Understanding the Spatial Effects of Unaffordable Housing Using the Commuting Patterns of Workers in the New Zealand Integrated Data Infrastructure
Abstract
:1. Introduction
2. Literature Review
2.1. Commuting Patterns Visualisation
2.2. The Origin-Destination Flow Map
2.3. Excess Commuting
3. Materials and Methods
3.1. Integrated Data Infrastructure and the Data Processing
3.2. Housing Affordability
3.3. Excess Commuting Distance
4. Results
4.1. Excess Commuting Results for 2013 and 2018
4.2. Housing Affordability in Auckland
4.3. Visualisation of Excess Commuting Patterns
5. Discussion
5.1. Linking Housing Affordability and Excess Commuting Patterns
5.2. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Banister, D. Unsustainable Transport: City Transport in the New Century; Routledge: Oxfordshire, UK, 2005. [Google Scholar]
- Cropper, M.L.; Gordon, P.L. Wasteful commuting: A re-examination. J. Urban Econ. 1991, 29, 2–13. [Google Scholar] [CrossRef]
- Ta, N.; Chai, Y.; Zhang, Y.; Sun, D. Understanding job-housing relationship and commuting pattern in Chinese cities: Past, present and future. Transp. Res. Part D Transp. Environ. 2017, 52, 562–573. [Google Scholar] [CrossRef]
- Kain, J.F. Housing segregation, negro employment, and metropolitan decentralization. Q. J. Econ. 1968, 82, 175–197. [Google Scholar] [CrossRef]
- Kain, J.F. The spatial mismatch hypothesis: Three decades later. Hous. Policy Debate 1992, 3, 371–460. [Google Scholar] [CrossRef]
- Steele, A.; Todd, S. New developments for key worker housing in the UK. Struct. Surv. 2004, 22, 179–189. [Google Scholar] [CrossRef]
- Morrison, N. Assessing the need for key-worker housing: A case study of Cambridge. Town Plan. Rev. 2003, 74, 281–300. [Google Scholar] [CrossRef]
- Batty, M.; Murcio, R.; Iacopini, I.; Vanhoof, M.; Milton, R. London in lockdown: Mobility in the pandemic city. In COVID-19 Pandemic, Geospatial Information, and Community Resilience; CRC Press: Boca Raton, FL, USA, 2021; pp. 229–244. [Google Scholar]
- Weaver, M. Key worker housing: The issue explained. Guardian 2004, 25, 4. Available online: https://www.theguardian.com/society/2004/may/25/keyworkerhousing (accessed on 26 April 2021).
- Airey, J.; Wales, R. Revitalising Key Worker Housing; Policy Exchange: London, UK, 2019. [Google Scholar]
- Morrison, N. Reinterpreting the key worker problem within a university town: The case of Cambridge, England. Town Plan. Rev. 2013, 84, 721–743. [Google Scholar] [CrossRef]
- Morrison, N.; Monk, S. Job-housing mismatch: Affordability crisis in Surrey, South East England. Environ. Plan A 2006, 38, 1115–1130. [Google Scholar] [CrossRef]
- Wilson, Z. Cost of Auckland Living Pushing People out to Whanganui. NZ Herald 18 February 2018. Available online: https://www.nzherald.co.nz/nz/cost-of-auckland-living-pushing-people-out-to-whanganui/2RG7ND4Z64M5P7Q2FIA34SAH3U/ (accessed on 10 May 2021).
- Mandic, S.; Jackson, A.; Lieswyn, J.; Mindell, J.S.; García Bengoecheak, E.; Spence, J.C.; Coppell, K.; Wade-Brown, C.; Wooliscroft, B.; Hinckson, E. Development of key policy recommendations for active transport in New Zealand: A multi-sector and multidisciplinary endeavour. J. Transp. Health 2020, 18, 100859. [Google Scholar] [CrossRef]
- Stroombergen, A.; Bealing, M.; Torshizian, E.; Poot, J. Impacts of Socio-Demographic Changes on the New Zealand Land Transport System; NZ Transport Agency: Waikato, New Zealand, 2018. [Google Scholar]
- Deng, M.; Xie, L.; Lin, X. An analysis on the characteristics of the trips of Guangzhou inhabitants and development of urban communications. Trop. Geogr. 2000, 20, 37–41. [Google Scholar]
- Li, C.; Chai, Y. A study on the commuting features of Dalian citizens. Hum. Geogr. 2000, 15, 67–72. [Google Scholar]
- Schwanen, T.; Dijst, M. Travel-time ratios for visits to the workplace: The relationship between commuting time and work duration. Transp. Res. Part A Policy Pract. 2002, 36, 573–592. [Google Scholar] [CrossRef]
- Chai, Y. Urban Structure Comparison between China and Japan; Peking University Press: Beijing, China, 1999. [Google Scholar]
- Zhou, S.; Yang, L. Study on the spatial characteristic of commuting in Guangzhou. Urban Transp. China 1 2005, 3, 62–67. [Google Scholar] [CrossRef]
- Coombes, M. Defining labour market areas by analysing commuting data: Innovative methods in the 2007 review of travel-to-work areas. In Technologies for Migration and Commuting Analysis: Spatial Interaction Data Applications; IGI Global: Hershey, PA, USA, 2010; pp. 227–241. [Google Scholar]
- Hincks, S. Daily interaction of housing and labour markets in north west England. Reg. Stud. 2012, 46, 83–104. [Google Scholar] [CrossRef]
- Hincks, S.; Wong, C. The spatial interaction of housing and labour markets: Commuting flow analysis of north west England. Urban Stud. 2010, 47, 620–649. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Lü, B.; de Roo, G. Impact of the jobs-housing balance on urban commuting in Beijing in the transformation era. J. Transp. Geogr. 2011, 19, 59–69. [Google Scholar] [CrossRef]
- Weber, J.; Sultana, S. Employment sprawl, race and the journey to work in Birmingham, Alabama. Southeast. Geogr. 2008, 48, 53–74. [Google Scholar] [CrossRef]
- Crane, R.; Chatman, D. Traffic and Sprawl: Evidence from US Commuting from 1985–1997; University of Southern California: Los Angeles, CA, USA, 2003; Volume 6. [Google Scholar]
- Ma, Y.; Xu, W.; Zhao, X.; Li, Y. Modeling the hourly distribution of population at a high spatiotemporal resolution using subway smart card data: A case study in the central area of Beijing. ISPRS Int. J. Geo-Inf. 2017, 6, 128. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Liu, L.; Yu, Y.; Peng, Z.; Jiao, H.; Niu, Q. An agent-based model simulation of human mobility based on mobile phone data: How commuting relates to congestion. ISPRS Int. J. Geo-Inf. 2019, 8, 313. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Guo, S.; Yu, L.; Hellinga, B. Short-term forecasting of transit route OD matrix with smart card data. In Proceedings of the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011; pp. 1513–1518. [Google Scholar]
- Toqué, F.; Côme, E.; Mahrsi, M.K.E.; Oukhellou, L. Forecasting dynamic public transport origin-destination matrices with long-short term memory recurrent neural networks. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7795689 (accessed on 30 June 2021).
- Yeghikyan, G.; Opolka, F.L.; Nanni, M.; Lepri, B.; Lì, P. Learning mobility flows from urban features with spatial interaction models and neural networks. In Proceedings of the 2020 IEEE International Conference on Smart Computing (SMARTCOMP), Bologna, Italy, 14–17 September 2020. [Google Scholar]
- Zhou, J.; Murphy, E.; Long, Y. Commuting efficiency in the Beijing metropolitan area: An exploration combining smartcard and travel survey data. J. Transp. Geogr. 2014, 41, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Liu, C.; Wen, H.; Wang, Y.; Wu, Y.J. Understanding commuting patterns using transit smart card data. J. Transp. Geogr. 2017, 58, 135–145. [Google Scholar] [CrossRef]
- Yang, X.; Fang, Z.; Yin, L.; Li, J.; Zhou, Y.; Lu, S. Understanding the spatial structure of urban commuting using mobile phone location data: A case study of Shenzhen, China. Sustainability 2018, 10, 1435. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Murphy, E.; Long, Y. Commuting efficiency gains: Assessing different transport policies with new indicators. Int. J. Sustain. Transp. 2019, 13, 710–721. [Google Scholar] [CrossRef]
- Guo, D. Flow mapping and multivariate visualization of large spatial interaction data. IEEE Trans. Vis. Comput. Graph. 2009, 15, 1041–1048. [Google Scholar]
- Lu, M.; Liang, J.; Wang, Z.; Yuan, X. Exploring OD patterns of interested region based on taxi trajectories. J. Vis. 2016, 19, 811–821. [Google Scholar] [CrossRef]
- Ni, B.; Shen, Q.; Xu, J.; Qu, H. Spatio-temporal flow maps for visualizing movement and contact patterns. Vis. Inform. 2017, 1, 57–64. [Google Scholar] [CrossRef]
- Rowe, F.; Patias, N. Mapping the spatial patterns of internal migration in Europe. Reg. Stud. Reg. Sci. 2020, 7, 390–393. [Google Scholar] [CrossRef]
- Dong, W.; Wang, S.; Chen, Y.; Meng, L. Using eye tracking to evaluate the usability of flow maps. ISPRS Int. J. Geo-Inf. 2018, 7, 281. [Google Scholar] [CrossRef] [Green Version]
- Sakamanee, P.; Phithakkitnukoon, S.; Smoreda, Z.; Ratti, C. Methods for inferring route choice of commuting trip from Mobile phone network data. ISPRS Int. J. Geo-Inf. 2020, 9, 306. [Google Scholar] [CrossRef]
- Tobler, W.R. Experiments in migration mapping by computer. Am. Cartogr. 1987, 14, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Rae, A. From spatial interaction data to spatial interaction information? Geovisualisation and spatial structures of migration from the 2001 UK census. Comput. Environ. Urban Syst. 2009, 33, 161–178. [Google Scholar] [CrossRef]
- Vale, D.S.; Pereira, M.; Viana, C.M. Different destination, different commuting pattern? Analyzing the influence of the campus location on commuting. J. Transp. Land Use 2018, 11, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Van Acker, V.; Witlox, F. Commuting trips within tours: How is commuting related to land use? Transportation 2011, 38, 465–486. [Google Scholar] [CrossRef]
- Yang, F.; Jin, P.J.; Cheng, Y.; Zhang, J.; Ran, B. Origin-destination estimation for non-commuting trips using location-based social networking data. Int. J. Sustain. Transp. 2015, 9, 551–564. [Google Scholar] [CrossRef]
- Möller, C.; Alfredsson-Olsson, E.; Ericsson, B.; Overvåg, K. The border as an engine for mobility and spatial integration: A study of commuting in a Swedish-Norwegian context. Nor. Geogr. Tidsskr. J. Geogr. 2018, 72, 217–233. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, J.; Wang, H.; Wang, Y.; An, S. Revealing intra-urban travel patterns and service ranges from taxi trajectories. J. Transp. Geogr. 2017, 61, 72–86. [Google Scholar] [CrossRef]
- Watson, J.R.; Prevedouros, P.D. Derivation of origin—Destination distributions from traffic counts: Implications for freeway simulation. Transp. Res. Rec. 2006, 1964, 260–269. [Google Scholar] [CrossRef]
- Kreindler, G.E.; Miyauchi, Y. Measuring Commuting and Economic Activity Inside Cities with Cell Phone Records; National Bureau of Economic Research: Cambridge, MA, USA, 2021. [Google Scholar]
- Guo, D.; Zhu, X. Origin-destination flow data smoothing and mapping. IEEE Trans. Vis. Comput. Graph. 2014, 20, 2043–2052. [Google Scholar] [CrossRef] [PubMed]
- Andrienko, G.; Andrienko, N. A general framework for using aggregation in visual exploration of movement data. Cartogr. J. 2010, 47, 22–40. [Google Scholar] [CrossRef] [Green Version]
- Massey, D.; Denton, N.A. American Apartheid: Segregation and the Making of the Underclass; Harvard University Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Hamilton, B.W.; Röell, A. Wasteful commuting. J. Polit. Econ. 1982, 90, 1035–1053. [Google Scholar] [CrossRef]
- Alonso, W. Location and Land Use: Toward a General Theory of Land Rent; Harvard University Press: Cambridge, MA, USA, 1964. [Google Scholar]
- Mills, E.S. An aggregative model of resource allocation in a metropolitan area. Am. Econ. Rev. 1967, 57, 197–210. [Google Scholar]
- Muth, R.F. Cities and Housing: The Spatial Pattern of Urban Residential Land Use; Cambridge University Press: Cambridge, UK, 1969. [Google Scholar]
- Small, K.A.; Song, S. “Wasteful” commuting: A resolution. J. Polit. Econ. 1992, 100, 888–898. [Google Scholar] [CrossRef]
- Hamilton, B.W. Wasteful commuting again. J. Polit. Econ. 1989, 97, 1497–1504. [Google Scholar] [CrossRef]
- White, M.J. Urban commuting journeys are not “wasteful”. J. Polit. Econ. 1988, 96, 1097–1110. [Google Scholar] [CrossRef]
- Giménez, J.I.; Molina, J.A.; Velilla, J. Excess Commuting in the US: Differences Between the Self-Employed and Employees; IZA DP No. 9425; Institute of Labor Economics (IZA): Bonn, Germany, 2015. [Google Scholar]
- Ha, J.; Lee, S.; Kwon, S.M. Revisiting the relationship between urban form and excess commuting in US metropolitan areas. J. Plan. Educ. Res. 2018, 0739456X18787886. [Google Scholar] [CrossRef]
- Bwire, H.; Zengo, E. Comparison of efficiency between public and private transport modes using excess commuting: An experience in Dar es Salaam. J. Transp. Geogr. 2020, 82, 102616. [Google Scholar] [CrossRef]
- Park, C.; Chang, J.S. Transportation planning and technology spatial equity of excess commuting by transit in seoul spatial equity of excess commuting by transit in Seoul. Transp. Plan. Technol. 2019, 43, 101–112. [Google Scholar] [CrossRef]
- Horner, M.W. Extensions to the concept of excess commuting. Environ. Plan. A Econ. Sp. 2002, 34, 543–566. [Google Scholar] [CrossRef]
- Murphy, E.; Killen, J.E. Commuting economy: An alternative approach for assessing regional commuting efficiency. Urban Stud. 2011, 48, 1255–1272. [Google Scholar] [CrossRef]
- O’Kelly, M.E.; Niedzielski, M.A. Efficient spatial interaction: Attainable reductions in metropolitan average trip length. J. Transp. Geogr. 2008, 16, 313–323. [Google Scholar] [CrossRef]
- Merriman, D.; Ohkawara, T.; Suzuki, T. Excess commuting in the Tokyo metropolitan area: Measurement and policy simulations. Urban Stud. 1995, 32, 69–85. [Google Scholar] [CrossRef]
- O’Kelly, M.E.; Lee, W. Disaggregate journey-to-work data: Implications for excess commuting and jobs–housing balance. Environ. Plan. A 2005, 37, 2233–2252. [Google Scholar] [CrossRef]
- Kim, S. Excess commuting for two-worker households in the Los Angeles metropolitan area. J. Urban Econ. 1995, 38, 166–182. [Google Scholar] [CrossRef] [Green Version]
- Frost, M.; Linneker, B.; Spence, N. Excess or wasteful commuting in a selection of British cities. Transp. Res. Part A Policy Pract. 1998, 32, 529–538. [Google Scholar] [CrossRef]
- Integrated Data Infrastructure; Stats NZ: Wellingon, New Zealand; New Zealand Government: New Zealand. 2021. Available online: https://www.stats.govt.nz/integrated-data/integrated-data-infrastructure/ (accessed on 15 April 2021).
- 2018 Census Data User Guide, 2nd ed.; Stats NZ: Wellington, New Zealand, 2021.
- New Zealand Staff Turnover Survey Report 2018; Lawson Williams: Auckland, New Zealand, 2018.
- Moss, M.L.; Qing, C. The Emergence of the “Super-Commuter”; Rudin Center for Transportation & Management: New York, NY, USA, 2012. [Google Scholar]
- Microdata Output Guide, 5th ed. Stats NZ: Wellington, New Zealand. 2016. Available online: https://www.stats.govt.nz/assets/Methods/Microdata-Output-Guide-2020-v5-1.pdf (accessed on 29 April 2021).
- Auckland Transport. Projects & Roadworks. Available online: https://at.govt.nz/projects-roadworks (accessed on 28 April 2021).
- Goodyear, R. Workforces on the move: An examination of commuting patterns to the cities of Auckland, Wellington and Christchurch. In Proceedings of the NZAE Conference, Willington City, New Zealand, 9–11 July 2008. [Google Scholar]
- Mattingly, K.; Morrissey, J. Housing and transport expenditure: Socio-spatial indicators of affordability in Auckland. Cities 2014, 38, 69–83. [Google Scholar] [CrossRef]
- Badland, H.M.; Schofield, G.M.; Schluter, P.J. Objectively measured commute distance: Associations with actual travel modes and perceptions to place of work or study in Auckland, New Zealand. J. Phys. Act. Heal. 2007, 4, 80–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australasian Railway Association. The Costs of Commuting: An Analysis of Potential Commuter Savings; Australasian Railway Association: Canberra, Australia, 2015. [Google Scholar]
- Ministry of Transport. New Zealand Household Travel Survey: Travel to Work, by Main Urban Area Results (3-Year Moving Average). Available online: http://nzdotstat.stats.govt.nz/wbos/Index.aspx?DataSetCode=TABLECODE7432 (accessed on 17 June 2021).
- Ralphs, M.; Goodyear, R. The daily commute: An analysis of the geography of the labour market using 2006 Census data. Labour Employ. Work New Zeal. 2008. [Google Scholar] [CrossRef]
- Charron, M. From excess commuting to commuting possibilities: More extension to the concept of excess commuting. Environ. Plan. A 2007, 39, 1238–1254. [Google Scholar] [CrossRef]
- Ma, K.-R.; Banister, D. Urban spatial change and excess commuting. Environ. Plan. A 2007, 39, 630–646. [Google Scholar] [CrossRef]
- Murphy, E. Excess commuting and modal choice. Transp. Res. Part A Policy Pract. 2009, 43, 735–743. [Google Scholar] [CrossRef]
- Ahlfeldt, G.M.; Redding, S.J.; Sturm, D.M.; Wolf, N. The economics of density: Evidence from the Berlin Wall. Econometrica 2015, 83, 2127–2189. [Google Scholar] [CrossRef] [Green Version]
Occupation Classification | Occupation Code (First Three-Digit) | 2013 | 2018 | |
---|---|---|---|---|
Key workers | School Teachers | 241 | 77,580 | 94,509 |
Nursing | 254 | 41,379 | 51,591 | |
Health Workers | 411 | 18,228 | 29,229 | |
Child Carers | 421 | 8,667 | 10,548 | |
Personal Carers | 423 | 41,337 | 48,663 | |
Fire Fighters and Police | 441 | 15,864 | 19,002 | |
Total | 203,055 | 253,542 | ||
Finance-Insurance workers | Accountants and Auditors | 221 | 28,143 | 33,999 |
Financial Brokers and Dealers | 222 | 10,473 | 12,507 | |
Insurance Agents | 611 | 43,533 | 55,476 | |
Total | 82,149 | 101,982 | ||
Retail Trade workers | Salespersons | 621 | 96,834 | 125,313 |
Sales Support Workers | 639 | 8,172 | 9,009 | |
Storepersons | 741 | 17,814 | 26,610 | |
Total | 122,820 | 160,932 | ||
Meshblock Residence | 40,612 | 47,199 | ||
Meshblock Workplace | 27,554 | 33,378 | ||
Paired Meshblock | 318,397 | 338,957 |
2013 | 2018 | |||||
---|---|---|---|---|---|---|
Region | Min | Median | Max | Min | Median | Max |
Northern | 0.770 | 1.227 | 2.421 | 0.649 | 1.261 | 3.690 |
Western | 0.775 | 1.031 | 1.306 | 0.854 | 1.052 | 1.375 |
Central | 0.308 | 1.401 | 3.438 | 0.216 | 1.409 | 2.796 |
Eastern | 0.723 | 1.394 | 2.108 | 1.044 | 1.482 | 2.296 |
Southern | 0.384 | 1.006 | 3.638 | 0.338 | 1.069 | 22.783 |
Occupation | Commuting Distance (km) | Excess Commuting (km) | Excess Commuting (%) | ||
---|---|---|---|---|---|
2013 | Mean | Min | Max | Mean | % |
KEY workers | 16.61 | 0.00 | 871.49 | 8.80 | 28.08% |
RET workers | 15.19 | 0.00 | 51.39 | 7.64 | 24.10% |
FIN workers | 15.53 | 0.00 | 387.91 | 8.07 | 25.80% |
2018 | Mean | Min | Max | Mean | % |
KEY workers | 13.50 | 0.00 | 561.64 | 6.10 | 31.35% |
RET workers | 12.33 | 0.00 | 59.88 | 5.98 | 26.97% |
FIN workers | 12.44 | 0.00 | 525.09 | 5.87 | 29.74% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, C.; Cheung, K.S.; Filippova, O. Understanding the Spatial Effects of Unaffordable Housing Using the Commuting Patterns of Workers in the New Zealand Integrated Data Infrastructure. ISPRS Int. J. Geo-Inf. 2021, 10, 457. https://doi.org/10.3390/ijgi10070457
Xiong C, Cheung KS, Filippova O. Understanding the Spatial Effects of Unaffordable Housing Using the Commuting Patterns of Workers in the New Zealand Integrated Data Infrastructure. ISPRS International Journal of Geo-Information. 2021; 10(7):457. https://doi.org/10.3390/ijgi10070457
Chicago/Turabian StyleXiong, Chuyi, Ka Shing Cheung, and Olga Filippova. 2021. "Understanding the Spatial Effects of Unaffordable Housing Using the Commuting Patterns of Workers in the New Zealand Integrated Data Infrastructure" ISPRS International Journal of Geo-Information 10, no. 7: 457. https://doi.org/10.3390/ijgi10070457
APA StyleXiong, C., Cheung, K. S., & Filippova, O. (2021). Understanding the Spatial Effects of Unaffordable Housing Using the Commuting Patterns of Workers in the New Zealand Integrated Data Infrastructure. ISPRS International Journal of Geo-Information, 10(7), 457. https://doi.org/10.3390/ijgi10070457