Multiscale Analysis of Spatial Accessibility to Acute Hospitals in Carinthia, Austria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. GIS-Based Proximity Method
2.4. GIS-Based Generalized Two-Step Floating Catchment Area (G2SFCA) Method
3. Results
3.1. Comparing Travel Time across Census Blocks and Grids
3.2. Comparing Accessibility Scores to Acute Hospitals across Census Blocks and Grids
3.3. Examining Edge Effects on Measuring Accessibility across Census Blocks and Grids
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, C.C.; Bruinooge, S.S.; Kirkwood, M.K.; Olsen, C.; Jemal, A.; Bajorin, D.; Giordano, S.H.; Goldstein, M.; Guadagnolo, B.A.; Kosty, M.; et al. Association between geographic access to cancer care, insurance, and receipt of chemotherapy: Geographic distribution of oncologists and travel distance. J. Clin. Oncol. 2015, 33, 3177–3185. [Google Scholar] [CrossRef] [PubMed]
- Onega, T. Geographic Access, Utilization, and Outcomes in Lung, Breast, Prostate, and Colorectal Cancer Patients at NCI-Designated Cancer Centers; Dartmouth College: Ann Arbor, MI, USA, 2008; p. 202. [Google Scholar]
- World Health Organization (WHO). Universal Health Coverage (UHC). 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/universal-health-coverage-(uhc) (accessed on 12 December 2022).
- Statistics Austria. Health Expenditure Increased by 12.6% in 2021. 2022. Available online: https://www.statistik.at/fileadmin/announcement/2022/06/20220614Gesundheitsausgaben2021EN.pdf (accessed on 21 December 2022).
- American Medical Association (AMA). Trends in Health Care Spending. 2020. Available online: https://www.ama-assn.org/about/research/trends-health-care-spending (accessed on 15 November 2022).
- Wang, F. Measurement, optimization, and impact of health care accessibility: A methodological review. Ann. Assoc. Am. Geogr. 2012, 102, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Federal Ministry of Labour; Social Affairs. Health and Consumer Protection. In the Austrian Health Care System Key Facts; Federal Ministry of Labour: Vienna, Austria, 2019; p. 40. [Google Scholar]
- Hirshon, J.M.; Risko, N.; Calvello, E.J.B.; De Ramirez, S.S.; Narayan, M.; Theodosis, C.; O’Neill, J. Health systems and services: The role of acute care. Bull. World Health Organ. 2013, 91, 386–388. [Google Scholar] [CrossRef] [PubMed]
- Penchansky, R.; Thomas, J.W. The concept of access: Definition and relationship to consumer satisfaction. Med. Care 1981, 19, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Del Conte, D.E.; Locascio, A.; Amoruso, J.; McNamara, M.L. Modeling multimodal access to primary care in an urban environment. Transp. Res. Interdiscip. Perspect. 2022, 13, 100550. [Google Scholar] [CrossRef]
- Demitiry, M.; Higgins, C.D.; Páez, A.; Miller, E.J. Accessibility to primary care physicians: Comparing floating catchments with a utility-based approach. J. Transp. Geogr. 2022, 101, 103356. [Google Scholar] [CrossRef]
- Guagliardo, M.F. Spatial accessibility of primary care: Concepts, methods and challenges. Int. J. Health Geogr. 2004, 3, 3–13. [Google Scholar] [CrossRef]
- Hafner, P.; Mahlich, J.C. Determinants of physician’s office visits and potential effects of co-payments: Evidence from Austria. Int. J. Health Plan. Manag. 2016, 31, e192–e203. [Google Scholar] [CrossRef]
- Luo, W.; Wang, F. Measures of spatial accessibility to health care in a GIS environment: Synthesis and a case study in the Chicago region. Environ. Plan. B Plan. Des. 2003, 30, 865–884. [Google Scholar] [CrossRef]
- Luo, W.; Qi, Y. An enhanced two-step floating catchment area (E2SFCA) method for measuring spatial accessibility to primary care physicians. Health Place 2009, 15, 1100–1107. [Google Scholar] [CrossRef]
- Wang, F.; Vingiello, M.; Xierali, I.M. Serving a segregated Metropolitan area: Disparities in spatial access to primary care physicians in Baton Rouge, Louisiana. In Geospatial Technologies for Urban Health; Lu, Y., Delmelle, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 75–94. [Google Scholar]
- Onega, T.; Duell, E.J.; Shi, X.; Wang, D.; Demidenko, E.; Goodman, D. Geographic access to cancer care in the U.S. Cancer 2008, 112, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Fu, C.; Onega, T.; Shi, X.; Wang, F. Disparities in geographic accessibility of National Cancer Institute cancer centers in the United States. J. Med. Syst. 2017, 41, 203. [Google Scholar] [CrossRef] [PubMed]
- Ikram, S.Z.; Hu, Y.; Wang, F. Disparities in spatial accessibility of pharmacies in Baton Rouge, Louisiana. Geogr. Rev. 2015, 105, 492–510. [Google Scholar] [CrossRef]
- Alford-Teaster, J.; Wang, F.; Tosteson, A.N.A.; Onega, T. Incorporating broadband durability in measuring geographic access to health care in the era of telehealth: A case example of the 2-step virtual catchment area (2SVCA) Method. J. Am. Med. Inform. Assoc. 2021, 28, 2526–2530. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Brüggmann, D.; Klingelhöfer, D.; Maier, W.; Schwettmann, L.; Weiss, D.J.; Groneberg, D.A. Access to intensive care in 14 European countries: A spatial analysis of intensive care need and capacity in the light of COVID-19. Intensive Care Med. 2020, 46, 2026–2034. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.J.; Nelson, A.; Vargas-Ruiz, C.A.; Gligorić, K.; Bavadekar, S.; Gabrilovich, E.; Bertozzi-Villa, A.; Rozier, J.; Gibson, H.S.; Shekel, T.; et al. Global maps of travel time to healthcare facilities. Nat. Med. 2020, 26, 1835–1838. [Google Scholar] [CrossRef]
- Fransen, K.; Neutens, T.; De Maeyer, P.; Deruyter, G. A commuter-based two-step floating catchment area method for measuring spatial accessibility of daycare centers. Health Place 2015, 32, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Fritze, R.; Graser, A.; Sinnl, M. Combining spatial information and optimization for locating emergency medical service stations: A case study for Lower Austria. Int. J. Med. Inform. 2018, 111, 24–36. [Google Scholar] [CrossRef]
- Li, X.; Hu, Q.; Gregg, A. Analysis and comparison between crash- and health-based emergency medical service response across Alabama. J. Transp. Health 2022, 24, 101315. [Google Scholar] [CrossRef]
- Wang, F. Quantitative Methods and Socio-Economic Applications in GIS, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Shao, Y.; Luo, W. Supply-demand adjusted two-steps floating catchment area (SDA-2SFCA) model for measuring spatial access to health care. Soc. Sci. Med. 2022, 296, 114727. [Google Scholar] [CrossRef]
- Delmelle, E.M.; Marsh, D.M.; Dony, C.; Delamater, P.L. Travel impedance agreement among online road network data providers. Int. J. Geogr. Inf. Sci. 2019, 33, 1251–1269. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C. GIS Automated Delineation of Hospital Service Areas; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Fotheringham, A.S.; Wong, D.W.S. The modifiable areal unit problem in multivariate statistical analysis. Environ. Plan. A Econ. Space 1991, 23, 1025–1044. [Google Scholar] [CrossRef]
- Kwan, M.-P. From place-based to people-based exposure measures. Soc. Sci. Med. 2009, 69, 1311–1313. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, F. GIS-automated delineation of hospital service areas in Florida: From Dartmouth method to network community detection methods. Ann. GIS 2022, 28, 93–109. [Google Scholar] [CrossRef]
- Mu, L.; Wang, F. A scale-space clustering method: Mitigating the effect of scale in the analysis of zone-based data. Ann. Assoc. Am. Geogr. 2008, 98, 85–101. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Onega, T. Spatial behavior of cancer care utilization in distance decay in the Northeast region of the U.S. Travel Behav. Soc. 2021, 24, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, F.; Onega, T. Network optimization approach to delineating health care service areas: Spatially constrained Louvain and Leiden algorithms. Trans. GIS 2021, 25, 1065–1081. [Google Scholar] [CrossRef] [PubMed]
- Van Meter, E.M.; Lawson, A.B.; Colabianchi, N.; Nichols, M.; Hibbert, J.; Porter, D.E.; Liese, A.D. An evaluation of edge effects in nutritional accessibility and availability measures: A simulation study. Int. J. Health Geogr. 2010, 9, 40. [Google Scholar] [CrossRef]
- Chen, X. Take the edge off: A hybrid geographic food access measure. Appl. Geogr. 2017, 87, 149–159. [Google Scholar] [CrossRef]
- Wang, F. Why public health needs GIS: A methodological overview. Ann. GIS 2020, 26, 1–12. [Google Scholar] [CrossRef]
- Gao, F.; Kihal, W.; Le Meur, N.; Souris, M.; Deguen, S. Does the edge effect impact on the measure of spatial accessibility to healthcare providers? Int. J. Health Geogr. 2017, 16, 46. [Google Scholar] [CrossRef] [PubMed]
- Sadler, R.C.; Gilliland, J.A.; Arku, G. An application of the edge effect in measuring accessibility to multiple food retailer types in Southwestern Ontario, Canada. Int. J. Health Geogr. 2011, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Dai, D. Black residential segregation, disparities in spatial access to health care facilities, and late-stage breast cancer diagnosis in metropolitan Detroit. Health Place 2010, 16, 1038–1052. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, C.; Li, R.; Wang, F. Estimating a large drive time matrix between ZIP codes in the United States: A differential sampling approach. J. Transp. Geogr. 2020, 86, 102770. [Google Scholar] [CrossRef] [PubMed]
- OGD Austria. Classification of Austria in Statistical Census Districts. 2022. Available online: https://www.data.gv.at/katalog/dataset/11571547-64e8-3565-a6e3-f94461611fd2#additional-info (accessed on 4 May 2022).
- WIGeoGIS. Market Data for Austria. 2022. Available online: https://www.wigeogis.com/en/market_data_austria (accessed on 27 April 2022).
- Jing, C.; Zhou, W.; Qian, Y.; Zheng, Z.; Wang, J.; Yu, W. Trajectory big data reveals spatial disparity of healthcare accessibility at the residential neighborhood scale. Cities 2023, 133, 104127. [Google Scholar] [CrossRef]
- Mao, L.; Nekorchuk, D. Measuring spatial accessibility to healthcare for populations with multiple transportation modes. Health Place 2013, 24, 115–122. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Duan, Z.; Pan, J. Spatial accessibility of primary health care in China: A case study in Sichuan Province. Soc. Sci. Med. 2018, 209, 14–24. [Google Scholar] [CrossRef]
- 50plus.at. Hospitals in Austria. 2022. Available online: https://www.50plus.at/spitaeler/krankenhaeuser-kaernten.htm (accessed on 26 April 2022).
- Luo, W. Using a GIS-based floating catchment method to assess areas with shortage of physicians. Health Place 2004, 10, 1–11. [Google Scholar] [CrossRef]
- Statista. Modes of Transportation for Commuting in Austria in 2022. 2022. Available online: https://www.statista.com/forecasts/1001253/modes-of-transportation-for-commuting-in-austria (accessed on 1 June 2022).
- Wang, C.; Onega, T.; Wang, F. Multiscale analysis of cancer service areas in the United States. Spat. Spatio-Temporal Epidemiol. 2022, 43, 100545. [Google Scholar] [CrossRef]
- McLafferty, S.L. GIS and Health Care. Annu. Rev. Public Health 2003, 24, 25–42. [Google Scholar] [CrossRef]
- Alford-Teaster, J.; Lange, J.M.; Hubbard, R.A.; Lee, C.I.; Haas, J.S.; Shi, X.; Carlos, H.A.; Henderson, L.; Hill, D.; Tosteson, A.N.A.; et al. Is the closest facility the one actually used? An assessment of travel time estimation based on mammography facilities. Int. J. Health Geogr. 2016, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Tang, Q. Planning toward equal accessibility to services: A quadratic programming approach. Environ. Plan. B Plan. Des. 2013, 40, 195–212. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.; Hu, Y.; Weiss, J.; Alford-Teaster, J.; Onega, T. Automated delineation of cancer service areas in northeast region of the United States: A network optimization approach. Spat. Spatio-Temporal Epidemiol. 2020, 33, 100338. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.-H.; Chiu, Y.-H.; Chiang, P.-H.; Su, M.-D.; Chan, T.-C. A flow-based statistical model integrating spatial and nonspatial dimensions to measure healthcare access. Health Place 2017, 47, 126–138. [Google Scholar] [CrossRef]
- Wang, F. Inverted two-step floating catchment area method for measuring facility crowdedness. Prof. Geogr. 2018, 70, 251–260. [Google Scholar] [CrossRef]
- Shi, X.; Alford-Teaster, J.; Onega, T.; Wang, D. Spatial access and local demand for major cancer care facilities in the United States. Ann. Assoc. Am. Geogr. 2012, 102, 1125–1134. [Google Scholar] [CrossRef]
- Delamater, P.L.; Messina, J.P.; Grady, S.C.; WinklerPrins, V.; Shortridge, A.M. Do more hospital beds lead to higher hospitalization rates? A spatial examination of Roemer’s Law. PLoS ONE 2013, 8, e54900. [Google Scholar] [CrossRef]
- Wang, F. From 2SFCA to i2SFCA: Integration, derivation and validation. Int. J. Geogr. Inf. Sci. 2021, 35, 628–638. [Google Scholar] [CrossRef]
- Tao, Z.; Cheng, Y.; Du, S.; Feng, L.; Wang, S. Accessibility to delivery care in Hubei Province, China. Soc. Sci. Med. 2020, 260, 113186. [Google Scholar] [CrossRef]
Study Area | Data Layer | Number of Records | Spatial Scale/Format | Data Source |
---|---|---|---|---|
Carinthia | Census block population | 607 (562,089 people) | Polygon | OGD Austria |
Grid population | 23,880 1 (561,628 people) | 250 meter grid/polygon | WIGeoGIS | |
Acute hospital | 13 (3436 beds) | Point | 50plus.at | |
Road network | - | Polyline | OpenStreetMap (OSM) | |
Carinthia and a 15-mile buffer area | Census block population | 1036 (892,034 people) | Polygon | OGD Austria |
Grid population | 40,145 2 (891,308 people) | WIGeoGIS | ||
Acute hospital | 20 (5018 beds) | Point | 50plus.at | |
Road network | - | Polyline | OpenStreetMap (OSM) |
Travel Friction Coefficient | Block-Based Accessibility | Grid-Based Accessibility | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | Min | Max | SD 1 | Mean | Median | Min | Max | SD 1 | |
β = 1 | 6.73 | 5.27 | 2.07 | 56.74 | 4.14 | 4.67 | 4.30 | 2.28 | 29.54 | 1.64 |
β = 1.1 | 6.78 | 5.04 | 1.78 | 78.87 | 5.12 | 4.41 | 3.97 | 1.98 | 39.69 | 1.87 |
β = 1.2 | 6.82 | 4.74 | 1.51 | 106.19 | 6.32 | 4.13 | 3.62 | 1.69 | 55.98 | 2.14 |
β = 1.3 | 6.85 | 4.44 | 1.27 | 136.83 | 7.70 | 3.84 | 3.26 | 1.42 | 80.20 | 2.48 |
β = 1.4 | 6.88 | 4.09 | 1.05 | 167.79 | 9.18 | 3.54 | 2.89 | 1.18 | 112.61 | 2.93 |
β = 1.5 | 6.90 | 3.71 | 0.86 | 196.11 | 10.66 | 3.25 | 2.53 | 0.96 | 163.58 | 3.51 |
β = 1.6 | 6.92 | 3.38 | 0.7 | 219.85 | 12.06 | 2.97 | 2.18 | 0.77 | 245.22 | 4.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Leitner, M.; Paulus, G. Multiscale Analysis of Spatial Accessibility to Acute Hospitals in Carinthia, Austria. ISPRS Int. J. Geo-Inf. 2023, 12, 491. https://doi.org/10.3390/ijgi12120491
Wang C, Leitner M, Paulus G. Multiscale Analysis of Spatial Accessibility to Acute Hospitals in Carinthia, Austria. ISPRS International Journal of Geo-Information. 2023; 12(12):491. https://doi.org/10.3390/ijgi12120491
Chicago/Turabian StyleWang, Changzhen, Michael Leitner, and Gernot Paulus. 2023. "Multiscale Analysis of Spatial Accessibility to Acute Hospitals in Carinthia, Austria" ISPRS International Journal of Geo-Information 12, no. 12: 491. https://doi.org/10.3390/ijgi12120491
APA StyleWang, C., Leitner, M., & Paulus, G. (2023). Multiscale Analysis of Spatial Accessibility to Acute Hospitals in Carinthia, Austria. ISPRS International Journal of Geo-Information, 12(12), 491. https://doi.org/10.3390/ijgi12120491