Beyond Accessibility: A Multidimensional Evaluation of Urban Park Equity in Yangzhou, China
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Traditional Evaluations of Park Equity Based on Park Accessibility
2.2. Multidimensional Evaluation Framework of Park Equity Based on “Sociospatial Dialectics”
3. Study Area and Data
3.1. Study Area and Basic Data
3.2. Variables
4. Methods
4.1. Four Dimensions of Measuring Park Access Levels
4.1.1. Accessibility (Ai)
4.1.2. Diversity (Di)
4.1.3. Convenience (Ci)
4.1.4. Satisfaction (Si)
4.2. Spatial Overlap Analysis
4.3. Lorenz Curve and Gini Coefficient
5. Results
5.1. Spatial Equity in Parks
5.1.1. Distribution of the Four Dimensions
5.1.2. Distribution of the Comprehensive Level
5.1.3. Equity in the Spatial Distribution of Parks
5.2. Social Equity in Parks
5.2.1. Equity Based on Community Properties
5.2.2. Equity Based on Income Level
6. Discussion
6.1. Theoretical and Methodological Contributions
6.2. Implications for Urban Park Planning and Management
6.3. Limitations and Future Research
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Li, S.; Gao, Y.; Liu, W.; Jiao, Y.; Zeng, C.; Gao, L.; Wang, T. Travel changes and equitable access to urban parks in the post COVID-19 pandemic period: Evidence from Wuhan, China. J. Environ. Manag. 2022, 304, 114217. [Google Scholar] [CrossRef] [PubMed]
- Jinvo, N.; Namchoon, K. An understanding of green space policies and evaluation tools in the UK: A focus on the Green Flag Award. J. Korea Soc. Environ. Restor. Technol. 2019, 22, 13–31. [Google Scholar] [CrossRef]
- Kothencz, G.; Kolcsar, R.; Cabrera-Barona, P.; Szilassi, P. Urban Green Space Perception and Its Contribution to Well-Being. Int. J. Environ. Res. Public Health 2017, 14, 766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allard-Poesi, F.; Matos, L.B.S.; Massu, J. Not all types of nature have an equal effect on urban residents’ well-being: A structural equation model approach. Health Place 2022, 74, 102759. [Google Scholar] [CrossRef]
- Nutsford, D.; Pearson, A.L.; Kingham, S. An ecological study investigating the association between access to urban green space and mental health. Public Health 2013, 127, 1005–1011. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Yoong-Parraga, C.; Silva, C.A. Urban green spaces and housing prices in developing countries: A Two-stage quantile spatial regression analysis. For. Policy Econ. 2021, 125, 102420. [Google Scholar] [CrossRef]
- Macedo, J.; Haddad, M.A. Equitable distribution of open space: Using spatial analysis to evaluate urban parks in Curitiba, Brazil. Environ. Plan. B-Plan. Des. 2016, 43, 1096–1117. [Google Scholar] [CrossRef]
- Wang, D.; Brown, G.; Liu, Y.; Mateo-Babiano, I. A comparison of perceived and geographic access to predict urban park use. Cities 2015, 42, 85–96. [Google Scholar] [CrossRef]
- Chen, S.; Sleipness, O.R.; Christensen, K.M.; Feldon, D.; Xu, Y. Environmental justice and park quality in an intermountain west gateway community: Assessing the spatial autocorrelation. Landsc. Ecol. 2019, 34, 2323–2335. [Google Scholar] [CrossRef]
- Xu, M.; Xin, J.; Su, S.; Weng, M.; Cai, Z. Social inequalities of park accessibility in Shenzhen, China: The role of park quality, transport modes, and hierarchical socioeconomic characteristics. J. Transp. Geogr. 2017, 62, 38–50. [Google Scholar] [CrossRef]
- Wang, D. Rethinking Planning for Urban Parks: Accessibility, Use and Behaviour. Ph.D. Dissertation, The University of Queensland, St Lucia, QLD, Australia, 2015. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Yao, H.; Xia, J.; Fu, G.; Chen, Y.; Wang, W.; Li, J.; Zhang, Y. Accessibility-Based Equity Assessment of Urban Parks in Beijing. J. Urban Plan. Dev. 2021, 147, 05021018. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.; Liu, Y.J.C. Access to urban parks: Comparing spatial accessibility measures using three GIS-based approaches. Comput. Environ. Urban Syst. 2021, 90, 101713. [Google Scholar] [CrossRef]
- Wu, L.; Kim, S.K. Health outcomes of urban green space in China: Evidence from Beijing. Sustain. Cities Soc. 2021, 65, 102604. [Google Scholar] [CrossRef]
- Oh, K.; Jeong, S. Assessing the spatial distribution of urban parks using GIS. Landsc. Urban Plan. 2007, 82, 25–32. [Google Scholar] [CrossRef]
- Wu, W.; Ding, K. Optimization Strategy for Parks and Green Spaces in Shenyang City: Improving the Supply Quality and Accessibility. Int. J. Environ. Res. Public Health 2022, 19, 4443. [Google Scholar] [CrossRef]
- Yu, S.; Zhu, X.; He, Q. An Assessment of Urban Park Access Using House-Level Data in Urban China: Through the Lens of Social Equity. Int. J. Environ. Res. Public Health 2020, 17, 2349. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Pan, J. Spatial distribution characteristics of national protected areas in China. J. Geogr. Sci. 2019, 29, 2047–2068. [Google Scholar] [CrossRef] [Green Version]
- Bla, B.; Yu, T.; Meng, G.A.; Dta, C.; Aaqaa, D.; Dxa, B. Evaluating the disparity between supply and demand of park green space using a multi-dimensional spatial equity evaluation framework. J. Cities 2022, 121, 103484. [Google Scholar] [CrossRef]
- Li, L.; Du, Q.; Ren, F.; Ma, X. Assessing Spatial Accessibility to Hierarchical Urban Parks by Multi-Types of Travel Distance in Shenzhen, China. Int. J. Environ. Res. Public Health 2019, 16, 1038. [Google Scholar] [CrossRef] [Green Version]
- Gregory, D.; Johnston, R.; Pratt, G.; Watts, M.; Whatmore, S. The Dictionary of Human Geography; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Yuzhen, Z.; Jie, W.; Yang, C.; Jianping, Y. An assessment of urban parks distribution from multiple dimensions at the community level: A case study of Beijing. Environ. Impact Assess. Rev. 2021, 91, 106663. [Google Scholar] [CrossRef]
- Rigolon, A.; Browning, M.; Jennings, V. Inequities in the quality of urban park systems: An environmental justice investigation of cities in the United States. Landsc. Urban Plan. 2018, 178, 156–169. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, Y.; Zhao, B. How to accurately identify the underserved areas of peri-urban parks? An integrated accessibility indicator. Ecol. Indic. 2021, 122, 107263. [Google Scholar] [CrossRef]
- Yasumoto, S.; Nakaya, T.; Jones, A.P. Quantitative Environmental Equity Analysis of Perceived Accessibility to Urban Parks in Osaka Prefecture, Japan. Appl. Spat. Anal. Policy 2021, 14, 337–354. [Google Scholar] [CrossRef]
- Chang, Z.; Chen, J.; Li, W.; Li, X. Public transportation and the spatial inequality of urban park accessibility: New evidence from Hong Kong. Transp. Res. Part D-Transp. Environ. 2019, 76, 111–122. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Z.; Song, Y.; Chai, Y. Assessing equity in park accessibility using a travel behavior-based G2SFCA method in Nanjing, China. J. Transp. Geogr. 2021, 96, 103179. [Google Scholar] [CrossRef]
- Hu, S.; Song, W.; Li, C.; Lu, J. A multi-mode Gaussian-based two-step floating catchment area method for measuring accessibility of urban parks. Cities 2020, 105, 102815. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, Z.; Yuan, L.; Wang, L.; Wu, C. Measuring Accessibility of Healthcare Facilities for Populations with Multiple Transportation Modes Considering Residential Transportation Mode Choice. ISPRS Int. J. Geo-Inf. 2020, 9, 394. [Google Scholar] [CrossRef]
- Tian, M.; Yuan, L.; Guo, R.; Wu, Y.; Liu, X. Sustainable development: Investigating the correlations between park equality and mortality by multilevel model in Shenzhen, China. Sustain. Cities Soc. 2021, 75, 103385. [Google Scholar] [CrossRef]
- Luo, W.; Whippo, T. Variable catchment sizes for the two-step floating catchment area (2SFCA) method. Health Place 2012, 18, 789–795. [Google Scholar] [CrossRef]
- McGrail, M.R.; Humphreys, J.S. Measuring spatial accessibility to primary health care services: Utilising dynamic catchment sizes. Appl. Geogr. 2014, 54, 182–188. [Google Scholar] [CrossRef]
- Tao, Z.; Han, W. Assessing the Impacts of Hierarchical Healthcare System on the Accessibility and Spatial Equality of Healthcare Services in Shenzhen, China. ISPRS Int. J. Geo-Inf. 2021, 10, 615. [Google Scholar] [CrossRef]
- Fransen, K.; Neutens, T.; De Maeyer, P.; Deruyter, G. A commuter-based two-step floating catchment area method for measuring spatial accessibility of daycare centers. Health Place 2015, 32, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Rekha, R.S.; Radhakrishnan, N.; Mathew, S. Spatial accessibility analysis of schools using geospatial techniques. Spat. Inf. Res. 2020, 28, 699–708. [Google Scholar] [CrossRef]
- Delamater, P.L. Spatial accessibility in suboptimally configured health care systems: A modified two-step floating catchment area (M2SFCA) metric. Health Place 2013, 24, 30–43. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Xing, L.; Zhang, Z. An Improved Accessibility-Based Model to Evaluate Educational Equity: A Case Study in the City of Wuhan. ISPRS Int. J. Geo-Inf. 2021, 10, 458. [Google Scholar] [CrossRef]
- Hashtarkhani, S.; Kiani, B.; Bergquist, R.; Bagheri, N.; VafaeiNejad, R.; Tara, M. An age-integrated approach to improve measurement of potential spatial accessibility to emergency medical services for urban areas. Int. J. Health Plan. Manag. 2020, 35, 788–798. [Google Scholar] [CrossRef]
- Wen, C.; Albert, C.; Von Haaren, C. Equality in access to urban green spaces: A case study in Hannover, Germany, with a focus on the elderly population. Urban For. Urban Green. 2020, 55, 126820. [Google Scholar] [CrossRef]
- Ibes, D.C. A multi-dimensional classification and equity analysis of an urban park system: A novel methodology and case study application. Landsc. Urban Plan. 2015, 137, 122–137. [Google Scholar] [CrossRef]
- Kaczynski, A.T.; Potwarka, L.R.; Saelens, B.E.J.A.J.o.P.H. Association of park size, distance, and features with physical activity in neighborhood parks. Am. J. Public Health 2008, 98, 1451–1456. [Google Scholar] [CrossRef]
- Khaza, M.K.B.; Rahman, M.M.; Harun, F.; Roy, T.K. Accessibility and Service Quality of Public Parks in Khulna City. J. Urban Plan. Dev. 2020, 146, 04020024. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Song, C.; Chan, C.-S.; Pei, T.; Yu, W.; Zhang, X. Spatial-temporal distribution characteristics and evolution mechanism of urban parks in Beijing, China. Urban For. Urban Green. 2021, 64, 127265. [Google Scholar] [CrossRef]
- Koohsari, M.J.; Mavoa, S.; Villanueva, K.; Sugiyama, T.; Badland, H.; Kaczynski, A.T.; Owen, N.; Giles-Corti, B. Public open space, physical activity, urban design and public health: Concepts, methods and research agenda. Health Place 2015, 33, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Brown, G.; Mateo-Babiano, I. Beyond proximity: An integrated model of accessibility for public parks. Asian J. Soc. Sci. Humanit. 2013, 2, 486–498. [Google Scholar]
- Vaughan, K.B.; Kaczynski, A.T.; Stanis, S.A.W.; Besenyi, G.M.; Bergstrom, R.; Heinrich, K.M. Exploring the Distribution of Park Availability, Features, and Quality Across Kansas City, Missouri by Income and Race/Ethnicity: An Environmental Justice Investigation. Ann. Behav. Med. 2013, 45, S28–S38. [Google Scholar] [CrossRef] [Green Version]
- Kwan, M.-P.; Murray, A.T.; O’Kelly, M.E.; Tiefelsdorf, M.J.J.o.G.S. Recent advances in accessibility research: Representation, methodology and applications. J. Geogr. Syst 2003, 5, 129–138. [Google Scholar] [CrossRef]
- Talen, E.; Anselin, L. Assessing spatial equity: An evaluation of measures of accessibility to public playgrounds. Environ. Plan. A 1998, 30, 595–613. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Rigolon, A.; Choi, D.-a.; Lyons, T.; Brewer, S. Transit to parks: An environmental justice study of transit access to large parks in the US West. Urban For. Urban Green. 2021, 60, 127055. [Google Scholar] [CrossRef]
- Tan, P.Y.; Samsudin, R. Effects of spatial scale on assessment of spatial equity of urban park provision. Landsc. Urban Plan. 2017, 158, 139–154. [Google Scholar] [CrossRef]
- Israel, E.; Frenkel, A. Social justice and spatial inequality: Toward a conceptual framework. Prog. Hum. Geogr. 2018, 42, 647–665. [Google Scholar] [CrossRef]
- Halas, M.; Klapka, P.; Bacik, V.; Klobucnik, M. The spatial equity principle in the administrative division of the Central European countries. PLoS ONE 2017, 12, e0187406. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q. Fracking equity: A spatial justice analysis prototype. Land Use Policy 2018, 70, 10–15. [Google Scholar] [CrossRef]
- Xing, L.; Liu, Y.; Wang, B.; Wang, Y.; Liu, H. An environmental justice study on spatial access to parks for youth by using an improved 2SFCA method in Wuhan, China. Cities 2020, 96, 102405. [Google Scholar] [CrossRef]
- Jian, I.Y.; Luo, J.; Chan, E.H.W. Spatial justice in public open space planning: Accessibility and inclusivity. Habitat Int. 2020, 97, 102122. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Z.; Li, Z.; Tang, Z. An assessment of urban park access in Shanghai—Implications for the social equity in urban China. Landsc. Urban Plan. 2017, 157, 383–393. [Google Scholar] [CrossRef]
- Luo, T.; Yang, F.; Wu, L.; Gao, X. Equity Evaluation of Urban Park System: A Case Study of Xiamen, China. J. Environ. Eng. Landsc. Manag. 2020, 28, 125–136. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H.; Yan, W. Exploring Spatial Distribution of Urban Park Service Areas in Shanghai Based on Travel Time Estimation: A Method Combining Multi-Source Data. ISPRS Int. J. Geo-Inf. 2021, 10, 608. [Google Scholar] [CrossRef]
- Feng, S.; Chen, L.; Sun, R.; Feng, Z.; Li, J.; Khan, M.S.; Jing, Y. The Distribution and Accessibility of Urban Parks in Beijing, China: Implications of Social Equity. Int. J. Environ. Res. Public Health 2019, 16, 4894. [Google Scholar] [CrossRef] [Green Version]
- Diao, Y.; Hu, W.; He, B.-J. Analysis of the Impact of Park Scale on Urban Park Equity Based on 21 Incremental Scenarios in the Urban Core Area of Chongqing, China. Adv. Sustain. Syst. 2021, 5, 2100171. [Google Scholar] [CrossRef]
- He, S.; Wu, Y.; Wang, L. Characterizing Horizontal and Vertical Perspectives of Spatial Equity for Various Urban Green Spaces: A Case Study of Wuhan, China. Front. Public Health 2020, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Sun, F.; Che, Y. Public green spaces and human wellbeing: Mapping the spatial inequity and mismatching status of public green space in the Central City of Shanghai. Urban For. Urban Green. 2017, 27, 59–68. [Google Scholar] [CrossRef]
- Xiao, Y.; Miao, S.; Zhang, Y.; Chen, H.; Wu, W. Exploring the health effects of neighborhood greenness on Lilong residents in Shanghai. Urban For. Urban Green. 2021, 66, 127383. [Google Scholar] [CrossRef]
- Lefebvre, H. The Production of Space; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- O’Bryan, S. Parkscapes: Green Spaces in Modern Japan. Am. Hist. Rev. 2011, 116, 1464–1465. [Google Scholar] [CrossRef] [Green Version]
- Havens, T. Parkscapes: Green Spaces in Modern Japan; University of Hawai’i Press: Honolulu, HI, USA, 2017. [Google Scholar]
- Heo, S.; Nori-Sarma, A.; Kim, S.; Lee, J.T.; Bell, M.L.J.E.R.L. Do persons with low socioeconomic status have less access to greenspace? Application of accessibility index to urban parks in Seoul, South Korea. Environ. Res. Lett. 2021, 16, 084027. [Google Scholar] [CrossRef]
- Rini, H.S.; Gunawan. Children in the City Park: Rethinking Public Space Accessibility in the Child-Friendly City of Semarang. In Proceedings of the International Seminar on Research for Social Justice (ISRISJ)—Challenge and Possibilities, Bandung, Indonesia, 30 October 2018. [Google Scholar]
- Mears, M.; Brindley, P.; Maheswaran, R.; Jorgensen, A. Understanding the socioeconomic equity of publicly accessible greenspace distribution: The example of Sheffield, UK. Geoforum 2019, 103, 126–137. [Google Scholar] [CrossRef]
- Hu, L.; Fan, Y.; Sun, T.J.C. Spatial or socioeconomic inequality? Job accessibility changes for low- and high-education population in Beijing, China. Cities 2017, 66, 23–33. [Google Scholar] [CrossRef]
- Ryan, M.; Lin, T.; Xia, J.; Robinson, T. Comparison of perceived and measured accessibility between different age groups and travel modes at Greenwood Station, Perth, Australia. Eur. J. Transp. Infrastruct. Res. 2016, 16, 406–423. [Google Scholar]
- Montgomery, M.C.; Chakraborty, J.; Grineski, S.E.; Collins, T.W. An environmental justice assessment of public beach access in Miami, Florida. Appl. Geogr. 2015, 62, 147–156. [Google Scholar] [CrossRef]
- Yangzhou Planning Bureau. Yangzhou City Master Plan (2011–2020). 2015. Available online: http://zrzy.jiangsu.gov.cn/gtapp/nrglIndex.action?catalogID=2c9082b55b60eafb015b614ffd610155&type=2&messageID=8E7D3212EC8B864BE05010AC3302F89F (accessed on 1 October 2021).
- Yangzhou Planning Bureau. Special Plan for the Development and Protection of Yangzhou Park System (2018–2035). 2018. Available online: http://zrzy.jiangsu.gov.cn/gtapp/nrglIndex.action?type=2&messageID=8E7D3212ECE2864BE05010AC3302F89F (accessed on 1 October 2021).
- Yangzhou Planning Bureau. Yangzhou Land Use Master Plan (2006–2020). 2017. Available online: http://zrzy.jiangsu.gov.cn/gtapp/nrglIndex.action?type=2&messageID=2c9082b56434dae10164353428180031 (accessed on 28 February 2021).
- Radke, J.; Mu, L.J.G.I.S. Spatial Decompositions, Modeling and Mapping Service Regions to Predict Access to Social Programs. Ann. GIS 2000, 6, 105–112. [Google Scholar] [CrossRef]
- Palacio Buendia, A.V.; Perez Albert, M.Y.; Serrano Gine, D. PPGIS and Public Use in Protected Areas: A Case Study in the Ebro Delta Natural Park, Spain. ISPRS Int. J. Geo-Inf. 2019, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Stemberk, J.; Dolejs, J.; Maresova, P.; Kuca, K. Factors Affecting the Number of Visitors in National Parks in the Czech Republic, Germany and Austria. ISPRS Int. J. Geo-Inf. 2018, 7, 124. [Google Scholar] [CrossRef] [Green Version]
- Ryu, H.K. Gini Coefficient, Relative Gini Coefficient, and Theil’s Entropy Index for Income Equality Analysis. Korea Rev. Appl. Econ. 2004, 6, 5–28. [Google Scholar]
- Kong, X.; Sun, Y.; Xu, C. Effects of Urbanization on the Dynamics and Equity of Access to Urban Parks from 2000 to 2015 in Beijing, China. Forests 2021, 12, 1796. [Google Scholar] [CrossRef]
- Chang, H.-S.; Liao, C.-H. Exploring an integrated method for measuring the relative spatial equity in public facilities in the context of urban parks. Cities 2011, 28, 361–371. [Google Scholar] [CrossRef]
- Blaszczy, M.; Suchocka, M.; Wojnowska-Heciak, M.; Muszynska, M. Quality of urban parks in the perception of city residents with mobility difficulties. PeerJ 2020, 8, e10570. [Google Scholar] [CrossRef]
- Boulton, C.; Dedekorkut-Howes, A.; Holden, M.; Byrne, J. Under pressure: Factors shaping urban greenspace provision in a mid-sized city. Cities 2020, 106, 102816. [Google Scholar] [CrossRef]
- Rahman, K.M.A.; Zhang, D. Analyzing the Level of Accessibility of Public Urban Green Spaces to Different Socially Vulnerable Groups of People. Sustainability 2018, 10, 3917. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xu, Z.; Byrne, J.; Xu, T.; Wu, J.J.U.F.; Greening, U. Can smaller parks limit green gentrification? Insights from Hangzhou, China. Urban For. Urban Green 2021, 59, 127009. [Google Scholar] [CrossRef]
- Azmoodeh, M.; Haghighi, F.; Motieyan, H. Proposing an integrated accessibility-based measure to evaluate spatial equity among different social classes. Environ. Plan. B-Urban Anal. City Sci. 2021, 48, 2790–2807. [Google Scholar] [CrossRef]
- Tuofu, H.; Qingyun, H.; Dongxiao, Y.; Xiao, O. Evaluating the Impact of Urban Blue Space Accessibility on Housing Price: A Spatial Quantile Regression Approach Applied in Changsha, China. Front. Environ. Sci. 2021, 9, 696626. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, W. Recreational visits to urban parks and factors affecting park visits: Evidence from geotagged social media data. Landsc. Urban Plan. 2018, 180, 27–35. [Google Scholar] [CrossRef]
Park Classification | Size | |
---|---|---|
Comprehensive Park | City level | Above 20 hm2 |
District level | Above 10 hm2 | |
Community Park | Above 0.5 hm2 | |
Pocket Park | Above 0.2 hm2 | |
Specialty Park | Zoos, botanical gardens, children’s parks, historical parks, amusement parks and scenic areas | Depends on the actual situation |
Variable Type | Variable Nature | Variable Name | Variable Interpretation | Variable Source | Unit |
---|---|---|---|---|---|
Variables of multiple dimensions | Objective variable | Accessibility (Ai) | Per capita park area reachable within 30 min walking distance | Calculation based on SD-KD2SFCA | per m2 |
Diversity (Di) | Number of parks accessible within 30 min walking distance | Statistics based on network analysis | — | ||
Convenience (Ci) | Network distance to the nearest park | Calculation based on network analysis | m | ||
Subjective variable | Satisfaction (Si) | Residents’ review | Statistical analysis of 672 questionnaires | — | |
Variables of community properties | Demographic property | Population density (X1) | Ratio of community population MILOSto community area | From China’s sixth census | per m2 |
Location property | Distance from the city center (X2) | Distance from the community to the city center (Wenchang Pavilion) | Calculation based nearest-neighbor analysis | m | |
Housing property | Average number of residential buildings (X3) | Average number of floors for all housing | Crawling from: https://yz.esf.fang.com (accessed on 23 January 2020) | floor | |
Housing prices (X4) | Average prices of all housing | yuan | |||
Facility property | Density of points of interest for public transportation facilities (X5) | Ratio of the number of parking lots, bus stops, gas stations, and other facilities to the area of the community | Crawling the open platform of AutoNavi map: https://lbs.amap.com (accessed on 25 January 2020) | per m2 | |
Density of points of interest for leisure and entertainment facilities (X6) | Ratio of the number of bathing centers, chess and card rooms, ecological farms, resorts, and other facilities to the community area | per m2 | |||
Density of points of interest for living facilities (X7) | Ratio of the number of restaurants, shopping malls, vegetable markets, and other facilities to the community area | per m2 |
Review Aspect | Specific Question | Score |
---|---|---|
Perceived accessibility | Are nearby parks easily accessible in your community? | 0–10 |
Landscape and environment | How do you feel about the landscape and environmental level of the parks around your community? | 0–10 |
Recreational facilities | Are the recreational facilities provided by parks around your community highly standardized? | 0–10 |
Safety measures | Do parks around your community have some effective conservation measures in place? | 0–10 |
Sociodemographic Characteristics | Percentage | Sociodemographic Characteristics | Percentage | ||
---|---|---|---|---|---|
Gender | Male | 47.17% | Profession | Government/Public Institution Workers | 4.32% |
Female | 52.83% | Teachers | 2.53% | ||
Age | 24 and under | 12.80% | Researchers | 0.45% | |
25–34 | 18.30% | Students | 8.33% | ||
35–44 | 19.05% | Soldiers | 0.45% | ||
45–54 | 21.13% | Local company employees | 11.76% | ||
55–64 | 15.33% | Foreign company employees | 0.60% | ||
65 and above | 13.39% | Individual industrial and commercial households | 11.01% | ||
Educational level | Junior high school and below | 35.42% | Farmers | 4.91% | |
High School/Secondary School | 33.33% | Workmen | 5.65% | ||
College | 18.01% | Retirees | 20.54% | ||
Undergraduate | 11.61% | Freelancers | 18.60% | ||
Master and above | 1.64% | Others | 10.86% |
Scope | Rank |
---|---|
[0, 0.2] | Exact match |
[0.2, 0.3] | Relative match |
[0.3, 0.4] | Relatively reasonable match |
[0.4, 0.5] | Relative mismatch |
[0.5, 1] | Total mismatch |
Dimension | N | Minimum | Maximum | Average | Standard Deviation |
---|---|---|---|---|---|
Accessibility (Ai) | 175 | 0 | 707.0594 | 50.9915 | 100.3525 |
Diversity (Di) | 175 | 0 | 0.9694 | 1.94 | 0.2430 |
Convenience (Ci) | 175 | 0.000154 | 0.031611 | 0.002827 | 0.004618 |
Satisfaction (Si) | 175 | 2.8 | 9.5 | 6.1750 | 1.4216 |
Rank | N | Accounting for Total Number of Communities | Accounting for Community Area | Accounting for the Population |
---|---|---|---|---|
Almost no park access | 31 | 17.72% | 25.31% | 16.84% |
low level | 59 | 33.71% | 37.64% | 32.99% |
Relatively low level | 44 | 25.14% | 16.92% | 27.02% |
Relatively high level | 33 | 18.86% | 15.90% | 18.33% |
High level | 8 | 4.57% | 4.81% | 4.23% |
Dimension | Accessibility (Ai) | Diversity (Di) | Convenience (Ci) | Satisfaction (Si) |
---|---|---|---|---|
GC | 0.7979 | 0.4946 | 0.6511 | 0.3766 |
Rank | Total mismatch | Relative mismatch | Total mismatch | Relatively reasonable match |
Dimension | N | Analysis Method | X1 | X2 | X3 | X4 | X5 | X6 | X7 |
---|---|---|---|---|---|---|---|---|---|
Accessibility (Ai) | 175 | Spearman’s rank correlation | −0.092 | −0.115 | 0.022 | 0.249 ** | 0.151 * | 0.040 | −0.051 |
175 | Kendall rank correlation | −0.077 | −0.083 | 0.010 | 0.167 ** | 0.103 * | 0.018 | −0.040 | |
Diversity (Di) | 175 | Spearman’s rank correlation | 0.593 ** | −0.681 ** | −0.494 ** | 0.697 ** | 0.550 ** | 0.550 ** | 0.301 ** |
175 | Kendall rank correlation | 0.416 ** | −0.510 ** | −0.345 ** | 0.300 ** | 0.522 ** | 0.392 ** | 0.436 ** | |
Convenience (Ci) | 175 | Spearman’s rank correlation | 0.216 ** | −0.361 ** | −0.285 ** | 0.370 ** | 0.457 ** | 0.322 ** | 0.284 ** |
175 | Kendall rank correlation | 0.152 ** | −0.267 ** | −0.206 ** | 0.270 ** | 0.343 ** | 0.240 ** | 0.207 ** | |
Satisfaction (Si) | 175 | Spearman’s rank correlation | −0.163 ** | 0.053 | 0.048 | 0.158 * | 0.061 | −0.008 | −0.027 |
175 | Kendall rank correlation | −0.110 * | 0.032 | 0.032 | 0.113 * | 0.041 | −0.003 | −0.016 |
Income Group | High Level | Relatively High Level | Relatively Low Level | Low Level | No Access |
---|---|---|---|---|---|
High-income group | 14.29% | 31.43% | 31.43% | 11.43% | 11.43% |
Middle-income group | 2.86% | 14.29% | 28.57% | 38.10% | 16.69% |
Low-income group | 0% | 20.00% | 8.57% | 42.86% | 28.57% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Liang, Z.; Feng, L.; Fan, Z. Beyond Accessibility: A Multidimensional Evaluation of Urban Park Equity in Yangzhou, China. ISPRS Int. J. Geo-Inf. 2022, 11, 429. https://doi.org/10.3390/ijgi11080429
Li Z, Liang Z, Feng L, Fan Z. Beyond Accessibility: A Multidimensional Evaluation of Urban Park Equity in Yangzhou, China. ISPRS International Journal of Geo-Information. 2022; 11(8):429. https://doi.org/10.3390/ijgi11080429
Chicago/Turabian StyleLi, Zhiming, Zhengyuan Liang, Linhui Feng, and Zhengxi Fan. 2022. "Beyond Accessibility: A Multidimensional Evaluation of Urban Park Equity in Yangzhou, China" ISPRS International Journal of Geo-Information 11, no. 8: 429. https://doi.org/10.3390/ijgi11080429
APA StyleLi, Z., Liang, Z., Feng, L., & Fan, Z. (2022). Beyond Accessibility: A Multidimensional Evaluation of Urban Park Equity in Yangzhou, China. ISPRS International Journal of Geo-Information, 11(8), 429. https://doi.org/10.3390/ijgi11080429