Pedestrian Flow Prediction in Open Public Places Using Graph Convolutional Network
Abstract
:1. Introduction
- (1)
- We employ the GCN model to predict the pedestrian flow. The graph-structure-based deep learning model, in which the detectors are regarded as nodes, and edges represent the relationship of the road network, can capture the complex topological dependency. Moreover, we assign different weights to road segments to identify the influence of road network structure to capture the spatial dependencies.
- (2)
- We compare the GCN model with baseline methods selected from the existing methods to validate the performance of pedestrian flow prediction in terms of three evaluation metrics. The experimental effectiveness of the GCN model show that proper integration of the road topology could considerably improve the pedestrian flow prediction precision in real-world applications.
- (3)
- We further conduct comparative experiments of pedestrian flow prediction between weekdays and weekends, and different hours during the day to capture the temporary dependencies. Sensitive analysis on the effect of weather conditions is also conducted. The robustness of the GCN model to predict the pedestrian flow would help practitioners and managers to improve road efficiency.
2. Materials and Methods
2.1. Study Area
2.2. Pedestrian Flow Data
2.3. Methodology
2.3.1. The GCN Model for Pedestrian Flow Prediction
2.3.2. Evaluation Metrics
3. Results
3.1. Hyperparameter Settings of the GCN Model
3.2. Comparative Experiments of Different Models
3.2.1. Baseline Models
- (1)
- Historical average (HA) [12]: It simply employs the average of previous periods as the prediction.
- (2)
- Autoregressive integrated moving average (ARIMA) [14]: It predicts the future trend of time series data.
- (3)
- Support vector machine (SVM) [21]: It uses a kernel function for the prediction task.
- (4)
- Convolutional neural network (CNN) [29]: It handles the traffic data by constraining the grid-structure.
- (5)
- Long short term memory (LSTM) [34]: It is a recurrent neural network (RNN) based model to capture temporal dependencies for traffic prediction.
- (6)
- Spatio-temporal graph convolutional networks (STGCN) [40]: It is a deep learning framework for traffic forecasting, solving the problem on graphs and build the model with complete convolutional structures.
3.2.2. Experimental Results
4. Discussion
4.1. The Advantage of the GCN Model for Pedestrian Flow Prediction
4.1.1. Comparison between Weekdays and Weekends
4.1.2. Comparison between Different Hours of the Day
4.1.3. Comparison between Different Weather Conditions
4.2. The Limitation and Prospects of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brown, M.; Benson, G.O.G.; Keel, R.; Mahoney, E.; Porter, J.; Thompson, J. Seeking Northlake: Place, technology, and public as enabling constraints for urban transdisciplinary research. Cities 2017, 60, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, L.; Simini, F.; Rinzivillo, S.; Pedreschi, D.; Giannotti, F.; Barabási, A.-L. Returners and explorers dichotomy in human mobility. Nat. Commun. 2015, 6, 8166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.-W.; Li, L.-N.; Hu, C.; Li, Q.; Chen, X.; Huang, P.-W. A Modified Inverse Distance Weighting Method for Interpolation in Open Public Places Based on Wi-Fi Probe Data. J. Adv. Transp. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Helbing, D.; Molnár, P.; Farkas, I.J.; Bolay, K. Self-organizing pedestrian movement. Environ. Plan. B Plan. Des. 2001, 28, 361–383. [Google Scholar] [CrossRef] [Green Version]
- Ke, J.; Zheng, H.; Yang, H.; Chen, X. Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach. Transp. Res. Part C Emerg. Technol. 2017, 85, 591–608. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Liang, J.; Zhang, S.; Huang, H.; Liu, F. Inferring driving trajectories based on probabilistic model from large scale taxi GPS data. Phys. A: Stat. Mech. Appl. 2018, 506, 566–577. [Google Scholar] [CrossRef]
- Luca, M.; Barlacchi, G.; Lepri, B.; Pappalardo, L. Deep Learning for Human Mobility: A Survey on Data and Models. arXiv 2020, arXiv:2012.02825. [Google Scholar]
- Yang, J.; Zhao, K.; Li, M.; Xu, Z.; Li, Z. Identifying Complex Junctions in a Road Network. ISPRS Int. J. Geo-Inf. 2021, 10, 4. [Google Scholar] [CrossRef]
- Barbosa, H.; Barthelemy, M.; Ghoshal, G.; James, C.R.; Lenormand, M.; Louail, T.; Menezes, R.; Ramasco, J.J.; Simini, F.; Tomasini, M. Human mobility: Models and applications. Phys. Rep. 2018, 734, 1–74. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, L.; Simini, F. Data-driven generation of spatio-temporal routines in human mobility. Data Min. Knowl. Discov. 2018, 32, 787–829. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Kabuka, M.R. Combining weather condition data to predict traffic flow: A GRU-based deep learning approach. IET Intell. Transp. Syst. 2018, 12, 578–585. [Google Scholar] [CrossRef]
- Smith, B.L.; Demetsky, M.J. Traffic flow forecasting: Comparison of modeling approaches. J. Transp. Eng. Asce 1997, 123, 261–266. [Google Scholar] [CrossRef]
- Frejinger, E.; Bierlaire, M. Capturing correlation with subnetworks in route choice models. Transp. Res. Part B Methodol. 2007, 41, 363–378. [Google Scholar] [CrossRef]
- Williams, B.M.; Durvasula, P.K.; Brown, D.E. Urban Freeway Traffic Flow Prediction: Application of Seasonal Autoregressive Integrated Moving Average and Exponential Smoothing Models. Transp. Res. Rec. 1998, 1644, 132–141. [Google Scholar] [CrossRef]
- Li, J.; Liu, Q.; Sang, Y. Several Issues about Urbanization and Urban Safety. Procedia Eng. 2012, 43, 615–621. [Google Scholar] [CrossRef] [Green Version]
- Apronti, D.; Ksaibati, K.; Gerow, K.; Hepner, J.J. Estimating traffic volume on Wyoming low volume roads using linear and logistic regression methods. J. Traffic Transp. Eng. Engl. Ed. 2016, 3, 493–506. [Google Scholar] [CrossRef] [Green Version]
- Castro-Neto, M.; Jeong, Y.-S.; Jeong, M.-K.; Han, L.D. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst. Appl. 2009, 36, 6164–6173. [Google Scholar] [CrossRef]
- Castillo, E.; Menéndez, J.M.; Sánchez-Cambronero, S. Predicting traffic flow using Bayesian networks. Transp. Res. Part B Methodol. 2008, 42, 482–509. [Google Scholar] [CrossRef]
- Olutayo, V.; Eludire, A. Traffic accident analysis using decision trees and neural networks. Int. J. Inf. Technol. Comput. Sci. 2014, 2, 22–28. [Google Scholar] [CrossRef]
- Crosby, H.; Jarvis, S.A.; Davis, P. Spatially-Intensive Decision Tree Prediction of Traffic Flow across the entire UK Road Network. In Proceedings of the 2016 IEEE/Acm 20th International Symposium on Distributed Simulation and Real Time Applications (Ds-Rt), London, UK, 21–23 September 2016; pp. 116–119. [Google Scholar]
- Sun, Y.; Leng, B.; Guan, W. A novel wavelet-SVM short-time passenger flow prediction in Beijing subway system. Neurocomputing 2015, 166, 109–121. [Google Scholar] [CrossRef]
- Feng, X.; Ling, X.; Zheng, H.; Chen, Z.; Xu, Y. Adaptive multi-kernel SVM with spatial–temporal correlation for short-term traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 2018, 20, 2001–2013. [Google Scholar] [CrossRef]
- Tsai, T.-H.; Lee, C.-K.; Wei, C.-H. Neural network based temporal feature models for short-term railway passenger demand forecasting. Expert Syst. Appl. 2009, 36, 3728–3736. [Google Scholar] [CrossRef]
- El Esawey, M.; Mosa, A.I.; Nasr, K. Estimation of daily bicycle traffic volumes using sparse data. Comput. Environ. Urban. Syst. 2015, 54, 195–203. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Y.; Dong, S. Public Traffic Congestion Estimation Using an Artificial Neural Network. ISPRS Int. J. Geo-Inf. 2020, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Feng, J.; Lu, Z.; Li, Y.; Jin, D. Deepstn+: Context-aware spatial-temporal neural network for crowd flow prediction in metropolis. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulum, HI, USA, 27 January–1 February 2019; pp. 1020–1027. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Radosavljevic, V.; Chou, F.-C.; Lin, T.-H.; Nguyen, T.; Huang, T.-K.; Schneider, J.; Djuric, N. Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2090–2096. [Google Scholar]
- Rao, G.M.; Ramesh, D. Parallel CNN based big data visualization for traffic monitoring. J. Intell. Fuzzy Syst. 2020, 39, 2679–2691. [Google Scholar] [CrossRef]
- Song, C.; Lee, H.; Kang, C.; Lee, W.; Kim, Y.B.; Cha, S.W. Traffic Speed Prediction under Weekday Using Convolutional Neural Networks Concepts. In Proceedings of the 2017 28th Ieee Intelligent Vehicles Symposium (Iv 2017), Los Angeles, CA, USA, 11–14 June 2017; pp. 1293–1298. [Google Scholar]
- Zhang, J.; Zheng, Y.; Qi, D.; Li, R.; Yi, X.; Li, T. Predicting citywide crowd flows using deep spatio-temporal residual networks. Artif. Intell. 2018, 259, 147–166. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.; Lin, Y.; Wu, Z.; Wan, H. Spatio-temporal recurrent convolutional networks for citywide short-term crowd flows prediction. In Proceedings of the 2nd International Conference on Compute and Data Analysis, DeKalb, IL, USA, 23–25 March 2018; pp. 28–35. [Google Scholar]
- Park, D.-C. Structure optimization of BiLinear Recurrent Neural Networks and its application to Ethernet network traffic prediction. Inf. Sci. 2013, 237, 18–28. [Google Scholar] [CrossRef]
- Gao, W.; Wang, Z.Y. Short-Term Airport Traffic Flow Prediction Based on Lstm Recurrent Neural Network. J. Aeronaut. Astronaut. Aviat. 2017, 49, 299–307. [Google Scholar] [CrossRef]
- Ramakrishnan, N.; Soni, T. Network Traffic Prediction Using Recurrent Neural Networks. In Proceedings of the 2018 17th Ieee International Conference on Machine Learning and Applications (Icmla), Orlando, FL, USA, 17–20 December 2018; pp. 187–193. [Google Scholar]
- Li, W.; Tao, W.; Qiu, J.; Liu, X.; Zhou, X.; Pan, Z. Densely Connected Convolutional Networks with Attention LSTM for Crowd Flows Prediction. IEEE Access 2019, 7, 140488–140498. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, M.; Lin, X.; Wang, Y.; He, F. Multistep speed prediction on traffic networks: A graph convolutional sequence-to-sequence learning approach with attention mechanism. arXiv 2018, arXiv:1810.10237. [Google Scholar]
- Jiang, W.; Luo, J. Graph Neural Network for Traffic Forecasting: A Survey. arXiv 2021, arXiv:2101.11174. [Google Scholar]
- Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv 2013, arXiv:1312.6203. [Google Scholar]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv 2017, arXiv:1709.04875. [Google Scholar]
- Zhang, Q.; Chang, J.; Meng, G.; Xu, S.; Xiang, S.; Pan, C. Learning graph structure via graph convolutional networks. Pattern Recognit. 2019, 95, 308–318. [Google Scholar] [CrossRef]
- Li, Z.S.; Xiong, G.; Chen, Y.Y.; Lv, Y.S.; Hu, B.; Zhu, F.H.; Wang, F.Y. A Hybrid Deep Learning Approach with GCN and LSTM for Traffic Flow Prediction. In Proceedings of the 2019 Ieee Intelligent Transportation Systems Conference (Itsc), Auckland, New Zealand, 27–30 October 2019; pp. 1929–1933. [Google Scholar]
- Zheng, J.W.; Li, D.G. GCN-TC: Combining Trace Graph with Statistical Features for Network Traffic Classification. In Proceedings of the 2019 IEEE International Conference on Communications (Icc 2019), Shanghai, China, 20–24 May 2019. [Google Scholar]
- Fukuda, S.; Uchida, H.; Fujii, H.; Yamada, T. Short-term prediction of traffic flow under incident conditions using graph convolutional recurrent neural network and traffic simulation. IET Intell. Transp. Syst. 2020, 14, 936–946. [Google Scholar] [CrossRef]
- Vinchoff, C.; Chung, N.; Gordon, T.; Lyford, L.; Aibin, M. Traffic Prediction in Optical Networks Using Graph Convolutional Generative Adversarial Networks. In Proceedings of the 2020 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July 2020; pp. 1–4. [Google Scholar]
- Yu, L.; Du, B.; Hu, X.; Sun, L.; Han, L.; Lv, W. Deep spatio-temporal graph convolutional network for traffic accident prediction. Neurocomputing 2021, 423, 135–147. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Qi, D. Deep spatio-temporal residual networks for citywide crowd flows prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Zonoozi, A.; Kim, J.-J.; Li, X.-L.; Cong, G. Periodic-CRN: A Convolutional Recurrent Model for Crowd Density Prediction with Recurring Periodic Patterns. In Proceedings of the 2018 International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, 13–19 July 2018; pp. 3732–3738. [Google Scholar]
- Martí, P.; Serrano-Estrada, L.; Nolasco-Cirugeda, A. Social Media data: Challenges, opportunities and limitations in urban studies. Comput. Environ. Urban. Syst. 2019, 74, 161–174. [Google Scholar] [CrossRef]
- Pei, T.; Sobolevsky, S.; Ratti, C.; Shaw, S.-L.; Li, T.; Zhou, C. A new insight into land use classification based on aggregated mobile phone data. Int. J. Geogr. Inf. Sci. 2014, 28, 1988–2007. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Wang, N.; Wu, L.; Liu, Y. Street as a big geo-data assembly and analysis unit in urban studies: A case study using Beijing taxi data. Appl. Geogr. 2017, 86, 152–164. [Google Scholar] [CrossRef]
- Hu, S.; Gao, S.; Wu, L.; Xu, Y.; Zhang, Z.; Cui, H.; Gong, X. Urban function classification at road segment level using taxi trajectory data: A graph convolutional neural network approach. Comput. Environ. Urban. Syst. 2021, 87, 101619. [Google Scholar] [CrossRef]
- Kroon, L.; Maróti, G.; Nielsen, L. Rescheduling of Railway Rolling Stock with Dynamic Passenger Flows. Transp. Sci. 2015, 49, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Cats, O.; Wang, Q.; Zhao, Y. Identification and classification of public transport activity centres in Stockholm using passenger flows data. J. Transp. Geogr. 2015, 48, 10–22. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Jia, R. DeepPF: A deep learning based architecture for metro passenger flow prediction. Transp. Res. Part C Emerg. Technol. 2019, 101, 18–34. [Google Scholar] [CrossRef]
- Peng, H.; Wang, H.; Du, B.; Bhuiyan, M.Z.A.; Ma, H.; Liu, J.; Wang, L.; Yang, Z.; Du, L.; Wang, S.; et al. Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting. Inf. Sci. 2020, 521, 277–290. [Google Scholar] [CrossRef]
- Han, Y.; Peng, T.; Wang, C.; Zhang, Z.; Chen, G. A Hybrid GLM Model for Predicting Citywide Spatio-Temporal Metro Passenger Flow. ISPRS Int. J. Geo-Inf. 2021, 10, 222. [Google Scholar] [CrossRef]
- 12 People Were Injured in a “Run-after” Attack at Shenzhen Dongmen Laojie Subway Station. Available online: http://news.sina.com.cn/o/2014-05-26/062630230940.shtml (accessed on 22 June 2021).
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv 2017, arXiv:1707.01926. [Google Scholar]
- Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The Emerging Field of Signal Processing on Graphs. IEEE Signal. Process. Mag. 2013, 30, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Zhang, C. Graph wavenet for deep spatial-temporal graph modeling. arXiv 2019, arXiv:1906.00121. [Google Scholar]
- Gori, M.; Monfardini, G.; Scarselli, F. A new model for learning in graph domains. In Proceedings of the International Joint Conference on Neural Networks, Killarney, Ireland, 12–17 July 2015; pp. 729–734. [Google Scholar]
- Hammond, D.K.; Vandergheynst, P.; Gribonval, R. Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 2011, 30, 129–150. [Google Scholar] [CrossRef] [Green Version]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In Proceedings of the Advances in Neural Information Processing Systems 29 (Nips 2016), Barcelona, Spain, 5–10 December 2016; pp. 3189–3197. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Guo, K.; Hu, Y.; Qian, Z.S.; Sun, Y.; Gao, J.; Yin, B. An Optimized Temporal-Spatial Gated Graph Convolution Network for Traffic Forecasting. IEEE Intell. Transp. Syst. Mag. 2020, 9055022. [Google Scholar] [CrossRef]
- Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3848–3858. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Lee, Y.; Sohn, K. Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN). Transp. Res. Part C Emerg. Technol. 2020, 114, 189–204. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, W.; Liang, Y.; Zhang, W.; Yu, Y.; Zhang, J.; Zheng, Y. Spatio-Temporal Meta Learning for Urban Traffic Prediction. IEEE Trans. Knowl. Data Eng. 2020, 9096591. [Google Scholar] [CrossRef]
Capture Time | Detectors | ||||
---|---|---|---|---|---|
6 | 8 | 16 | 21 | 24 | |
1 July 2020 00:00 | 6 | 3 | 12 | 5 | 5 |
1 July 2020 00:01 | 5 | 2 | 5 | 5 | 1 |
1 July 2020 00:02 | 6 | 1 | 4 | 9 | 4 |
1 July 2020 23:59 | 8 | 1 | 4 | 4 | 3 |
2 July 2020 00:00 | 9 | 2 | 5 | 4 | 5 |
30 September 2020 23:58 | 6 | 11 | 4 | 8 | 5 |
30 September 2020 23:59 | 7 | 9 | 3 | 7 | 4 |
Index | Training Data | Testing Data |
---|---|---|
mean | 6.179 | 6.138 |
standard deviation | 9.725 | 9.648 |
minimum | 0 | 0 |
lower quartile | 0.775 | 0.758 |
median | 2.415 | 2.532 |
upper quartile | 6.595 | 7.089 |
maximum | 105.82 | 111.13 |
count | 105,984 × 25 | 26,496 × 25 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.210 | 0 | 0 | 0 | 0.137 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 326 | 1 | 0.951 | 0.541 | 0.508 | 0.735 | 0.503 | 0 | 0 | 0 | 0 | 0 | 0.128 | 0.362 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 291 | 35 | 1 | 0.730 | 0.698 | 0.896 | 0.693 | 0 | 0.130 | 0 | 0 | 0.116 | 0.230 | 0.541 | 0 | 0 | 0.172 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 275 | 123 | 88 | 1 | 0.781 | 0.949 | 0.776 | 0 | 0.172 | 0 | 0 | 0.155 | 0.292 | 0.951 | 0.313 | 0.210 | 0.557 | 0 | 0 | 0.106 | 0 | 0 | 0 | 0 | 0 |
5 | 281 | 129 | 94 | 78 | 1 | 0.931 | 0.745 | 0.276 | 0.503 | 0 | 0 | 0.471 | 0.687 | 0.928 | 0.280 | 0.184 | 0.514 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 239 | 87 | 52 | 36 | 42 | 1 | 0.928 | 0.140 | 0.300 | 0 | 0 | 0.276 | 0.461 | 0.815 | 0.181 | 0.112 | 0.372 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 196 | 130 | 95 | 79 | 85 | 43 | 1 | 0.245 | 0.153 | 0 | 0 | 0.137 | 0.264 | 0.589 | 0 | 0 | 0.200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 282 | 307 | 272 | 256 | 178 | 220 | 186 | 1 | 0.911 | 0.358 | 0.551 | 0.546 | 0.761 | 0.137 | 0 | 0.216 | 0 | 0 | 0 | 0.110 | 0 | 0 | 0 | 0 | 0 |
9 | 330 | 259 | 224 | 208 | 130 | 172 | 215 | 48 | 1 | 0.175 | 0.313 | 0.800 | 0.954 | 0.296 | 0 | 0.420 | 0.135 | 0.104 | 0 | 0.249 | 0 | 0 | 0 | 0 | 0 |
10 | 259 | 418 | 383 | 367 | 289 | 331 | 345 | 159 | 207 | 1 | 0.943 | 0.386 | 0.220 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 221 | 428 | 393 | 377 | 299 | 341 | 307 | 121 | 169 | 38 | 1 | 0.227 | 0.187 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 404 | 265 | 230 | 214 | 136 | 178 | 221 | 122 | 74 | 153 | 191 | 1 | 0.937 | 0.272 | 0 | 0.391 | 0.121 | 0 | 0 | 0.557 | 0.145 | 0 | 0 | 0 | 0 |
13 | 364 | 225 | 190 | 174 | 96 | 138 | 181 | 82 | 34 | 193 | 203 | 40 | 1 | 0.456 | 0.102 | 0.600 | 0.238 | 0.190 | 0.121 | 0.396 | 0 | 0 | 0 | 0 | 0 |
14 | 310 | 158 | 123 | 35 | 43 | 71 | 114 | 221 | 173 | 332 | 342 | 179 | 139 | 1 | 0.482 | 0.348 | 0.745 | 0 | 0 | 0.197 | 0 | 0 | 0 | 0 | 0 |
15 | 444 | 292 | 257 | 169 | 177 | 205 | 248 | 319 | 271 | 430 | 440 | 277 | 237 | 134 | 1 | 0.530 | 0.907 | 0.276 | 0.184 | 0.335 | 0 | 0 | 0 | 0 | 0 |
16 | 471 | 319 | 284 | 196 | 204 | 232 | 275 | 194 | 146 | 305 | 315 | 152 | 112 | 161 | 125 | 1 | 0.791 | 0.719 | 0.579 | 0.940 | 0 | 0.116 | 0 | 0 | 0 |
17 | 395 | 243 | 208 | 120 | 128 | 156 | 199 | 270 | 222 | 381 | 391 | 228 | 188 | 85 | 49 | 76 | 1 | 0.326 | 0.223 | 0.584 | 0 | 0 | 0 | 0 | 0 |
18 | 566 | 409 | 374 | 286 | 294 | 322 | 365 | 284 | 236 | 395 | 405 | 242 | 202 | 251 | 178 | 90 | 166 | 1 | 0.451 | 0.508 | 0 | 0 | 0 | 0 | 0 |
19 | 592 | 435 | 400 | 312 | 320 | 348 | 391 | 310 | 262 | 421 | 431 | 268 | 228 | 277 | 204 | 116 | 192 | 140 | 1 | 0.376 | 0 | 0 | 0 | 0 | 0 |
20 | 515 | 358 | 323 | 235 | 243 | 271 | 314 | 233 | 185 | 273 | 311 | 120 | 151 | 200 | 164 | 39 | 115 | 129 | 155 | 1 | 0 | 0.227 | 0.164 | 0 | 0 |
21 | 622 | 483 | 448 | 480 | 354 | 396 | 439 | 340 | 292 | 251 | 289 | 218 | 258 | 445 | 409 | 284 | 360 | 374 | 400 | 245 | 1 | 0.888 | 0.954 | 0.606 | 0.203 |
22 | 676 | 537 | 502 | 426 | 408 | 450 | 493 | 394 | 346 | 305 | 343 | 272 | 312 | 391 | 355 | 230 | 306 | 320 | 346 | 191 | 54 | 1 | 0.984 | 0.876 | 0.430 |
23 | 656 | 517 | 482 | 446 | 388 | 430 | 473 | 374 | 326 | 285 | 323 | 252 | 292 | 411 | 375 | 250 | 326 | 340 | 366 | 211 | 34 | 20 | 1 | 0.786 | 0.335 |
24 | 733 | 594 | 559 | 483 | 465 | 507 | 550 | 451 | 403 | 362 | 400 | 329 | 369 | 448 | 412 | 287 | 363 | 377 | 403 | 248 | 111 | 57 | 77 | 1 | 0.735 |
25 | 820 | 681 | 646 | 570 | 578 | 594 | 637 | 538 | 490 | 449 | 487 | 416 | 456 | 535 | 499 | 374 | 450 | 464 | 490 | 335 | 198 | 144 | 164 | 87 | 1 |
Output Sequence Length | Metrics | HA | ARIMA | SVM | CNN | LSTM | STGCN | GCN |
---|---|---|---|---|---|---|---|---|
1 min | RMSE | 3.470 | 3.176 | 3.224 | 3.136 | 3.249 | 2.833 | 2.840 |
MAE | 1.851 | 1.679 | 1.979 | 1.655 | 1.613 | 1.495 | 1.488 | |
R2 | 0.872 | 0.884 | 0.887 | 0.895 | 0.881 | 0.933 | 0.937 | |
5 min | RMSE | 3.536 | 3.464 | 3.402 | 3.426 | 3.460 | 2.948 | 3.042 |
MAE | 1.886 | 1.831 | 2.113 | 1.833 | 1.720 | 1.523 | 1.585 | |
R2 | 0.867 | 0.863 | 0.874 | 0.875 | 0.865 | 0.931 | 0.928 | |
10 min | RMSE | 3.610 | 3.618 | 3.694 | 3.508 | 3.532 | 3.097 | 3.178 |
MAE | 1.925 | 1.909 | 2.303 | 1.883 | 1.765 | 1.630 | 1.655 | |
R2 | 0.861 | 0.850 | 0.851 | 0.869 | 0.860 | 0.924 | 0.921 | |
15 min | RMSE | 3.680 | 3.713 | 3.962 | 3.542 | 3.611 | 3.225 | 3.289 |
MAE | 1.962 | 1.959 | 2.464 | 1.889 | 1.818 | 1.758 | 1.715 | |
R2 | 0.856 | 0.842 | 0.828 | 0.866 | 0.853 | 0.918 | 0.916 | |
20 min | RMSE | 3.748 | 3.789 | 4.231 | 3.602 | 3.639 | 3.357 | 3.374 |
MAE | 1.999 | 1.999 | 2.632 | 1.932 | 1.825 | 1.758 | 1.763 | |
R2 | 0.850 | 0.836 | 0.803 | 0.862 | 0.851 | 0.911 | 0.911 | |
25 min | RMSE | 3.815 | 3.855 | 4.496 | 3.695 | 3.651 | 3.429 | 3.462 |
MAE | 2.035 | 2.034 | 2.793 | 1.975 | 1.841 | 1.804 | 1.812 | |
R2 | 0.845 | 0.830 | 0.777 | 0.855 | 0.850 | 0.907 | 0.906 | |
30 min | RMSE | 3.883 | 3.919 | 4.731 | 3.863 | 3.683 | 3.494 | 3.537 |
MAE | 2.07 | 2.066 | 2.939 | 2.068 | 1.857 | 1.851 | 1.854 | |
R2 | 0.84 | 0.824 | 0.753 | 0.841 | 0.847 | 0.903 | 0.902 |
Time | Weekdays | Weekends | ||||
---|---|---|---|---|---|---|
RMSE | MAE | R2 | RMSE | MAE | R2 | |
00:00–00:59 | 0.942 | 0.591 | 0.891 | 0.883 | 0.583 | 0.902 |
01:00–01:59 | 0.81 | 0.471 | 0.914 | 0.684 | 0.436 | 0.903 |
02:00–02:59 | 0.626 | 0.383 | 0.916 | 0.648 | 0.411 | 0.914 |
03:00–03:59 | 0.538 | 0.329 | 0.913 | 0.821 | 0.426 | 0.925 |
04:00–04:59 | 0.562 | 0.329 | 0.888 | 0.707 | 0.384 | 0.926 |
05:00–05:59 | 0.588 | 0.358 | 0.859 | 0.673 | 0.406 | 0.873 |
06:00–06:59 | 0.72 | 0.437 | 0.748 | 0.703 | 0.421 | 0.751 |
07:00–07:59 | 1.025 | 0.625 | 0.706 | 0.916 | 0.577 | 0.699 |
08:00–08:59 | 1.32 | 0.82 | 0.67 | 1.228 | 0.789 | 0.726 |
09:00–09:59 | 1.922 | 1.089 | 0.814 | 2.05 | 1.234 | 0.822 |
10:00–10:59 | 1.987 | 1.246 | 0.808 | 2.442 | 1.57 | 0.817 |
11:00–11:59 | 2.413 | 1.508 | 0.821 | 2.993 | 1.866 | 0.816 |
12:00–12:59 | 2.71 | 1.703 | 0.861 | 3.265 | 2.079 | 0.841 |
13:00–13:59 | 3.069 | 1.944 | 0.878 | 4.118 | 2.618 | 0.877 |
14:00–14:59 | 3.48 | 2.193 | 0.914 | 4.842 | 3.043 | 0.897 |
15:00–15:59 | 4.068 | 2.497 | 0.924 | 5.636 | 3.468 | 0.882 |
16:00–16:59 | 4.01 | 2.436 | 0.944 | 5.579 | 3.362 | 0.93 |
17:00–17:59 | 4.452 | 2.727 | 0.93 | 5.582 | 3.511 | 0.939 |
18:00–18:59 | 3.851 | 2.324 | 0.931 | 4.974 | 3.122 | 0.941 |
19:00–19:59 | 3.645 | 2.173 | 0.93 | 4.743 | 2.989 | 0.931 |
20:00–20:59 | 3.474 | 2.128 | 0.927 | 4.357 | 2.75 | 0.926 |
21:00–21:59 | 3.175 | 1.993 | 0.906 | 3.852 | 2.358 | 0.903 |
22:00–22:59 | 2.56 | 1.643 | 0.86 | 2.695 | 1.712 | 0.873 |
23:00–23:59 | 1.436 | 0.917 | 0.808 | 1.502 | 0.971 | 0.827 |
Metrics | Sunny | Cloudy | Overcast | Rainy |
---|---|---|---|---|
2.855 | 3.159 | 2.715 | 2.798 | |
1.508 | 1.662 | 1.416 | 1.47 | |
0.941 | 0.947 | 0.923 | 0.939 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Li, L.; Li, Q.; Bai, Y.; Hu, C. Pedestrian Flow Prediction in Open Public Places Using Graph Convolutional Network. ISPRS Int. J. Geo-Inf. 2021, 10, 455. https://doi.org/10.3390/ijgi10070455
Liu M, Li L, Li Q, Bai Y, Hu C. Pedestrian Flow Prediction in Open Public Places Using Graph Convolutional Network. ISPRS International Journal of Geo-Information. 2021; 10(7):455. https://doi.org/10.3390/ijgi10070455
Chicago/Turabian StyleLiu, Menghang, Luning Li, Qiang Li, Yu Bai, and Cheng Hu. 2021. "Pedestrian Flow Prediction in Open Public Places Using Graph Convolutional Network" ISPRS International Journal of Geo-Information 10, no. 7: 455. https://doi.org/10.3390/ijgi10070455
APA StyleLiu, M., Li, L., Li, Q., Bai, Y., & Hu, C. (2021). Pedestrian Flow Prediction in Open Public Places Using Graph Convolutional Network. ISPRS International Journal of Geo-Information, 10(7), 455. https://doi.org/10.3390/ijgi10070455