Improving LST Downscaling Quality on Regional and Field-Scale by Parameterizing the DisTrad Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The DisTrad Downscaling Procedure for Radiometric Surface Temperature
2.2.1. DisTrad Modification
Modification Summary
- Use linear regression instead of polynomial regression by assuming that polynomial is more sensitive for outliers.
- Use 10% of the aggregated pixels instead of using 25% of the aggregated pixels assuming that based on the heterogeneity of the study area, the 10% of the aggregated pixels will give a stronger correlation between the NDVI and LST in the upper and lower tail in the distribution of the pixels.
The Validation
- LST from the Landsat 8 was aggregated to a coarser resolution (1000 m).
- NDVI from Landsat 8 was aggregated to a coarse resolution (1000 m).
- The modification was applied to LST1000m and NDVI1000M to downscale LST to fine resolution.
- LSTnative was used to validate LSTdown.
2.3. Evapotranspiration Estimation
2.3.1. The Surface Energy Balance System
2.3.2. Preparation of the Input Data for SEBS
Normalized Different Vegetation Index (NDVI)
Fraction of Vegetation Cover (FVC)
Emissivity
Albedo
Metrological Data
2.3.3. Retrieval of Actual Evapotranspiration in SEBS
2.3.4. Data and Processing
2.3.5. SEBS Validation
2.3.6. Statistical Justification
3. Results and Discussion
3.1. LST and NDVI Regression
3.2. Effects of LST Downscaling on Landsat 8 Image
3.3. Effects of Downscaling LST on ETa Estimation
3.4. Application of Downscaling Model on MODIS Data
3.5. Model Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bah, A.R.; Norouzi, H.; Prakash, S.; Blake, R.; Khanbilvardi, R.; Rosenzweig, C. Spatial Downscaling of GOES-R Land Surface Temperature over Urban Regions: A Case Study for New York City. Atmosphere 2022, 13, 332. [Google Scholar] [CrossRef]
- Wang, S.; Luo, Y.; Li, X.; Yang, K.; Liu, Q.; Luo, X.; Li, X. Downscaling Land Surface Temperature Based on Non-Linear Geographically Weighted Regressive Model over Urban Areas. Remote Sens. 2021, 13, 1580. [Google Scholar] [CrossRef]
- Song, C.; Hu, G.; Wang, Y.; Qu, X. Downscaling ESA CCI Soil Moisture Based on Soil and Vegetation Component Temperatures Derived From MODIS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2175–2184. [Google Scholar] [CrossRef]
- Yang, Y. A Scale-Separating Framework for Fusing Satellite Land Surface Temperature Products. Remote Sens. 2022, 14, 983. [Google Scholar] [CrossRef]
- Pan, X.; Zhu, X.; Yang, Y.; Cao, C.; Zhang, X.; Shan, L. Applicability of Downscaling Land Surface Temperature by Using Normalized Difference Sand Index. Sci. Rep. 2018, 8, 9530. [Google Scholar] [CrossRef] [Green Version]
- Zakšek, K.; Oštir, K. Downscaling land surface temperature for urban heat island diurnal cycle analysis. Remote Sens. Environ. 2012, 117, 114–124. [Google Scholar] [CrossRef]
- Zhan, W.; Chen, Y.; Zhou, J.; Wang, J.; Liu, W.; Voogt, J.; Zhu, X.; Quan, J.; Li, J. Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sens. Environ. 2013, 131, 119–139. [Google Scholar] [CrossRef]
- Li, W.; Wu, H.; Duan, S.B.; Li, Z.L.; Liu, Q. Selection of Predictor Variables in Downscaling Land Surface Temperature using Random Forest Algorithm. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1817–1820. [Google Scholar]
- Zhang, Z.; He, G.; Wang, M.; Long, T.; Wang, G.; Zhang, X. Validation of the generalized single-channel algorithm using Landsat 8 imagery and SURFRAD ground measurements. Remote Sens. Lett. 2016, 7, 810–816. [Google Scholar] [CrossRef]
- Yu, P.; Zhao, T.; Shi, J.; Ran, Y.; Jia, L.; Ji, D. Data Descri tor Global spatiotemporally continuous MODIS land surface temperature dataset. Sci. Data 2022, 9, 143. [Google Scholar] [CrossRef]
- Bartkowiak, P.; Castelli, M.; Notarnicola, C. Downscaling land surface temperature from MODIS dataset with random forest approach over alpine vegetated areas. Remote Sens. 2019, 11, 1319. [Google Scholar] [CrossRef] [Green Version]
- Nugraha, A.S.A.; Gunawan, T.; Kamal, M. Downscaling land surface temperature on multi-scale image for drought monitoring. In Proceedings of the 6th Geoinformation Science Symposium 2019, Yogyakarta, Indonesia, 26–27 August 2019; p. 6. [Google Scholar]
- Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens. Environ. 2016, 178, 127–141. [Google Scholar] [CrossRef]
- Peng, W.; Yuan, X.; Gao, W.; Wang, R.; Chen, W. Urban Climate Assessment of urban cooling effect based on downscaled land surface temperature: A case study for Fukuoka, Japan. Urban Clim. 2021, 36, 100790. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Landsat 8 Data Users Handbook; NASA: Washington, DC, USA, 2016; Volume 8, p. 97.
- Guo, F.; Hu, D.; Schlink, U. Remote Sensing of Environment A new nonlinear method for downscaling land surface temperature by integrating guided and Gaussian filtering. Remote Sens. Environ. 2022, 271, 112915. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Pan, X.; Zhang, Y.; Cao, C. Downscaling land surface temperature in complex regions by using multiple scale factors with adaptive thresholds. Sensors 2017, 17, 744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, R. Assessing scaling effect in downscaling land surface temperature in a heterogenous urban environment. Int. J. Appl. Earth Obs. Geoinf. 2020, 96, 102256. [Google Scholar] [CrossRef]
- Bindhu, V.M.; Narasimhan, B.; Sudheer, K.P. Development and verification of a non-linear disaggregation method (NL-DisTrad) to downscale MODIS land surface temperature to the spatial scale of Landsat thermal data to estimate evapotranspiration. Remote Sens. Environ. 2013, 135, 118–129. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.; Garg, R. A comparison of different regression models for downscaling Landsat and MODIS land surface temperature images over heterogeneous landscape. Adv. Space Res. 2014, 54, 655–669. [Google Scholar] [CrossRef]
- Sattari, F.; Hashim, M.; Pour, A.B. Thermal sharpening of land surface temperature maps based on the impervious surface index with the TsHARP method to ASTER satellite data: A case study from the metropolitan Kuala Lumpur, Malaysia. Measurement 2018, 125, 262–278. [Google Scholar] [CrossRef]
- Atkinson, P.M. Downscaling in remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2013, 22, 106–114. [Google Scholar]
- Mao, Q.; Peng, J.; Wang, Y. Resolution Enhancement of Remotely Sensed Land Surface Temperature: Current Status and Perspectives. Remote Sens. 2021, 13, 1306. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Yang, C.; Zhan, Q.; Lv, Y.; Liu, H. Downscaling Land Surface Temperature Using Multiscale Geographically Weighted Regression over Heterogeneous Landscapes in Wuhan, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5213–5222. [Google Scholar] [CrossRef]
- Li, H.; Wu, G.; Xu, F.; Li, S. Landsat-8 and Gaofen-1 image-based inversion method for the downscaled land surface temperature of rare earth mining areas. Infrared Phys. Technol. 2021, 113, 103658. [Google Scholar] [CrossRef]
- Xu, S.; Zhao, Q.; Yin, K.; He, G.; Zhang, Z.; Wang, G.; Wen, M.; Zhang, N. Spatial downscaling of land surface temperature based on a multi-factor geographically weighted machine learning model. Remote Sens. 2021, 13, 1186. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.; Li, F.; Neale, C.M. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sens. Environ. 2007, 107, 545–558. [Google Scholar] [CrossRef]
- Ebrahimy, H.; Azadbakht, M. Downscaling MODIS land surface temperature over a heterogeneous area: An investigation of machine learning techniques, feature selection, and impacts of mixed pixels. Comput. Geosci. 2019, 124, 93–102. [Google Scholar] [CrossRef]
- Laxén, J. Is Prosopis a Curse or a Blessing? An Ecological-Economic Analysis of an Invasive Alien Tree Species in Sudan; University of Helsinki, Viikki Tropical Resources Institute (VITRI): Helsinki, Finland, 2007. [Google Scholar]
- Wallin, M. Resettled for Development—The Case of New Halfa Agricultural Scheme, Sudan; The Nordic Africa Institute: Uppsala, Sweden, 2014; Volume 59.
- Srivastava, P.K.; Han, D.; Ramirez, M.R.; Islam, T. Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application. Water Resour. Manag. 2013, 27, 3127–3144. [Google Scholar] [CrossRef]
- Essa, W.; Verbeiren, B.; van der Kwast, J.; Batelaan, O. Improved DisTrad for downscaling thermal MODIS imagery over urban areas. Remote Sens. 2017, 9, 1243. [Google Scholar] [CrossRef] [Green Version]
- Essa, W.; van der Kwast, J.; Verbeiren, B.; Batelaan, O. Downscaling of thermal images over urban areas using the land surface temperature-impervious percentage relationship. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 95–108. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Plaza, A.; Guanter, L.; Moreno, J.; Martínez, P. Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area. Sensors 2009, 9, 768–793. [Google Scholar] [CrossRef] [PubMed]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Liang, S.; Shuey, C.J.; Russ, A.L.; Fang, H.; Chen, M.; Walthall, C.L.; Daughtry, C.S.T.; Hunt, R., Jr. Narrowband to broadband conversions of land surface albedo: II. Validation. Remote Sens. Environ. 2003, 84, 25–41. [Google Scholar] [CrossRef]
- Karnieli, A.; Bayasgalan, M.; Bayarjargal, Y.; Agam, N.; Khudulmur, S.; Tucker, C.J. Comments on the use of the Vegetation Health Index over Mongolia. Int. J. Remote Sens. 2006, 27, 2017–2024. [Google Scholar] [CrossRef]
- Jeganathan, C.; Hamm, N.; Mukherjee, S.; Atkinson, P.; Raju, P.; Dadhwal, V. Evaluating a thermal image sharpening model over a mixed agricultural landscape in India. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 178–191. [Google Scholar] [CrossRef]
- Njuki, S.M. Assessment of Irrigation Performance by Remote Sensing in the Naivasha Basin, Kenya. Master’s Thesis, University of Twente, Enschede, The Netherlands, February 2016; p. 65. [Google Scholar]
- Kyalo, D.K. Sentinel-2 and MODIS Land Surface Temperature-Based Evapotranspiration for Irrigation Efficiency Calculations. Master’s Thesis, University of Twente, Enschede, The Netherlands, February 2017; p. 50. [Google Scholar]
- Tan, S.; Wu, B.; Yan, N. A method for downscaling daily evapotranspiration based on 30-m surface resistance. J. Hydrol. 2019, 577, 123882. [Google Scholar] [CrossRef]
Data | Source | Spatial Resolution | Temporal Resolution |
---|---|---|---|
Landsat 8 | https://espa.cr.usgs.gov/ordering/new/ (23 March 2020) | 30 m | 16 days |
MODIS MOD11A1 V6 | https://earthexplorer.usgs.gov/ (23 March 2020) | 1 km | daily |
NDVI | https://espa.cr.usgs.gov/ordering/new/ (23 March 2020) | 30 m | 16 days |
Sunshine duration | https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (23 March 2020) | 80 km | Daily |
SRTM DEM | https://earthexplorer.usgs.gov/ (23 March 2020) | 30 m | - |
Other climatic data | https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (23 March 2020) | 9 km | Daily |
Method | Max ME | Min ME | Mean Error | RME |
---|---|---|---|---|
LST 25% | 9.37 | −5.12 | −0.011 | 0.89 |
LST 10% | 10.16 | −5.63 | −0.012 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, T.I.M.; Al-Maliki, S.; Salameh, O.; Waltner, I.; Vekerdy, Z. Improving LST Downscaling Quality on Regional and Field-Scale by Parameterizing the DisTrad Method. ISPRS Int. J. Geo-Inf. 2022, 11, 327. https://doi.org/10.3390/ijgi11060327
Ibrahim TIM, Al-Maliki S, Salameh O, Waltner I, Vekerdy Z. Improving LST Downscaling Quality on Regional and Field-Scale by Parameterizing the DisTrad Method. ISPRS International Journal of Geo-Information. 2022; 11(6):327. https://doi.org/10.3390/ijgi11060327
Chicago/Turabian StyleIbrahim, Taha I. M., Sadiq Al-Maliki, Omar Salameh, István Waltner, and Zoltán Vekerdy. 2022. "Improving LST Downscaling Quality on Regional and Field-Scale by Parameterizing the DisTrad Method" ISPRS International Journal of Geo-Information 11, no. 6: 327. https://doi.org/10.3390/ijgi11060327
APA StyleIbrahim, T. I. M., Al-Maliki, S., Salameh, O., Waltner, I., & Vekerdy, Z. (2022). Improving LST Downscaling Quality on Regional and Field-Scale by Parameterizing the DisTrad Method. ISPRS International Journal of Geo-Information, 11(6), 327. https://doi.org/10.3390/ijgi11060327