mitrovica, J.X.; Pysklywec, R.; Willett, S.; Marco Forte, A. Mantle flow, dynamic topography, and rift-flank uplift of Arabia. Geology 2003, 31, 901–904. [Google Scholar] [CrossRef]
- Faccenna, C.; Glišović, P.; Forte, A.; Becker, T.W.; Garzanti, E.; Sembroni, A.; Gvirtzman, Z. Role of dynamic topography in sustaining the Nile River over 30 million years. Nat. Geosci. 2019, 12, 1012–1017. [Google Scholar] [CrossRef]
- Pik, R.; Marty, B.; Carignan, J.; Lavé, J. Stability of the Upper Nile drainage network (Ethiopia) deduced from (U-Th)/He thermochronometry: Implications for uplift and erosion of the Afar plume dome. Earth Planet. Sci. Lett. 2003, 215, 73–88. [Google Scholar] [CrossRef]
- ArRajehi, A.; McClusky, S.; Reilinger, R.; Daoud, M.; Alchalbi, A.; Ergintav, S.; Gomez, F.; Shloan, J.; Bou-Rabee, F.; Ogubazghi, G.; et al. Geodetic constraints on present-day motion of the Arabian plate: Implications for Red Sea and Gulf of Aden rifting. Tectonics 2010, 29, 1–10. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, D.P.; Davies, D.; Molnar, P. Plate tectonics of the Red Sea and East Africa. Nature 1970, 226, 243–248. [Google Scholar] [CrossRef]
- Hamimi, Z.; Hagga, W. A new tectonic model for Abu-Dabbab seismogenic zone (Eastern Desert, Egypt): Evidence from field-structural, EMR and seismic data. Arab. J. Geosci. 2016, 10, 1–11. [Google Scholar] [CrossRef]
- Mohamed, A.S.; Hosny, A.; Abou-Aly, N.; Saleh, M.; Rayan, A. Preliminarily crustal deformation model deduced from GPS and earthquakes’ data at Abu-Dabbab area, eastern desert, Egypt. NRIAG J. Astron. Geophys. 2013, 2, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Hosny, A.; El-Hady, S.M.; Guidarelli, M.; Panza, G.F. Source moment tensors of the earthquake swarm in Abu Dabbab area. South-East Egypt. Rend. Lincei Sci. Fis. Nat. 2012, 23, 149–163. [Google Scholar]
- Azza, M.; Hosny, A.; Gharib, A. Rupture process of shallow earthquakes of Abou-Dabbab area, southeast of Egypt. Egypt J. Appl. Geophys. 2012, 11, 85–100. [Google Scholar]
- Basheer, A.A.; Toni, M.; Abdelmotaal, A.M.; Omar, K. Using the HEM technique and its relation to the seismic activity to detect the main structural setting and rock units at Abu-Dabbab area. Egypt Br. J. Appl. Sci. Technol. 2015, 9, 327–337. [Google Scholar] [CrossRef]
- El Khrepy, S.; Koulakov, I.; Al-Arifi, N. Crustal structure in the area of the Canoon earthquakes of Abu Dabbab (Northern Red Sea, Egypt), From seismic Tomography inversion. Bull. Seismol. Soc. Am. 2015, 105, 1–13. [Google Scholar] [CrossRef]
- Morgan, P.; Keller, G.R.; Boulos, F.K. Earthquake cannons in the Egyptian Eastern Desert. Bull. Seismol. Soc. Am. 1981, 71, 551–554. [Google Scholar] [CrossRef]
- Ibrahim, M.E.; Yokoyama, I. Probable origin of the Abu Dabbab earthquakes swarms in the Eastern Desert of Egypt. Bull. Seismol. Soc. Am. 1998, 71, 32. [Google Scholar]
- Boulos, F.K. Some aspects of the geophysical regime of Egypt in relation to heat flow, groundwater and microearthquakes. In Geology of Egypt; Said, R., Ed.; Balkema: Rotterdam, The Netherlands, 1990; pp. 99–108. [Google Scholar]
- Sami, M.; Hassoup, A.; Hosny, A.; Mohamed, G.A. Seismicity, arrival time delays of the seismic phases and slowness characteristics study in Abu Dabbab area, Egypt. NRIAG J. Astron. Geophys. 2013, 2, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Öğretmen, N.; Cipollari, P.; Frezza, V.; Faranda, C.; Karanika, K.; Gliozzi, E.; Radeff, G.; Cosentino, D. Evidence for 1.5 km of uplift of the Central Anatolian Plateau’s southern margin in the last 450 kyr and implications for its multi-phased uplift history. Tectonics 2018, 37, 359–390. [Google Scholar] [CrossRef]
- Schildgen, T.F.; Cosentino, D.; Bookhagen, B.; Niedermann, S.; Yıldırım, C.; Echtler, H.; Wittmann, H.; Strecker, M.R. Multi-phased uplift of the southern margin of the Central Anatolian plateau, Turkey: A record of tectonic and upper mantle processes. Earth Planet. Sci. Lett. 2012, 317, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Racano, S.; Jara-Muñoz, J.; Cosentino, D.; Melnick, D. Variable Quaternary Uplift Along the Southern Margin of the Central Anatolian Plateau Inferred From Modeling Marine Terrace Sequences. Tectonics 2020, 39, 5921. [Google Scholar] [CrossRef]
- Rudge, J.F.; Roberts, G.G.; White, N.J.; Richardson, C.N. Uplift histories of Africa and Australia from linear inverse modelling of drainage inventories. J. Geophys. Res. F Earth Surf. 2015, 120, 894–914. [Google Scholar] [CrossRef] [Green Version]
- Roberts, G.G.; White, N.J.; Martin-Brandis, G.L.; Crosby, A.G. An uplift history of the Colorado Plateau and its surroundings from inverse modelling of longitudinal river profiles. Tectonics 2012, 31, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Hussein, H.M.; Moustafa, S.S.R.; Elawadi, E.; Al-Arifi, N.S. Seismological Aspects of the Abou Dabbab region, Eastern Desert, Egypt. Seismol. Res. Lett. 2011, 82, 81–88. [Google Scholar] [CrossRef]
- Shalaby, A.; Stüwe, K.; Makroum, F.; Fritz, H.; Kebede, T.; Klotzli, U. The Wadi Mubatek belt, Eastern Desert of Egypt: A Neoproterozoic conjugate shear system in the Arabian_Nubian shield. Precambrian Res. 2005, 136, 27–50. [Google Scholar] [CrossRef]
- Stern, R.J. Arc Assembly and continental collision in the Neoproterozoic East African orogeny: Implication for the consolidation of Gondwanaland. Annu. Rev. Earth Planet. Sci. 1994, 22, 319–351. [Google Scholar] [CrossRef]
- Youssef, M.I. Structural pattern of Egypt and its interpretation. Bull. Am. Assoc. Pet. Geol. 1982, 53, 601–614. [Google Scholar]
- Conoco and General Petroleum Corporation. Geological Map of Egypt, Scale 1:500,000; Gebel Hamata: Cairo, Egypt, 1987. [Google Scholar]
- Daggett, P.H.; Morgan, P.; Boulos, F.K.; Hennin, S.F.; El-Sherif, A.A.; Melek, Y.S. Microearthquake studies of the northeastern margin of the African Plate. Ann. Geol. Surv. Egypt 1980, 10, 989–996. [Google Scholar]
- Daggett, P.H.; Morgan, P.; Boulos, F.K.; Hennin, S.F.; El-Sherif, A.A.; ElSayed, A.A.; Basta, N.Z.; Melek, Y.S. Seismicity and active tectonics of the Egyptian Red Sea margin and the northern Red Sea. Tectonophysics 1986, 125, 313–324. [Google Scholar] [CrossRef]
- Mohamed, A.S.; Saleh, M.; Mahmoud, S.; Teleab, A.; Othman, A.A.; Hamed, D. Recent crustal deformation and seismicity studies at Abu-Dabbab area, Red Sea, Egypt. Arab. J. Geosci. 2013, 6, 1283–1293. [Google Scholar] [CrossRef]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Am. Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Keller, E.A.; Pinter, N. Active Tectonics: Earthquakes, Uplift and Landscapes, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Silva, P.G.; Goy, J.F.; Zazo, C.; Bardajm, T. Fault generated mountain fronts in Southeast Spain: Geomorphologic assessment of tectonic and earthquake activity. Geomorphology 2008, 250, 203–226. [Google Scholar] [CrossRef]
- Bull, W.B.; McFadden, L.D. Tectonic geomorphology north and south of the Garlock fault, California. In Geomorphology in Arid Regions, Proceedings of the Eighth Annual Geomorphology Symposium, Binghamton, NY, USA, 23–24 September 1977; Doehring, D.O., Ed.; State University of New York: Albany, NY, USA, 1977; pp. 115–138. [Google Scholar]
- Mayer, L. Introduction to Quantitative Geomorphology; Prentice Hall: Englewood, NJ, USA, 1990. [Google Scholar]
- Hack, J.T. Stream-profiles analysis and stream-gradient index. J. Res. U.S. Geol. Surv. 1973, 1, 421–429. [Google Scholar]
- El Hamdouni, R.; Irigaray, C.; Fernandez, T.; Chacon, J.; Keller, E.A. Assessment of relative active tectonics, southwest border of Sierra Nevada (Southern Spain). Geomorphology 2008, 96, 150–173. [Google Scholar] [CrossRef]
- Mahmood, S.A.; Gloaguen, R. Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geosci. Front. 2012, 3, 407–428. [Google Scholar] [CrossRef]
- Azor, A.; Keller, E.A.; Yeats, R.S. Geomorphic indicators of active fold growth: Oak Ridge anticline, Ventura basin, southern California. GSA Bull. 2002, 114, 745–753. [Google Scholar] [CrossRef]
- Rockwell, T.K.; Keller, E.A.; Johnson, D.L. Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In Tectonic Geomorphology, Proceedings of the 15th Annual Geomorphology Symposium; Morisawa, M., Ed.; Allen and Unwin Publishers: Boston, MA, USA, 1985; pp. 183–207. [Google Scholar]
- Pérez-Peña, J.V.; Azor, A.; Azañón, J.M.; Keller, E.A. Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 2010, 119, 74–84. [Google Scholar] [CrossRef]
- Zoheir, B.; Lehmann, B.; Emam, A.; Radwan, A.; Zhang, R.; Bain, W.M.; Steele-Maclnnis, M.; Nolte, N. Extreme fractionations and magmatic-hydrothermal transition in the formation of Abu Dabbab rare-metal granite, Eastern Desert, Egypt. Lithos 2020, 352–353, 105329. [Google Scholar] [CrossRef]
- Mohamed, H.S. Subsurface structures and conceptual hydrothermal model of the area lying between Quseir and Safaga area, Red Sea Coast, Egypt. Arab. J. Geosci. 2021, 14, 49. [Google Scholar] [CrossRef]
- Lindenfeld, M.; Rümpker, G.; Batte, A.; Schumann, A. Seismicity at the Rwenzori Mountains, East African Rift: Earthquakes distribution, magnitudes and source mechanisms. Solid Earth Discuss. 2012, 4, 565–598. [Google Scholar]
- Xue, L.; Alemu, T.; Gani, N.D.; Abdelsalam, M.G. Spatial and temporal variation of tectonic uplift in the southern Ethiopian Plateau from morphotectonic analysis. Geomorphology 2018, 309, 98–111. [Google Scholar] [CrossRef]
- Ruch, J.; Keir, D.; Passaelli, L.; Di Giacomo, D.; Ogubazghi, G.; Jónsson, S. Revealing 60 years of Earthquake Swarms in the Southern Red Sea, Afar and the Gulf of Aden. Front. Earth Sci. 2021, 9, 1–20. [Google Scholar] [CrossRef]
Mountain Front Segments | Catchments | Smf | Class | Mountain Front Segments | Catchments | Smf | Class |
---|---|---|---|---|---|---|---|
NFs1 | 10, 11 | 1.11 | Class 1 | Fr/Fs55 | 29, 63, 64, 67 | 1.19 | Class 1 |
NFs2 | 48, 51 | 1.61 | Class 2 | Fr/Fs56 | - | - | - |
NFs3 | 53, 72 | 1.17 | Class 1 | Fr/Fs57 | 65 | 1.32 | Class 1 |
NFs4 | 72 | 1.09 | Class 1 | Fr/Fs58 | 66 | 1.39 | Class 1 |
NFs5 | 72 | 1.01 | Class 1 | Fr/Fs59 | 63 | 1.88 | Class 2 |
NFs6 | 72, 37, 74 | 1.01 | Class 1 | Fr/Fs60 | 62, 63 | 1.86 | Class 2 |
NFs7 | 72 | 1.17 | Class 1 | Fr/Fs61 | 60 | 1.17 | Class 1 |
NFs8 | 59, 60 | 1.43 | Class 1 | Fr/Fs62 | - | - | - |
NFs9 | 26 | 1.19 | Class 1 | Fr/Fs63 | 38, 61, 62 | 1.03 | Class 1 |
NFs10 | 27 | 1.14 | Class 1 | Fr/Fs64 | 38, 61 | 1.93 | Class 2 |
NFs11 | 27 | 1.27 | Class 1 | Fr/Fs65 | 37 | 1.23 | Class 1 |
NFs12 | 27 | 1.75 | Class 2 | Fr/Fs66 | 18 | 1.29 | Class 1 |
SSFs13 | 4, 5 | 0.98 | Class 1 | Fr/Fs67 | - | - | - |
SSFs14 | 20, 37 | 1.05 | Class 1 | Fr/Fs68 | 8, 9 | 1.07 | Class 1 |
SSFs15 | 23, 24, 25 | 1.17 | Class 1 | Fr/Fs69 | - | - | - |
SSFs16 | 18 | 1.06 | Class 1 | Fr/Fs70 | - | - | - |
SSFs17 | 17, 37 | 1 | Class 1 | Fr/Fs71 | 9, 13, 14 | 1.17 | Class 1 |
SSFs18 | - | - | - | Fr/Fs72 | 9 | 1.17 | Class 1 |
SSFs19 | 58 | 1.05 | Class 1 | Fr/Fs73 | 10, 11 | 1.28 | Class 1 |
SSFs 20 | 59, 70 | 1.01 | Class 1 | Fr/Fs74 | - | - | - |
SSFs21 | 17, 37 | 0.73 | Class 1 | Fr/Fs75 | 8, 14 | 1.19 | Class 1 |
SSFs22 | 60, 63 | 1.90 | Class 2 | Fr/Fs76 | 12, 14 | 1.29 | Class 1 |
SSFs23 | 67 | 1.13 | Class 1 | Fr/Fs77 | - | - | - |
SSFs24 | 67 | 1.04 | Class 1 | Fr/Fs78 | - | - | - |
ThFs25 | 11, 12 | 2.0 | Class 2 | Fr/Fs79 | - | - | - |
ThFs26 | 13, 14 | 1.87 | Class 2 | Fr/Fs80 | 44 | 1.33 | Class 1 |
ThFs27 | 18, 19 | 1.01 | Class 1 | Fr/Fs81 | - | - | - |
ThFs28 | 18, 19 | 1.15 | Class 1 | Fr/Fs82 | - | - | - |
ThFs29 | 6, 19, 22 | 1.3 | Class 1 | Fr/Fs83 | - | - | - |
ThFs30 | 18, 20, 23 | 1.94 | Class 2 | Fr/Fs84 | - | - | - |
ThFs31 | 25 | 1.37 | Class 1 | Fr/Fs85 | 45, 46 | 1.28 | Class 1 |
ThFs32 | - | 2.9 | Class 3 | Fr/Fs86 | Fr/Fs75 | - | - |
ThFs33 | 1 | 1.71 | Class 2 | Fr/Fs87 | Fr/Fs76 | - | - |
ThFs34 | 1, 3 | 1.84 | Class 2 | Fr/Fs88 | Fr/Fs77 | 52 | 1.13 |
ThFs35 | 29, 30, 64 | 1.68 | Class 2 | Fr/Fs89 | 49, 51 | 1.27 | Class 1 |
ThFs36 | 26, 27, 28, 65 | 1.93 | Class 2 | Fr/Fs90 | 47, 48 | ||
Fr/Fs37 | 25, 26 | 1.25 | Class 1 | Fr/Fs91 | 47 | 1.09 | Class 1 |
Fr/Fs38 | 3, 25 | 1.02 | Class 1 | Fr/Fs92 | 42, 43, 54 | 1.16 | Class 1 |
Fr/Fs39 | 2 | 1.24 | Class 1 | Fr/Fs93 | 70 | 1.28 | Class 1 |
Fr/Fs40 | - | - | - | Fr/Fs94 | - | - | - |
Fr/Fs41 | 3 | 1.15 | Class 1 | Fr/Fs95 | 39 | 1.14 | Class 1 |
Fr/Fs42 | 3 | 1.28 | Class 1 | Fr/Fs96 | - | - | - |
Fr/Fs43 | - | - | - | Fr/Fs97 | 56 | 1.14 | Class 1 |
Fr/Fs44 | 3 | 2.03 | Class 2 | Fr/Fs98 | 70 | 1.69 | Class 2 |
Fr/Fs45 | 3, 22 | 1.17 | Class 1 | Fr/Fs99 | 70 | 1.23 | Class 1 |
Fr/Fs46 | 3 | 1.30 | Class 1 | Fr/Fs100 | 70 | 1.11 | Class 1 |
Fr/Fs47 | 3, 4 | 1.10 | Class 1 | Fr/Fs101 | - | - | - |
Fr/Fs48 | - | - | - | Fr/Fs102 | 72 | 1.28 | Class 1 |
Fr/Fs49 | 21, 22 | 1.62 | Class 2 | Fr/Fs103 | 71, 72 | 1.00 | Class 1 |
Fr/Fs50 | 22, 23, 24 | 1.40 | Class 1 | Fr/Fs104 | - | - | - |
Fr/Fs51 | 27, 28, 65 | 1.42 | Class 1 | Fr/Fs105 | 72 | 0.97 | Class 1 |
Fr/Fs52 | 31–35 | 1.50 | Class 2 | Fr/Fs106 | - | - | - |
Fr/Fs53 | 34, 62 | 2.26 | Class 2 | Fr/Fs107 | 69 | 1.23 | Class 1 |
Fr/Fs54 | - | - | - |
Catchment No. | Vf Class | Smf Class | Af Class | BS Class | Hi Class | RTAI Value | RTAI Class |
---|---|---|---|---|---|---|---|
1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 |
2 | 1 | 1 | - | 3 | 2 | 1.4 | 2 |
3 | 2 | 2 | 3 | 2 | 2 | 2 | 3 |
4 | 1 | 1 | - | 3 | 2 | 1.4 | 2 |
5 | 2 | 1 | 1 | 3 | 1 | 1.6 | 2 |
6 | 1 | 1 | 2 | 3 | 1 | 1.6 | 2 |
7 | 1 | - | 1 | 2 | 2 | 1.2 | 1 |
8 | 1 | 1 | 2 | 2 | 2 | 1.6 | 2 |
9 | 2 | 1 | 3 | 1 | 2 | 1.8 | 3 |
10 | 2 | 1 | - | 3 | 2 | 1.6 | 2 |
11 | 2 | 1 | 1 | 3 | 2 | 1.8 | 3 |
12 | 2 | 1 | - | 3 | 2 | 1.6 | 2 |
13 | 1 | 2 | 2 | 2 | 2 | 1.8 | 3 |
14 | 1 | 2 | - | 3 | 2 | 1.6 | 2 |
15 | 1 | - | 1 | 3 | 1 | 1.2 | 1 |
16 | 1 | - | - | 1 | 2 | 0.8 | 1 |
17 | 1 | 1 | 3 | 2 | 2 | 1.8 | 3 |
18 | 1 | 1 | 3 | 3 | 2 | 2 | 3 |
19 | 3 | 1 | 1 | 2 | 2 | 1.8 | 3 |
20 | 2 | 2 | 1 | 1 | 2 | 1.6 | 2 |
21 | 2 | 2 | 2 | 3 | 2 | 2.2 | 3 |
22 | 2 | 1 | 3 | 3 | 2 | 2.2 | 3 |
23 | 3 | 2 | - | 1 | 2 | 1.6 | 2 |
24 | 2 | 1 | 3 | 1 | 2 | 1.8 | 3 |
25 | 2 | 1 | 3 | 1 | 1 | 1.6 | 2 |
26 | 3 | 2 | - | 2 | 1 | 1.6 | 2 |
27 | 1 | 2 | 2 | 3 | 1 | 1.8 | 3 |
28 | 3 | 2 | - | 1 | 2 | 1.8 | 2 |
29 | 1 | 2 | 2 | 2 | 1 | 1.6 | 2 |
30 | 1 | 2 | - | 2 | 1 | 1.2 | 1 |
31 | 3 | 1 | - | 2 | 1 | 1.4 | 2 |
32 | 2 | - | - | 3 | 1 | 1.2 | 1 |
33 | 3 | - | 1 | 2 | 1 | 1.4 | 2 |
34 | 3 | 2 | 3 | 3 | 2 | 2.6 | 3 |
35 | 2 | 1 | 3 | 3 | 2 | 2.2 | 3 |
36 | 3 | - | 3 | 3 | 2 | 2.2 | 3 |
37 | 1 | 1 | 2 | 3 | 2 | 1.8 | 3 |
38 | 3 | 1 | 1 | 3 | 1 | 1.8 | 3 |
39 | 2 | 1 | - | 3 | 2 | 1.6 | 2 |
40 | 1 | - | 3 | 2 | 2 | 1.6 | 2 |
41 | 3 | - | 3 | 1 | 2 | 1.8 | 3 |
42 | 3 | 1 | 1 | 2 | 3 | 2 | 3 |
43 | 2 | 1 | - | 2 | 2 | 1.4 | 2 |
44 | 2 | 1 | 3 | 2 | 2 | 2 | 3 |
45 | 1 | 1 | 2 | 3 | 3 | 2 | 3 |
46 | 2 | 1 | - | 2 | 2 | 1.4 | 2 |
47 | 1 | 1 | 1 | 2 | 3 | 1.6 | 2 |
48 | 1 | 2 | 2 | 3 | 3 | 2.2 | 3 |
49 | 1 | 1 | - | 3 | 3 | 1.6 | 2 |
50 | 3 | - | 1 | 3 | 3 | 2 | 3 |
51 | 2 | 1 | 3 | 3 | 1 | 2 | 3 |
52 | 1 | 1 | 1 | 2 | 3 | 1.6 | 2 |
53 | 1 | 1 | - | 2 | 2 | 1.2 | 1 |
54 | 1 | 1 | 2 | 3 | 2 | 1.8 | 3 |
55 | 1 | - | 3 | 2 | 2 | 1.6 | 2 |
56 | 1 | 1 | 2 | 1 | 2 | 1.4 | 2 |
57 | 1 | - | 1 | 1 | 2 | 1 | 1 |
58 | 1 | 1 | 2 | 2 | 2 | 1.6 | 2 |
59 | 1 | 1 | - | 1 | 2 | 1 | 1 |
60 | 2 | 1 | 1 | 3 | 2 | 1.8 | 3 |
61 | 1 | 1 | - | 3 | 1 | 1.2 | 1 |
62 | 1 | 2 | 1 | 2 | 2 | 1.6 | 2 |
63 | 2 | 2 | - | 1 | 2 | 1.4 | 2 |
64 | 1 | 2 | 2 | 2 | 2 | 1.8 | 3 |
65 | 1 | 2 | 3 | 3 | 3 | 2.4 | 3 |
66 | 1 | 1 | 3 | 1 | 1 | 1.4 | 2 |
67 | 3 | - | 1 | 2 | 2 | 1.6 | 2 |
68 | 3 | 1 | 1 | 3 | 1 | 1.8 | 3 |
69 | 2 | 1 | 1 | 1 | 1 | 1.5 | 2 |
70 | 3 | 1 | 1 | 2 | 2 | 1.8 | 3 |
71 | 1 | 1 | 3 | 2 | 2 | 1.8 | 3 |
72 | 2 | 1 | - | 3 | 3 | 1.8 | 3 |
73 | 1 | - | 2 | 1 | 3 | 1.4 | 2 |
74 | 2 | 1 | 2 | 1 | 3 | 1.8 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalifa, A.; Bashir, B.; Alsalman, A.; Öğretmen, N. Morpho-tectonic Assessment of the Abu-Dabbab Area, Eastern Desert, Egypt: Insights from Remote Sensing and Geospatial Analysis. ISPRS Int. J. Geo-Inf. 2021, 10, 784. https://doi.org/10.3390/ijgi10110784
Khalifa A, Bashir B, Alsalman A, Öğretmen N. Morpho-tectonic Assessment of the Abu-Dabbab Area, Eastern Desert, Egypt: Insights from Remote Sensing and Geospatial Analysis. ISPRS International Journal of Geo-Information. 2021; 10(11):784. https://doi.org/10.3390/ijgi10110784
Chicago/Turabian StyleKhalifa, Abdelrahman, Bashar Bashir, Abdullah Alsalman, and Nazik Öğretmen. 2021. "Morpho-tectonic Assessment of the Abu-Dabbab Area, Eastern Desert, Egypt: Insights from Remote Sensing and Geospatial Analysis" ISPRS International Journal of Geo-Information 10, no. 11: 784. https://doi.org/10.3390/ijgi10110784
APA StyleKhalifa, A., Bashir, B., Alsalman, A., & Öğretmen, N. (2021). Morpho-tectonic Assessment of the Abu-Dabbab Area, Eastern Desert, Egypt: Insights from Remote Sensing and Geospatial Analysis. ISPRS International Journal of Geo-Information, 10(11), 784. https://doi.org/10.3390/ijgi10110784