Synthesizing Vulnerability, Risk, Resilience, and Sustainability into VRRSability for Improving Geoinformation Decision Support Evaluations
Abstract
:1. Introduction
2. Situating a VRRSability Synthesis
3. Analysis and Synthesis Methods for Enumerating VRRSability Components
3.1. Emergence of V-R-R-S Concepts and Framing the State of V-R-R-S Theory
3.2. Glossary-Based Analysis of V-R-R-S Definitions for Initiating Conceptual Content Identification
3.3. Literature Analysis-Based Enumeration of VRRS Conceptual Components
3.3.1. Identity of and within Integrated Systems (a to e)
- Stressors, hazards, disturbances, and controlling variables influence functional performance (a1)
- Fast versus slow change variables regarding receptor functional performance (a2)
- Exposure pathway relationship(s) between elements—stressors and receptors (b1)
- Event occurrence(s)—combining stressor and receptor at some magnitude (b2)
- Dose–response threshold (c)
- Management action and capacity to act (d1)
- Agency to take action (d2)
- Empowerment of a social group to address conditions (d3)
- Impact or Influence Reduction (e1)
- Decision trade-offs and priorities (e2)
- Transformation as long-term structural change (e3)
3.3.2. Scenarios (f)
3.3.3. Spatial, Temporal, Attribute Scale (g)
3.3.4. Levels of Resolution for Units of Analysis (h)
3.3.5. Feedback (i)
3.3.6. Alternate (and Possibly Irreversible) Stable States (j)
3.3.7. Social Learning about VRRS Conditions (k)
3.3.8. Knowledge Systems for Evaluating VRRS Conditions (l)
3.3.9. Operational Implementation (m)
4. Discussion
5. Conclusions about Next Steps for Operationalizing VRRSability
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Appendix A
Appendix A.1. Vulnerability Definitions
Appendix A.2. Risk Definitions
Appendix A.3. Resilience Definitions
Appendix A.4. Sustainability Definitions
References
- Nyerges, T.; Roderick, M.; Prager, S.; Bennett, D.; Lam, N. Foundations of sustainability information representation theory: Spatial–temporal dynamics of sustainable systems. Int. J. Geographical Inf. Sci. 2014, 28, 1165–1185. [Google Scholar] [CrossRef]
- Turner, B.L., II; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haimes, Y. On the Definition of Resilience in Systems. Risk Anal. 2009, 29, 498–501. [Google Scholar] [CrossRef]
- Haimes, Y. On the Complex Definition of Risk: A Systems-Based Approach. Risk Anal. 2009, 29, 1647–1654. [Google Scholar] [CrossRef]
- Turner, B.L., II. Vulnerability and Resilience: Coalescing or Parallel Approaches for Sustainability Science? Global Environ. Chang. 2010, 20, 570–576. [Google Scholar] [CrossRef]
- Berkes, F. Environmental Governance for the Anthropocene? Social-Ecological Systems. Resilience 2017, and Collaborative Learning. Sustainability 2010, 9, 1229. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lin, J.; Li, Y.; Nyerges, T. Developing a Resilience Assessment Framework for the Urban Land-Water System. J. Land Degrad. Dev. 2019, 30, 1107–1120. [Google Scholar] [CrossRef]
- Liu, X.; Ferrario, E.; Zio, E. Resilience Analysis Framework for Interconnected Critical Infrastructures. ASCE-ASME Part B: Mechanical Engineering. J. Risk Uncertain. Eng. Syst. 2017, 17. [Google Scholar] [CrossRef]
- Le Gauffre, P.; Joannis, C.; Vasconcelos, E.; Breysse, D. Performance Indicators and Multi-criteria Decision Support for Sewer Asset Management. J. Infrastruct. Syst. 2007, 13. [Google Scholar] [CrossRef]
- Cutter, S.; Barnes, L.; Berry, N.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Global Environ. Chang. 2008, 18, 598–606. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0959378008000666 (accessed on 7 July 2019). [CrossRef]
- Barker, K.; Haimes, Y. Uncertainty analysis of interdependencies in dynamic infrastructure recovery: Applications in risk-based decision-making. J. Infrastruct. Syst. 2009, 15, 394–405. [Google Scholar] [CrossRef]
- Minsker, B.; Baldwin, L.; Crittenden, J.; Kabbes, K.; Karamouz, M.; Lansey, K.; Malinnowski, P.; Nzewi, E.; Pandit, A.; Parker, J.; et al. Progress and Recommendations for Advancing Performance-Based Sustainable and Resilient Infrastructure Design. J. Water Resour. Plan. Manag. 2015, 141. [Google Scholar] [CrossRef]
- Nyerges, T.; Jankowski, P. Regional and Urban GIS: A Decision Support Approach; Guilford: New York, NY, USA, 2010. [Google Scholar]
- Hong, Y.; Liyina, S.; Yongtaoa, T.; Jianlib, H. Simulating the Impacts of Policy Scenarios on the Sustainability Performance of Infrastructure Projects. Autom. Constr. 2011, 20, 1060–1069. Available online: https://www.sciencedirect.com/science/article/pii/S0926580511000562 (accessed on 12 January 2020).
- Walker, B.H.; Salt, D. Resilience Practice: Building Capacity to Absorb Disturbance and Maintain; Island Press: Washington, DC, USA, 2010. [Google Scholar]
- Mazumder, R.K.; Salman, A.M.; Li, Y.; Yu, X. Performance Evaluation of Water Distribution Systems and Asset Management. ASCE 2018, 24. [Google Scholar] [CrossRef]
- Linkov, I.; Todd, B.; Felix, C.; Jennifer, D.; Cate, F.-L.; Wolfgang, K.; James, H.L.; Anders, L.; Benoit, M.; Jatin, N.; et al. Miranda Schreurs and Thomas Thiel-Clemen 2014, Changing the resilience paradigm. Nat. Clim. Chang 2014, 4, 407–409. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farberk, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 15. [Google Scholar] [CrossRef]
- Stanley, S.; Grigsby, S.; Booth, D.; Hartley, D.; Horner, R.; Hruby, T.; Thomas, J.; Bissonnette, P.; Fuerstenberg, R.; Lee, J.; et al. Puget Sound Characterization-Volume 1: The Water Resource Assessments (Water Flow and Water Quality). 2015. Available online: https://fortress.wa.gov/ecy/publications/SummaryPages/1106016.html (accessed on 12 June 2018).
- Ceskavich, R.; Sasani, M. Methodology for Evaluating Community Resilience. Nat. Hazards Rev. 2018, 19. [Google Scholar] [CrossRef]
- Linkov, I.; Fox-Lent, C.; Read, L.; Allen, C.R.; Arnott, J.C.; Bellini, E.; Coaffee, J.; Florin, M.-V.; Hatfield, K.; Hyde, I.; et al. Tiered Approach to Resilience Assessment. Risk Anal. 2018, 38, 1772–1780. [Google Scholar] [CrossRef] [Green Version]
- Bocchini, P.; Frangopol, D.M.; Ummenhofer, T.; Zinke, T. Resilience and Sustainability of Civil Infrastructure: Toward a Unified Approach. J. Infrastruct. Syst. 2014, 20, 04014004. [Google Scholar] [CrossRef]
- Guarino, N. Understanding, building and using ontologies. Int. J. Human-Computer Stud. 1997, 46, 293–310. [Google Scholar] [CrossRef]
- Couclelis, H. Ontologies of geographic information. Int. J. Geogr. Inf. Sci. 2010, 24, 1785–1809. [Google Scholar] [CrossRef]
- Li, N.; Raskin, R.; Goodchild, M.; Janowicz, K. An Ontology-Driven Framework and Web Portal for Spatial Decision Support1. Trans. GIS 2012, 16, 313–329. [Google Scholar] [CrossRef] [Green Version]
- Couclelis, H. Ontology, Epistemology, Teleology: Triangulating Geographic Information Science. In Research Trends in Geographic Information science; Gerhard, N., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 3–16. [Google Scholar]
- E Sieber, R.; Haklay, M. The epistemology(s) of volunteered geographic information: A critique. Geo Geogr. Environ. 2015, 2, 122–136. [Google Scholar] [CrossRef]
- Nyerges, T.; Ballal, H.; Steinitz, C.; Canfield, T.; Roderick, M.; Ritzman, J.; Thanatemaneeratt, W. Geodesign Dynamics for Sustainable Urban Watershed Development. Sustain. Cities Soc. 2016, 25, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Steinitz, C. A Framework for Geodesign: Changing Geography by Design; Esri Press: Redlands, CA, USA, 2012. [Google Scholar]
- Malczewski, J. GIS and Multicriteria Decision Analysis; Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Jankowski, P.; Nyerges, T. GIS for Group Decision Making; Towards a Participatory Geographic Information Science; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- White, G.F. Natural Hazards; Oxford: New York, NY, USA, 1974. [Google Scholar]
- Fineman, M.A. Vulnerability and Inevitable Inequality. Oslo Law Rev. 2017, 1, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Aven, T. On how to define, understand and describe risk. Reliab. Eng. Syst. Saf. 2010, 95, 623–631. [Google Scholar] [CrossRef]
- Aven, T. On Some Recent Definitions and Analysis Frameworks for Risk, Vulnerability, and Resilience. Risk Anal. 2010, 31, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Adger, W.N. Social and ecological resilience: Are they related? Prog. Hum. Geogr. 2000, 24, 347–364. [Google Scholar] [CrossRef]
- Manyena, S.B. The concept of resilience revisited. Disasters 2006, 30, 434–450. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.E. Resilience and disaster risk reduction: An etymological journey. Nat. Hazards Earth Syst. Sci. 2013, 13, 2707–2716. [Google Scholar] [CrossRef] [Green Version]
- Masten, A.S. Resilience in developing systems: The promise of integrated approaches. Eur. J. Dev. Psychol. 2016, 13, 297–312. [Google Scholar] [CrossRef]
- Carlson, J.; Haffenden, R.; Bassett, G.; Buehring, W.; Collins, M.; Folga, S.; Haffenden, B.; Petit, F.; Phillips, J.; Verner, D.; et al. Resilience: Theory and Applications, Argonne National Laboratory, 2012. Available online: https://publications.anl.gov/anlpubs/2012/02/72218.pdf (accessed on 8 March 2021).
- Bruntland Commission. Report of the UN Commission on Environment and Development. 1987. Available online: https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf (accessed on 8 March 2021).
- Kates, R.; Clark, W.C.; Al, E.; Hall, J.M.; Jaeger, C.; Lowe, I.; McCarthy, J.; Schellnhuber, H.J.; Bolin, B.; Dickson, N.M.; et al. Sustainability Science. SSRN Electron. J. 2000, 292, 641–642. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef] [Green Version]
- DeSanctis, G.; Poole, M.S. Capturing the Complexity in Advanced Technology Use: Adaptive Structuration Theory. Organ. Sci. 1994, 5, 121–147. [Google Scholar] [CrossRef]
- Nyerges, T.L.; Jankowski, P. Enhanced Adaptive Structuration Theory: A theory of GIS-supported collaborative decision making. Geogr. Syst. 1997, 4, 225–259. [Google Scholar]
- Poteet, A.M.; Janssen, M.A.; Ostrom, E. Working Together: Collective Action, the Commons, and Multiple Methods in Practice; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- US EPA. Risk Assessment Glossary, 2010. Available online: https://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do (accessed on 7 March 2021).
- US Forest Service. Risk Terminology Primer: Basic Principles and a Glossary for the Wildland Fire Management Community. Available online: https://www.fs.usda.gov/treesearch/pubs/50912 (accessed on 16 July 2019).
- United Nations 2009. UN Handbook for UNISDR Terminology. Available online: https://www.unisdr.org/we/inform/terminology (accessed on 16 July 2019).
- IPCC–Intergovernmental Program on Climate Change 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Available online: https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/ (accessed on 16 July 2019).
- US EPA 2011. Environmental Management Systems Glossary. Available online: https://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do?details=&vocabName=EMS%20Glossary (accessed on 7 March 2021).
- Resilience Alliance (2019). Glossary. Available online: https://www.resalliance.org/glossary (accessed on 16 July 2019).
- American Society of Civil Engineers (2019). Sustainability at ASCE. Available online: https://www.asce.org/sustainability-at-asce/ (accessed on 16 July 2019).
- Miller, F.; Osbahr, H.; Boyd, E.; Thomalla, F.; Bharwani, S.; Ziervogel, G.; Walker, B.; Birkmann, J.; van der Leeuw, S.; Rockström, J.; et al. Resilience and vulnerability: Complementary or conflicting concepts? Ecol. Soc. 2010, 1511. Available online: https://www.ecologyandsociety.org/vol15/iss3/art11/ (accessed on 3 March 2019). [CrossRef]
- Tompkins, E.L.; Adger, W.N. Does Adaptive Management of Natural Resources Enhance Resilience to Climate Change? Ecol. Soc. 2004, 9. [Google Scholar] [CrossRef]
- Luers, A.L. The surface of vulnerability: An analytical framework for examining environmental change. Glob. Environ. Chang. 2005, 15, 214–223. [Google Scholar] [CrossRef]
- Haimes, Y.Y. On the Definition of Vulnerabilities in Measuring Risks to Infrastructures. Risk Anal. 2006, 26, 293–296. [Google Scholar] [CrossRef]
- Sahely, H.R.; Kennedy, C.A. Water Use Model for Quantifying Environmental and Economic Sustainability Indicators. J. Water Resour. Plan. Manag. 2007, 133, 550–559. [Google Scholar] [CrossRef]
- Prager, S.D.; Reiners, W.A. Historical and emerging practices in ecological topology. Ecol. Complex. 2009, 6, 160–171. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.; Elmqvist, T.; Gunderson, L.; Holling, C.S.; Walker, B. Resilience and Sustainable Development: Building Adaptive Capacity in a World of Transformations. Ambio 2002, 31, 437–440. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; von Winterfeldt, D. A Framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Schultz, M.T.; Smith, E.R. Assessing the Resilience of Coastal Systems: A Probabilistic Approach. J. Coast. Res. 2016, 29, 1029–1050. [Google Scholar] [CrossRef]
- Lounis, Z.; McAllister, T.P. Risk-Based Decision Making for Sustainable and Resilient Infrastructure Systems. J. Struct. Eng. 2016, 142, 142. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.R.; Walker, B.L.E.; Anderies, J.M.; Abel, N. From Metaphor to Measurement: Resilience of What to What? Ecosyst. 2001, 4, 765–781. [Google Scholar] [CrossRef]
- Cumming, G.S. Spatial Resilience in Social-Ecological Systems; Springer: London, UK, 2011. [Google Scholar]
- Nyerges, T.; Robkin, M.; Moore, T.J. Geographic Information Systems for Risk Evaluation: Applications in Environmental Health. Cartogr. Geogr. Inf. Syst. 1997, 24, 123–144. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- McLellan, B.; Zhang, Q.; Farzaneh, H.; Utama, N.A.; Ishihara, K.N. Resilience, Sustainability and Risk Management: A Focus on Energy. Challenges 2012, 3, 153–182. [Google Scholar] [CrossRef] [Green Version]
- Mumby, P.J.; Wolff, N.H.; Bozec, Y.-M.; Chollett, I.; Halloran, P. Operationalizing the Resilience of Coral Reefs in an Era of Climate Change. Conserv. Lett. 2013, 7, 176–187. [Google Scholar] [CrossRef]
- Cardona, O.D. The need for rethinking the concepts of vulnerability and risk from a holistic perspective: A necessary review and criticism for effective risk management. In Mapping Vulnerability: Disasters, Development and People; Bankoff, G., Frerks, G., Hilhorst, D., Eds.; Earthscan: London, UK, 2004; pp. 37–51. [Google Scholar]
- Wisner, B.; Blaikie, P.; Cannon, T.; Davis, I. At Risk, Natural Hazards: People’s Vulnerability and disasters; Routledge: London, UK, 2004. [Google Scholar]
- Leh, M.; Bajwa, S.; Chaubey, I. Impact of land-use change on erosion risk: An integrated remote sensing, geographic information systems, and modeling methodology. Land Degrad. Dev. 2011, 24, 409–421. [Google Scholar] [CrossRef]
- Rodriguez-Nikl, T. Linking disaster resilience and sustainability. Civ. Eng. Environ. Syst. 2015, 32, 157–169. [Google Scholar] [CrossRef]
- Birkmann, J. Measuring vulnerability to promote disaster-resilient societies: Conceptual frameworks and definitions. In Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies; Birkmann, J., Ed.; United Nations University Press: Tokyo, Japan, 2006; pp. 9–54. [Google Scholar]
- Birkmann, J. Risk and vulnerability indicators at different scales: Applicability, usefulness and policy implications. Environ. Hazards 2007, 7, 20–31. [Google Scholar] [CrossRef]
- Eakin, H.; Luers, A.L. Assessing the Vulnerability of Social-Environmental Systems. Annu. Rev. Environ. Resour. 2006, 31, 365–394. [Google Scholar] [CrossRef] [Green Version]
- Horan, R.D.; Fenichel, E.P.; Drury, K.L.S.; Lodge, D.M. Managing ecological thresholds in coupled environmental-human systems. Proc. Natl. Acad. Sci. USA 2011, 108, 7333–7338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, N. Vulnerability, Risk and Adaptation: A Conceptual Framework; Tyndall Centre for Climate Change Research: Norwich, UK, 2003; p. 21. Available online: https://www.researchgate.net/profile/Nick_Brooks2/publication/200029746_Vulnerability_Risk_and_Adaptation_A_Conceptual_Framework/links/0fcfd50ac169e15865000000.pdf (accessed on 6 January 2020).
- Smit, B.; Wandel, J. Adaptation, Adaptive Capacity, and Vulnerability. Glob. Environ. Chang. 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Ng, A.; Loosemore, M. Risk allocation in the private provision of public infrastructure. Int. J. Proj. Manag. 2007, 25, 66–76. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A.P. Resilience, Adaptability and Transformability in Social-ecological Systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S. (Eds.) Panarchy: Understanding Transformations in Human and Natural System; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Romero-Lankao, P.; Dodman, D. Cities in transition: Transforming urban centers from hotbeds of GHG emissions and vulnerability to seedbeds of sustainability and resilience. Curr. Opin. Environ. Sustain. 2011, 3, 113–120. [Google Scholar] [CrossRef]
- Ganin, A.A.; Massaro, E.; Gutfraind, A.; Steen, N.; Keisler, J.M.; Kott, A.; Mangoubi, R.; Linkov, I. Operational resilience: Concepts, design and analysis. Sci. Rep. 2016, 6, 19540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, N.S.N.; Reams, M.; Li, K.; Li, C.; Mata, L.P. Measuring Community Resilience to Coastal Hazards along the Northern Gulf of Mexico. Nat. Hazards Rev. 2016, 17, 04015013. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Kasperson, R.E.; Renn, O.; Slovic, P.; Brown, H.S.; Emel, J.; Goble, R.; Kasperson, J.X.; Ratick, S. The Social Amplification of Risk: A Conceptual Framework. Risk Anal. 1988, 8, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Baker, S.M. Vulnerability and Resilience in Natural Disasters: A Marketing and Public Policy Perspective. J. Public Policy Mark. 2009, 28, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, B. Collaborative Resilience: Moving Through Crisis to Opportunity; Massachusetts Institute of Technology: Cambridge, MA, USA, 2012. [Google Scholar]
- Redman, C.L. Should Sustainability and Resilience Be Combined or Remain Distinct Pursuits? Ecol. Soc. 2014, 19, 37. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, R.; Nyerges, T. An Agent-Based Model of Participatory Decision Making for Sustainability Management. J. Artif. Soc. Soc. Simul. 2014, 177. Available online: http://jasss.soc.surrey.ac.uk/17/1/7.html (accessed on 12 March 2018).
- Olsson, P.; Galaz, V.; Boonstra, W.J. Sustainability transformations: A resilience perspective. Ecol. Soc. 2014, 19. [Google Scholar] [CrossRef] [Green Version]
- Swart, R.; Raskin, P.; Robinson, J. The problem of the future: Sustainability science and scenario analysis. Glob. Environ. Chang. 2004, 14, 137–146. [Google Scholar] [CrossRef]
- Kjeldsen, T.R.; Rosbjerg, D. Choice of reliability, resilience and vulnerability estimators for risk assessments of water resources systems/Choix d’estimateurs de fiabilité, de résilience et de vulnérabilité pour les analyses de risque de systèmes de ressources en eau. Hydrol. Sci. J. 2004, 49. [Google Scholar] [CrossRef]
- Gotham, K.F.; Campanella, R. Coupled Vulnerability and Resilience: The Dynamics of Cross-Scale Interactions in Post-Katrina New Orleans. Ecol. Soc. 2011, 16, 12. [Google Scholar] [CrossRef] [Green Version]
- Cumming, G.S. Spatial resilience: Integrating landscape ecology, resilience, and sustainability. Landsc. Ecol. 2011, 26, 899–909. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Dur, F. Developing a Sustainability Assessment Model: The Sustainable Infrastructure, Land-Use, Environment and Transport Model. Sustainability 2010, 2, 291–340. [Google Scholar] [CrossRef] [Green Version]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Nelson, D.R.; Adger, W.N.; Brown, K. Adaptation to Environmental Change: Contributions of a Resilience Framework. Annu. Rev. Environ. Resour. 2007, 32, 395–419. [Google Scholar] [CrossRef] [Green Version]
- Blackmore, J.M.; Plant, R.A.J. Risk and Resilience to Enhance Sustainability with Application to Urban Water Systems. J. Water Resour. Plan. Manag. 2008, 134, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Lundin, M.; Morrison, G.M. A life cycle assessment-based procedure for development of environmental sustainability indicators for urban water systems. Urban Water 2002, 4, 145–152. [Google Scholar] [CrossRef]
- Walker, B.H.; Salt, D. Resilience thinking: Sustaining Ecosystems and People in a Changing World; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Andries, J.M. Understanding the Dynamics of Sustainable Social-Ecological Systems: Human Behavior, Institutions, and Regulatory Feedback Networks. Bull. Math. Biol. 2015, 77, 259–280. [Google Scholar] [CrossRef] [PubMed]
- Vogel, C.; Moser, S.C.; Kasperson, R.E.; Dabelko, G.D. Linking vulnerability, adaptation, and resilience science to practice: Pathways, players, and partnerships. Glob. Environ. Chang. 2007, 17, 349–364. [Google Scholar] [CrossRef]
- Jordan, R.; Gray, S.; Howe, D.; Brooks, W.; Ehrenfeld, J. Knowledge Gain and Behavioral Change in Citizen-Science Programs. Conserv. Biol. 2011, 25, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- Pahl-Wostl, C. A conceptual framework for analyzing adaptive capacity and multi-level learning processes in resource governance regimes. Global Environ. Chang. 2009, 19, 354–365. [Google Scholar] [CrossRef]
- Wyborn, C.; van Kerkhoff, L.; Dunlop, M.; Dudley, N.; Guevara, O. Future oriented conservation: Knowledge governance. uncertainty and learning. Biodivers. Conserv. 2016, 25, 1401–1408. [Google Scholar] [CrossRef] [Green Version]
- Cash, D.W.; Clark, W.C.; Alcock, F.; Dickson, N.M.; Eckley, N.; Guston, D.H.; Jäger, J.; Mitchell, R.B. Knowledge systems for sustainable development. Proc. Natl. Acad. Sci. USA 2003, 100, 8086–8091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Star, S.L. The Structure of Ill-Structured Solutions: Boundary Objects and Heterogeneous Distributed Problem Solving. In Distributed Artificial Intelligence Chapter 2; Gasser, L., Huhn, M.N., Eds.; Morgan-Kaufmann: San Francisco, CA, USA, 1989; pp. 37–54. [Google Scholar] [CrossRef]
- Brand, F.S.; Jax, K. Focusing the Meaning(s) of Resilience: Resilience as a Descriptive Concept and a Boundary Object. Ecol. Soc. 2007, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Paehlke, R. Sustainability as a Bridging Concept. Conserv. Biol. 2005, 19, 36–38. [Google Scholar] [CrossRef]
- Davoudi, S. Resilience: A Bridging Concept or a Dead End? Plan. Theory Pract. 2012, 13, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Baggio, J.A.; Brown, K.; Hellebrandt, D. Boundary object or bridging concept? A citation network analysis of resilience. Ecol. Soc. 2015, 20, 2. [Google Scholar] [CrossRef] [Green Version]
Definition Source | Vulnerability | Risk | Resilience | Sustainability |
---|---|---|---|---|
US EPA Risk Assessment Glossary [31,48] | ab | abe | ||
US FS Risk Terminology Primer [32,49] | ab | ae | ||
United Nations Handbook for UNISDR Terminology [33,50] | abe | abe | abde | abcde |
IPCC Managing Risk Report [34,51] | abe | abcde | abde | abde |
Walker and Salt [15] | abd | |||
US EPA Environmental System Mgt Glossary [35,52] | acd | abde | ||
Resilience Alliance Glossary [36,53] | abcde | abcde | ||
American Society of Civil Engineers [37,54] | acde | |||
Synthesis of Entries for the Respective Column | abe | abce | abde | abcde |
Conceptual Components (Labels 1). | Vulnerability | Risk | Resilience | Sustainability | Contribution to VRRS Synthesis 2 |
---|---|---|---|---|---|
Identity of systems (social–ecological, coupled human–environment, coupled natural–human) (abcde) | Social systems to social–ecological systems, human–environment systems, and coupled natural–human systems. [1,2,3,4,15,28,55,56,57,58,59,60,61,62,63,64] | SES not treated in any significant way, but important for infrastructure [2,3,4,58] | Move from ecological toward social dimensions within coupled social–ecological system [1,3,4,55,59,60,62,64,65,66] | Social, economic, and ecological dimensions treated [1,60,64] | Complementarity among Vul, Res, and Sus with contribution to Ris |
Stressors/hazards/disturbances as controlling variables (a1) | Stressor element(s) [2,67] | Stressor element(s) [10,34,35,67] | Stressor element(s) and sub-systems [10,15] | Stressor element(s) and sub-systems [2,13,67] | Complementarity between Vul and Ris with contribution to Res and Sus |
Fast versus slow change variables regarding receptor functional performance (a2) | Sensitivity of receptor element(s) to potential harm [2,56,68] | Sensitivity of receptor element(s) to probable harm [11,34,35] | Sensitivity of receptor element(s) or sub-system(s) to harm or benefit [12,15,36,68,69,70] | Sensitivity of receptor element(s) or sub-system(s) to harm or benefit [12] | Complementarity among all, but each contributes a different aspect of change |
Exposure relationship(s) (b1) between elements | Space-time collocation [2,55,67,71] | Space-time pathway [67,68,71,72,73] | Sub-system to whole system [74] | Sub-system to whole system [75,76] | Ris with contribution to Vul, Res, and Sus |
Event occurrence(s) (b2) | Commonly single event [75] | Commonly single event [34,35] | Commonly multiple events over medium time frame [15,55] | Commonly multiple events over an extended time frame [1,2,62] | Complementarity among Vul, Ris, Res, and Sus |
Dose–response threshold (c) | Potential ordinal level of sensitivity to harm [2,67] | Probability of damage outcome [34,35] | Tipping point ranges for unstable equilibrium [15,55,60,70,77,78] | Range of magnitudes for satisfactory performance [12,13] | Contribution of Ris and Res to Vul and Sus |
Management action and capacity to act (d1) | Plan, adapt, resist [2,79,80] | Plan, adapt, resist [81] | Plan, adapt, resist, recover [22,62,82,83,84,85,86,87] | Plan, maintain [22,60,79,84] | Complementarity of Ris and Res with contribution to Vul and Sus |
Agency for taking action (d2) | Medium [2,56,68] | Strong [3,4,34,35] | Strong [21,62,63] | Medium [87] | Complementarity of Ris and Res with contribution to Vul to Sus |
Empowerment of social group(s) to address conditions (d3) | Strong [88,89] | Strong [88] | Strong [15,55,90] | Strong [2,28,87] | Complementarity among Vul, Ris, Res, and Sus |
Impact/influence reduction/improvement (e1) | Strong [2,28,67,91] | Strong [34,35,67,68] | Strong [15,22,63,86] | Strong [22,64,91] | Complementarity among Vul, Ris, Res and Sus |
Decision trade-offs and priorities (e2) | Weak treatment [5,67] | Strong treatment [11,67] | Medium treatment [55,63] | Medium treatment [13,92] | Complementarity among Vul, Ris, Res and Sus |
Transformation as long-term structural change (e3) | Avoid exposure over long-term [55] | Avoid harm over long-term | Resourcefulness over long-term [81,93] | Maintain over long-term [13,61] | Complementarity of Res and Sus with contribution to Vul and Ris |
Scenarios (f) | Normal, chronic, severe, catastrophic [94,95] | Normal, chronic, severe, catastrophic [73] | Severe, catastrophic [73,95] | Normal, chronic [14] | Complementarity between Vul, Ris, Res, and Sus |
Spatial, temporal, attribute Scale (g) | Macro, meso, micro [2,55,67,84,96] | Micro or meso [67] | Macro, meso, micro [55,66,82,84,96,97] | Macro, meso, micro [6,13,93,98,99] | Complementarity among Vul, Res, and Sus with contribution to Ris |
Levels of resolution for units of analysis (h) | Element(s) [34,35,55,100] | Element(s) [3,4,34,35,100,101] | Sub-system(s) [55,100] | Element(s), sub-system(s), system(s) [1,59,101,102] | Complementarity among Vul, Ris, Res and Sus |
Feedback (i) | Weak, not identified explicitly | Weak, not identified explicitly | Strong, explicitly identified [6,15,103,104] | Medium, generally identified [6] | Contribution of Res to Vul, Ris and Sus |
Alternate stable states (j) | Weak, except for livelihood or governance strategies | Weak, different conditions of stability | Strong, diverse conditions of stability [15,81,82] | Medium, similar conditions of stability [60] | Res contribution to Vul, Ris and Sus |
Social learning about VRRS conditions (k) | Individual, small- and medium-size groups [56,105] | Individual, small, and medium-size groups [31,67] | Participatory large-size groups, community [55,90,106] | Participatory large-size groups, community [6,31,61,87,107,108] | Complementarity of Res and Sus with contribution to Vul and Ris |
Knowledge systems about VRRS conditions (l) | Strong [3,4,67] | Strong [3,4,67] | Strong [10,63,86] | Strong [13,100,105,109] | Complementarity among Vul, Ris, Res and Sus |
Operational implementation (m) | Advanced [3,4,11,67] | Advanced [3,4,11,67] | Emerging [10,55,63,70,86] | Emerging [5,6,22] | Complementarity among Vul, Ris, Res, and Sus |
Summary list of V-R-R-S components | a,b,e, f,g,h,k,l,m | a,b,c,e, f,g,h,k,l,m | a,b,d,e, f,g,h,i,j,k,l,m | a,b,c,d,e, f,g,h,k,l,m | a,b,c,d,e, f,g,h,i,j,k,l,m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyerges, T.; Gallo, J.A.; Prager, S.D.; Reynolds, K.M.; Murphy, P.J.; Li, W. Synthesizing Vulnerability, Risk, Resilience, and Sustainability into VRRSability for Improving Geoinformation Decision Support Evaluations. ISPRS Int. J. Geo-Inf. 2021, 10, 179. https://doi.org/10.3390/ijgi10030179
Nyerges T, Gallo JA, Prager SD, Reynolds KM, Murphy PJ, Li W. Synthesizing Vulnerability, Risk, Resilience, and Sustainability into VRRSability for Improving Geoinformation Decision Support Evaluations. ISPRS International Journal of Geo-Information. 2021; 10(3):179. https://doi.org/10.3390/ijgi10030179
Chicago/Turabian StyleNyerges, Timothy, John A. Gallo, Steven D. Prager, Keith M. Reynolds, Philip J. Murphy, and WenWen Li. 2021. "Synthesizing Vulnerability, Risk, Resilience, and Sustainability into VRRSability for Improving Geoinformation Decision Support Evaluations" ISPRS International Journal of Geo-Information 10, no. 3: 179. https://doi.org/10.3390/ijgi10030179
APA StyleNyerges, T., Gallo, J. A., Prager, S. D., Reynolds, K. M., Murphy, P. J., & Li, W. (2021). Synthesizing Vulnerability, Risk, Resilience, and Sustainability into VRRSability for Improving Geoinformation Decision Support Evaluations. ISPRS International Journal of Geo-Information, 10(3), 179. https://doi.org/10.3390/ijgi10030179